To celebrate a victory, a pitcher throws her glove straight upward with an initial speed of 5.0 m/s. How much time does it take for the glove to return to the pitcher

Answers

Answer 1

Answer:

The glove takes 1.02s to return to the pitchers hand.

Explanation:

Given;

initial velocity the pitcher's glove, u = 5 m/s

Apply kinematic equation

s = ut - ¹/₂gt²

where;

g is acceleration due to gravity = 9.8 m/s²

t is the time takes the glove to return to the pitchers hand

s is the displacement of the glove, which will be equal to zero when the glove returns to the pitchers hand. (s = 0)

0 = ut - ¹/₂gt²

ut = ¹/₂gt²

u = ¹/₂gt

gt = 2u

t = (2u) / g

t = (2 x 5) / 9.8

t = 1.02 s

Therefore, the glove takes 1.02s to return to the pitchers hand.


Related Questions

What is the difference between matter and energy

Answers

Answer:

Everything in the Universe is made up of matter and energy. Matter is anything that has mass and occupies space. ... Energy is the ability to cause change or do work. Some forms of energy include light, heat, chemical, nuclear, electrical energy and mechanical energy.

Explanation:

Two separate disks are connected by a belt traveling at 5m/s. Disk 1 has a mass of 10kg and radius of 35cm. Disk 2 has a mass of 3kg and radius of 7cm.
a. What is the angular velocity of disk 1?
b. What is the angular velocity of disk 2?
c. What is the moment of inertia for the two disk system?

Answers

Explanation:

Given that,

Linear speed of both disks is 5 m/s

Mass of disk 1 is 10 kg

Radius of disk 1 is 35 cm or 0.35 m

Mass of disk 2 is 3 kg

Radius of disk 2 is 7 cm or 0.07 m

(a) The angular velocity of disk 1 is :

[tex]v=r_1\omega_1\\\\\omega_1=\dfrac{v}{r_1}\\\\\omega_1=\dfrac{5}{0.35}\\\\\omega_1=14.28\ rad/s[/tex]

(b) The angular velocity of disk 2 is :

[tex]v=r_2\omega_2\\\\\omega_2=\dfrac{v}{r_2}\\\\\omega_2=\dfrac{5}{0.07}\\\\\omega_2=71.42\ rad/s[/tex]

(c) The moment of inertia for the two disk system is given by :

[tex]I=I_1+I_2\\\\I=\dfrac{1}{2}m_1r_1^2+\dfrac{1}{2}m_2r_2^2\\\\I=\dfrac{1}{2}(m_1r_1^2+m_2r_2^2)\\\\I=\dfrac{1}{2}\times (10\times (0.35)^2+3\times (0.07)^2)\\\\I=0.619\ kg-m^2[/tex]

Hence, this is the required solution.

a transformer changes 95 v acorss the primary to 875 V acorss the secondary. If the primmary coil has 450 turns how many turns does the seconday have g

Answers

Answer:

The number of turns in the secondary coil is 4145 turns

Explanation:

Given;

the induced emf on the primary coil, [tex]E_p[/tex] = 95 V

the induced emf on the secondary coil, [tex]E_s[/tex] = 875 V

the number of turns in the primary coil, [tex]N_p[/tex] = 450 turns

the number of turns in the secondary coil, [tex]N_s[/tex] = ?

The number of turns in the secondary coil is calculated as;

[tex]\frac{N_p}{N_s} = \frac{E_p}{E_s}[/tex]

[tex]N_s = \frac{N_pE_s}{E_p} \\\\N_s = \frac{450*875}{95} \\\\N_s = 4145 \ turns[/tex]

Therefore, the number of turns in the secondary coil is 4145 turns.

A block of ice with mass 5.50 kg is initially at rest on a frictionless, horizontal surface. A worker then applies a horizontal force F⃗ to it. As a result, the block moves along the x-axis such that its position as a function of time is given by x(t)=αt2+βt3, where α = 0.210 m/s2 and β = 2.04×10−2 m/s3 .
A. Calculate the velocity of the object at time t = 4.50 s .
B. Calculate the magnitude of F⃗ at time t = 4.50 s .
Express your answer to three significant figures.
C. Calculate the work done by the force F⃗ during the first time interval of 4.50 s of the motion.
Express your answer to three significant figures.

Answers

Answer:

A) 3.13 m/s

B) 5.34 N

C) W = 26.9 J

Explanation:

We are told that the position as a function of time is given by;

x(t) = αt² + βt³

Where;

α = 0.210 m/s² and β = 2.04×10^(−2) m/s³ = 0.0204 m/s³

Thus;

x(t) = 0.21t² + 0.0204t³

A) Velocity is gotten from the derivative of the displacement.

Thus;

v(t) = x'(t) = 2(0.21t) + 3(0.0204t²)

v(t) = 0.42t + 0.0612t²

v(4.5) = 0.42(4.5) + 0.0612(4.5)²

v(4.5) = 3.1293 m/s ≈ 3.13 m/s

B) acceleration is gotten from the derivative of the velocity

a(t) = v'(t) = 0.42 + 2(0.0612t)

a(4.5) = 0.42 + 2(0.0612 × 4.5)

a(4.5) = 0.9708 m/s²

Force = ma = 5.5 × 0.9708

F = 5.3394 N ≈ 5.34 N

C) Since no friction, work done is kinetic energy.

Thus;

W = ½mv²

W = ½ × 5.5 × 3.1293²

W = 26.9 J

A jetboat is drifting with a speed of 5.0\,\dfrac{\text m}{\text s}5.0 s m ​ 5, point, 0, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction to the right when the driver turns on the motor. The boat speeds up for 6.0\,\text s6.0s6, point, 0, start text, s, end text with an acceleration of 4.0\,\dfrac{\text m}{\text s^2}4.0 s 2 m ​ 4, point, 0, start fraction, start text, m, end text, divided by, start text, s, end text, squared, end fraction leftward.

Answers

The question is incomplete. Here is the entire question.

A jetboat is drifting with a speed of 5.0m/s when the driver turns on the motor. The motor runs for 6.0s causing a constant leftward acceleration of magnitude 4.0m/s². What is the displacement of the boat over the 6.0 seconds time interval?

Answer: Δx = - 42m

Explanation: The jetboat is moving with an acceleration during the time interval, so it is a linear motion with constant acceleration.

For this "type" of motion, displacement (Δx) can be determined by:

[tex]\Delta x = v_{i}.t + \frac{a}{2}.t^{2}[/tex]

[tex]v_{i}[/tex] is the initial velocity

a is acceleration and can be positive or negative, according to the referential.

For Referential, let's assume rightward is positive.

Calculating displacement:

[tex]\Delta x = 5(6) - \frac{4}{2}.6^{2}[/tex]

[tex]\Delta x = 30 - 2.36[/tex]

[tex]\Delta x[/tex] = - 42

Displacement of the boat for t=6.0s interval is [tex]\Delta x[/tex] = - 42m, i.e., 42 m to the left.

What is the direction of the net gravitational force on the mass at the origin due to the other two masses?

Answers

Answer:

genus yds it's the

Explanation:

xmgxfjxfjxgdfjusufzjyhmfndVFHggssjtjhryfjftjsrhrythhrsrhrhsfhsgdagdah vhj

A Galilean telescope adjusted for a relaxed eye is 36.2 cm long. If the objective lens has a focal length of 39.5 cm , what is the magnification

Answers

Answer:

The magnification is  [tex]m = 12[/tex]

Explanation:

From the question  we are told that

   The object distance is [tex]u = 36.2 \ cm[/tex]

     The focal length is  [tex]v = 39.5 \ cm[/tex]

From the lens equation we have that

         [tex]\frac{1}{f} = \frac{1}{u} + \frac{1}{v}[/tex]

=>     [tex]\frac{1}{v} = \frac{1}{f} - \frac{1}{u}[/tex]

substituting values

       [tex]\frac{1}{v} = \frac{1}{39.5} - \frac{1}{36.2}[/tex]

       [tex]\frac{1}{v} = -0.0023[/tex]

=>   [tex]v = \frac{1}{0.0023}[/tex]

=>   [tex]v =-433.3 \ cm[/tex]

The magnification is mathematically represented as

         [tex]m =- \frac{v}{u}[/tex]

substituting values

        [tex]m =- \frac{-433.3}{36.2}[/tex]

         [tex]m = 12[/tex]

         

Find the total electric potential due to these charges at the point P, whose coordinates are (4.00, 0) m. SOLUTION

Answers

Answer:

Some parts of your question is missing attached below is the missing parts and the answer provided is pertaining to your question alone

answer : -6661.59 volts

Explanation:

The total electric potential can be calculated using this relation

V = k [tex](\frac{q1}{r1} + \frac{q2}{r2})[/tex]

q 1 = 1.62 uc

r1 = 4.00 m

q2 = -5.73 uc

r2 = 5.00 m  

k = 8.99 * 10^9 N.m^2/c^2

insert the given values into the above equation

V = ( 8.99 * 10^9 ) * [tex](\frac{1.62*10^{-6} }{4} + \frac{-5.73*10^{-6} }{5})[/tex]  =  -6661.59 volts

Three resistors, each having a resistance, R, are connected in parallel to a 1.50 V battery. If the resistors dissipate a total power of 3.00 W, what is the value of R

Answers

Answer:

The value of resistance of each resistor, R is 2.25 Ω

Explanation:

Given;

voltage across the three resistor, V = 1.5 V

power dissipated by the resistors, P = 3.00 W

the resistance of each resistor, = R

The effective resistance of the three resistors is given by;

R(effective) = R/3

Apply ohms law to determine the current delivered by the source;

V = IR

I = V/R

I = 3V/R

Also, power is calculated as;

P = IV

P = (3V/R) x V

P = 3V²/R

R = 3V² / P

R = (3 x 1.5²) / 3

R = 2.25 Ω

Therefore, the value of resistance of each resistor, R is 2.25 Ω

Coherent light with wavelength 601 nm passes through two very narrow slits, and the interference pattern is observed on a screen a distance of 3.00 m from the slits. The first-order bright fringe is a distance of 4.84 mm from the center of the central bright fringe. For what wavelength of light will thefirst-order dark fringe be observed at this same point on the screen?

Answers

Answer:

The wavelength is  [tex]\lambda = 1805 nm[/tex]

Explanation:

From the question we are told that

    The wavelength of the light is  [tex]\lambda = 601 \ nm = 601 *10^{-9} \ m[/tex]

     The  distance of the screen is  D  =  3.0  m

     The  fringe width is  [tex]y = 4.84 \ mm = 4.84 *10^{-3} \ m[/tex]

     

Generally the fringe width for a bright fringe  is mathematically represented as

          [tex]y = \frac{ \lambda * D }{d }[/tex]  

=>     [tex]d = \frac{ \lambda * D }{ y }[/tex]

=>     [tex]d = \frac{ 601 *10^{-9} * 3}{ 4.84 *10^{-3 }}[/tex]

=>     [tex]d = 0.000373 \ m[/tex]

Generally the fringe width for a dark fringe  is mathematically represented as

      [tex]y_d = [m + \frac{1}{2} ] * \frac{\lambda D }{d }[/tex]

Here  m = 0  for  first order dark fringe

   So  

         [tex]y_d = [0 + \frac{1}{2} ] * \frac{\lambda D }{d }[/tex]

looking at which we see that   [tex]y_d = y[/tex]

         [tex]4.84 *10^{-3} = [0 + \frac{1}{2} ] * \frac{\lambda * 3 }{ 0.000373 }[/tex]

=>    [tex]\lambda = 1805 *10^{-9} \ m[/tex]

=>    [tex]\lambda = 1805 nm[/tex]

A 23 cm tall object is placed in front of a concave mirror with a radius of 37 cm. The distance of the object to the mirror is 86 cm. Calculate the focal length of the mirror.

Answers

Answer:

18.5 cm

Explanation:

From;

1/u + 1/v = 1/f

Where;

u= object distance = 86cm

image height = 23 cm

Radius of curvature = 37 cm

The radius of curvature (r) is the radius of the sphere of which the mirror forms a part.

Focal length (f) = radius of curvature (r)/2 = 37cm/2 = 18.5 cm

Therefore, the focal length of the mirror is 18.5 cm

One solenoid is centered inside another. The outer one has a length of 54.0 cm and contains 6750 coils, while the coaxial inner solenoid is 4.00 cm long and 0.170 cm in diameter and contains 21.0 coils. The current in the outer solenoid is changing at 35.0 A/s .What is the mutual inductance of the solenoids?Find the emf induced in the inner solenoid.

Answers

Answer:

 M₁₂ = 1.01 10⁻⁴ H ,   Fem = 3.54 10⁻³ V

Explanation:

The mutual inductance between two systems is

        M₁₂ = N₂ Ф₁₂ / I₁

where N₂ is the number of turns of the inner solenoid N₂ = 21.0, i₁ the current that flows through the outer solenoid I₁ = 35.0 A / s and fi is the flux of the field of coil1 that passes through coil 2

         

the magnetic field of the coil1 is

   B = μ₀ n I₁ = μ₀ N₁/l   I₁

the flow is

             Φ = B A₂

the area of ​​the second coil is

             A₂ = π d₂ / 4

             Φ = μ₀ N₁ I₁ / L  π d² / 4

we substitute in the first expression

            M₁₂ = N₂ μ₀ N₁ / L    π d² / 4

            M₁₂ = μ₀ N₁ N₂ π d² / 4L

           d = 0.170 cm = 0.00170 m

            L = 4.00 cm = 0.00400 m

let's calculate

            M₁₂ = 4π 10⁻⁷ 6750  21 π 0.0017²/ (4 0.004)

             M₁₂ = π² 0.40966 10⁻⁷ / 0.004

             M₁₂ = 1.01 10⁻⁴ H

The electromotive force is

              Fem = - M dI₁ / dt

              Fem = - 1.01 10⁻⁴ 35.0

              Fem = 3.54 10⁻³ V

There are 5510 lines per centimeter in a grating that is used with light whose wavelegth is 467 nm. A flat observation screen is located 1.03 m from the grating. What is the minimum width that the screen must have so the centers of all the principal maxima formed on either side of the central maximum fall on the screen

Answers

Answer:

1.696 nm

Explanation:

For a diffraction grating, dsinθ = mλ where d = number of lines per metre of grating = 5510 lines per cm = 551000 lines per metre and λ = wavelength of light = 467 nm = 467 × 10⁻⁹ m. For a principal maximum, m = 1. So,

dsinθ = mλ = (1)λ = λ

dsinθ = λ

sinθ = λ/d.

Also tanθ = w/D where w = distance of center of screen to principal maximum and D = distance of grating to screen = 1.03 m

From trig ratios 1 + cot²θ = cosec²θ

1 + (1/tan²θ) = 1/(sin²θ)

substituting the values of sinθ and tanθ we have

1 + (D/w)² = (d/λ)²

(D/w)² = (d/λ)² - 1

(w/D)² = 1/[(d/λ)² - 1]

(w/D) = 1/√[(d/λ)² - 1]

w = D/√[(d/λ)² - 1] = 1.03 m/√[(551000/467 × 10⁻⁹ )² - 1] = 1.03 m/√[(1179.87 × 10⁹ )² - 1] = 1.03 m/1179.87 × 10⁹  = 0.000848 × 10⁻⁹ = 0.848 × 10⁻¹² m = 0.848 nm.

w is also the distance from the center to the other principal maximum on the other side.

So for both principal maxima to be on the screen, its minimum width must be 2w = 2 × 0.848 nm = 1.696 nm

So, the minimum width of the screen must be 1.696 nm

A circular loop of wire has radius of 9.50 cmcm. A sinusoidal electromagnetic plane wave traveling in air passes through the loop, with the direction of the magnetic field of the wave perpendicular to the plane of the loop. The intensity of the wave at the location of the loop is 0.0215 W/m2W/m2, and the wavelength of the wave is 6.90 mm.What is the maximum emf induced in the loop?
Express your answer with the appropriate units.

Answers

Answer:

The induced emf  is  [tex]\epsilon = 0.1041 \ V[/tex]  

Explanation:

From the question we are told that

   The  radius of the circular loop is  [tex]r = 9.50 \ cm = 0.095 \ m[/tex]

     The  intensity of the wave is  [tex]I = 0.0215 \ W/m^2[/tex]

      The wavelength is  [tex]\lambda = 6.90\ m[/tex]

Generally the intensity is mathematically represented as

         [tex]I = \frac{ c * B^2 }{ 2 * \mu_o }[/tex]

Here  [tex]\mu_o[/tex] is the permeability of free space with value  

         [tex]\mu_o = 4 \pi *10^{-7} N/A^2[/tex]

B is the magnetic field which can be mathematically represented from the equation as

          [tex]B = \sqrt{ \frac{ 2 * \mu_o * I }{ c} }[/tex]

substituting values

          [tex]B = \sqrt{ \frac{ 2 * 4\pi *10^{-7} * 0.0215 }{ 3.0*10^{8}} }[/tex]

          [tex]B = 1.342 *10^{-8} \ T[/tex]

The  area is mathematically represented as

       [tex]A = \pi r^2[/tex]

substituting values

       [tex]A = 3.142 * (0.095)^2[/tex]

       [tex]A = 0.0284[/tex]

The angular velocity is mathematically represented as

        [tex]w = 2 * \pi * \frac{c}{\lambda }[/tex]

substituting values          

       [tex]w = 2 * 3.142 * \frac{3.0*10^{8}}{ 6.90 }[/tex]  

        [tex]w = 2.732 *10^{8} rad \ s^{-1}[/tex]  

Generally the induced emf is mathematically represented as

        [tex]\epsilon = N * B * A * w * sin (wt )[/tex]

At maximum induced emf  [tex]sin (wt) = 1[/tex]

    So

         [tex]\epsilon = N * B * A * w[/tex]

substituting values

         [tex]\epsilon = 1 * 1.342 *10^{-8} * 0.0284 *2.732 *10^{8}[/tex]  

         [tex]\epsilon = 0.1041 \ V[/tex]  

         

a radio antenna emits electromagnetic waves at a frequency of 100 mhz and intensity of what is the photon density

Answers

Answer:

photon density = 1.0 × [tex]10^{16}[/tex] photon/m³

Explanation:

given data

frequency f = 100 mhz = 100 × [tex]10^{6}[/tex] Hz

we consider here intensity I = 0.2 W/m²

solution

we take here plank constant is h i.e = 6.626 × [tex]10^{-34}[/tex] s

and take energy density is E

so here

E × C = I  

E = [tex]\frac{I}{C}[/tex]   ................1

here C = 3 × [tex]10^{8}[/tex] m/s

so photon density is

photon density = [tex]\frac{I}{C} \times \frac{1}{f \times h}[/tex]     ...............2

photon density = [tex]\frac{0.2}{3 \times 10^8} \times \frac{1}{100 \times 10^6 \times 6.626 \times 10^{-34} }[/tex]

photon density = 1.0 × [tex]10^{16}[/tex] photon/m³

Two protons, A and B, are next to an infinite plane of positive charge. Proton B is twice as far from the plane as proton A. Which proton has the larg

Answers

Answer:

They both have the same acceleration

A plastic dowel has a Young's Modulus of 1.50 ✕ 1010 N/m2. Assume the dowel will break if more than 1.50 ✕ 108 N/m2 is exerted.
(a) What is the maximum force (in kN) that can be applied to the dowel assuming a diameter of 2.40 cm?
______Kn
(b) If a force of this magnitude is applied compressively, by how much (in mm) does the 26.0 cm long dowel shorten? (Enter the magnitude.)
mm

Answers

Answer:

a

   [tex]F = 67867.2 \ N[/tex]

b

  [tex]\Delta L = 2.6 \ mm[/tex]

Explanation:

From the question we are told that

      The Young modulus is  [tex]Y = 1.50 *10^{10} \ N/m^2[/tex]

      The stress is  [tex]\sigma = 1.50 *10^{8} \ N/m^2[/tex]

      The  diameter is  [tex]d = 2.40 \ cm = 0.024 \ m[/tex]

The radius is mathematically represented as

       [tex]r =\frac{d}{2} = \frac{0.024}{2} = 0.012 \ m[/tex]

The cross-sectional area is  mathematically evaluated as

        [tex]A = \pi r^2[/tex]

         [tex]A = 3.142 * (0.012)^2[/tex]

        [tex]A = 0.000452\ m^2[/tex]

Generally the stress is mathematically represented as

        [tex]\sigma = \frac{F}{A}[/tex]

=>     [tex]F = \sigma * A[/tex]

=>    [tex]F = 1.50 *10^{8} * 0.000452[/tex]

=>    [tex]F = 67867.2 \ N[/tex]

Considering part b

      The length is given as [tex]L = 26.0 \ cm = 0.26 \ m[/tex]

Generally Young modulus is mathematically represented as

           [tex]E = \frac{ \sigma}{ strain }[/tex]

Here strain is mathematically represented as

         [tex]strain = \frac{ \Delta L }{L}[/tex]

So    

       [tex]E = \frac{ \sigma}{\frac{\Delta L }{L} }[/tex]

        [tex]E = \frac{\sigma }{1} * \frac{ L}{\Delta L }[/tex]

=>     [tex]\Delta L = \frac{\sigma * L }{E}[/tex]

substituting values

       [tex]\Delta L = \frac{ 1.50*10^{8} * 0.26 }{ 1.50 *10^{10 }}[/tex]

       [tex]\Delta L = 0.0026[/tex]

Converting to mm

      [tex]\Delta L = 0.0026 *1000[/tex]

      [tex]\Delta L = 2.6 \ mm[/tex]

A square coil of wire with 15 turns and an area of 0.40 m2 is placed parallel to a magnetic field of 0.75 T. The coil is flipped so its plane is perpendicular to the magnetic field in 0.050 s. What is the magnitude of the average induced emf

Answers

Answer:

The magnitude of the average induced emf is 90V

Explanation:

Given;

area of the square coil, A = 0.4 m²

number of turns, N = 15 turns

magnitude of the magnetic field, B = 0.75 T

time of change of magnetic field, t = 0.05 s

The magnitude of the average induced emf is given by;

E = -NAB/t

E = -(15 x 0.4 x 0.75) / 0.05

E = -90 V

|E| = 90 V

Therefore, the magnitude of the average induced emf is 90V

The orbital motion of Earth around the Sun leads to an observable parallax effect on the nearest stars. For each star listed, calculate the distance in parsecs before converting that distance to astronomical units. A. Sirius (0.38") B. Alpha Centauri A (0.75") C. Procyon (0.28") D. Wolf 359 (0.42") E. Epsilon Eridani (0.31") D(pc) = 1/parallax(arcsecs), D(a.u.) = D(pc) * 206265 (arcsecs per radian)

Answers

Answer:

Following are the answer to this question:

Explanation:

Formula:

[tex]D(PC) =\frac{1}{parallax}\\\\D(av)=D(PC) \times 20.626\ J[/tex]

Calculating point A:

when the value is [tex]0.38[/tex]

[tex]\to 0.38 \toD(PC)= \frac{1}{0.38}\\\\[/tex]

                   [tex]=2.632[/tex]

[tex]\to D(a.v) = \frac{1}{0.38} \times 206265\\[/tex]

               [tex]=542,802.6[/tex]

Calculating point B:

when the value is [tex]0.75[/tex]

[tex]\to D(PC)=\frac{1}{0.75}[/tex]

                [tex]=1.33[/tex]

[tex]\to D(a.v) = \frac{1}{0.75} \times 206265\\[/tex]

             [tex]=275,020[/tex]

Calculating point C:

when the value is [tex]0.28[/tex]

[tex]\to D(PC)=\frac{1}{0.28}[/tex]

                [tex]=3.571[/tex]

[tex]\to D(a.v) = \frac{1}{0.28} \times 206265\\[/tex]

               [tex]=736660.7[/tex]

Calculating point D:

when the value is [tex]0.42[/tex]

[tex]\to D(PC)=\frac{1}{0.42}[/tex]

                [tex]=2.38[/tex]

[tex]\to D(a.v) = \frac{1}{0.42} \times 206265\\[/tex]

               [tex]=490910.7[/tex]

Calculating point E:

when the value is [tex]0.31[/tex]

[tex]\to D(PC)=\frac{1}{0.31}[/tex]

                [tex]=3.226[/tex]

[tex]\to D(a.v) = \frac{1}{0.31} \times 206265\\[/tex]

               [tex]=665370.97[/tex]

Which is a “big idea” for space and time? Energy can be transferred but not destroyed. Forces describe the motion of the universe. The universe is very big and very old. The universe consists of matter.

Answers

Answer:

Explanation:

That Universe Consists of Matter

1. (I) If the magnetic field in a traveling EM wave has a peak magnitude of 17.5 nT at a given point, what is the peak magnitude of the electric field

Answers

Answer:

The electric field is [tex]E = 5.25 V/m[/tex]

Explanation:

From the question we are told that

    The peak magnitude of the magnetic field is  [tex]B = 17.5 nT = 17.5 *10^{-9}\ T[/tex]

Generally the peak magnitude of the electric field is mathematically represented as

         [tex]E = c * B[/tex]

Where c is the speed of light with value [tex]c = 3.0 *10^{8} \ m/s[/tex]

So

       [tex]E = 3.0 *10^{8} * 17.5 *10^{-9}[/tex]

       [tex]E = 5.25 V/m[/tex]

The peak magnitude of the electric field will be "5.25 V/m".

Magnetic field

According to the question,

Magnetic field's peak magnitude, B = 17.5 nT or,

                                                           = 17.5 × 10⁻⁹ T

Speed of light, c = 3.0 × 10⁸ m/s

We know the relation,

→ E = c × B

By substituting the values, we get

      = 3.0 × 10⁸ × 17.5 × 10⁻⁹

      = 5.25 V/m

Thus the above approach is appropriate.

Find out more information about magnetic field here:

https://brainly.com/question/26257705

If we compare the force of gravity to strong nuclear force, we could conclude that
O gravity is the weaker force; it is related to mass
O gravity is the stronger force; it is related to distance
strong nuclear is the stronger force; it is related to mass
O strong nuclear is the weaker force; it is related to distance

Answers

Answer:

strong nuclear is the stronger force; it is related to mass

Explanation:

If we compare the force of gravity to strong nuclear force, we could conclude that strong nuclear is the stronger force; it is related to mass, therefore the correct answer is option C

What are nuclear forces?

The nuclear force is the interaction between the subatomic particles that make up a nucleus. There are two types of nuclear forces: the strong nuclear force and the weak nuclear force. Depending on the separation between the proton neutron and proton pairs, these nuclear forces can be both attracting and positive.

Both types of nuclear forces come under the four fundamental forces of nature. There are mainly four fundamental forces of nature electromagnetic force, gravitational force, strong nuclear force, and weak nuclear force.

Thus, Option C is the appropriate response since, when compared to the force of gravity, the strong nuclear force is the greater force because it is tied to mass.

Learn more about nuclear forces here

brainly.com/question/4346079

#SPJ2

Structures on a bird feather act like a diffraction grating having 8500 lines per centimeter. What is the angle of the first-order maximum for 577 nm light shone through a feather?

Answers

Answer:

29.5°

Explanation:

To find the distance d

d = 1E10^-2/8500lines

= 1.17x 10-6m

But wavelength in first order maximum is 577nm

and M = 1

So

dsin theta= m. Wavelength

Theta= sin^-1 (m wavelength/d)

= Sin^-1 ( 1* 577 x10^-8m)/1.17*10^-6

= 493*10^-3= sin^-1 0.493

Theta = 29.5°

Parallel light rays with a wavelength of 563 nm fall on a single slit. On a screen 3.30 m away, the distance between the first dark fringes on either side of the central maximum is 4.70 mm . Part A What is the width of the slit

Answers

Answer:

The width of the slit is 0.4 mm (0.00040 m).

Explanation:

From the Young's interference expression, we have;

(λ ÷ d) = (Δy ÷ D)

where λ is the wavelength of the light, D is the distance of the slit to the screen, d is the width of slit and Δy is the fringe separation.

Thus,

d = (Dλ) ÷ Δy

D = 3.30 m, Δy = 4.7 mm (0.0047 m) and λ = 563 nm (563 ×[tex]10^{-9}[/tex] m)

d = (3.30 × 563 ×[tex]10^{-9}[/tex] ) ÷ (0.0047)

  = 1.8579 × [tex]10^{-6}[/tex] ÷ 0.0047

  = 0.0003951 m

d = 0.00040 m

The width of the slit is 0.4 mm (0.00040 m).

A/An ____________________ is a small, flexible tube with a light and lens on the end that is used for examination.​ Question 96 options:

Answers

Answer:

"Endoscope" is the correct answer.

Explanation:

A surgical tool sometimes used visually to view the internal of either a body cavity or maybe even an empty organ like the lung, bladder, as well as stomach. There seems to be a solid or elastic tube filled with optics, a source of fiber-optic light, and sometimes even a sample, epidurals, suction tool, and perhaps other equipment for sample analysis or recovery.

A defibrillator is a device used to shock the heart back to normal beat patterns. To do this, it discharges a 15 μF capacitor through paddles placed on the skin, causing charge to flow through the heart. Assume that the capacitor is originally charged with 5.0 kV .Part AWhat is the charge initially stored on the capacitor?3×10−9 C7.5×104 C7.5×10−2 C7.5×10−5 CPart BWhat is the energy stored on the capacitor?What is the energy stored on the capacitor?1.9×108 J380 J190 J1.9×10−4 JPart CIf the resistance between the two paddles is 100 Ω when the paddles are placed on the skin of the patient, how much current ideally flows through the patient when the capacitor starts to discharge?5×105 A50 A2×10−2 A5×10−2 APart DIf a defibrillator passes 17 A of current through a person in 90 μs . During this time, how much charge moves through the patient?If a defibrillator passes 17 {\rm A} of current through a person in 90 {\rm \mu s} . During this time, how much charge moves through the patient?190 mC1.5 C1.5 mC17 C

Answers

Answer:

a)  q = 7.5 10⁻² C , b) 190 J , c)  I₀ = 50 A , d) 1.5 mC

Explanation:

The expression for capacitance is

            C = q / DV

            q = C DV

let's reduce the magnitudes to the SI system

            ΔV = 5 kV = 5000 V

            C = 15 μF = 15 10⁻⁶ F

              t = 90 μs = 90 10⁻⁶ s

            q = 15 10⁻⁶ 5000

            q = 7.5 10⁻² C

b) the energy in a capacitor is

             U = ½ C ΔV²

             U = ½ 15 10⁻⁶ 5000²

             U = 1,875 10² J

answer  190 J

c) At the moment the discharge begins, all the current is available and it decreases with time,

whereby

                V = I R

in the first instant I = Io

                I₀ = V / R

                I₀ = 5000/100

                I₀ = 50 A

but this is for a very short time

answer 50 A

d) The definition of current is

            i = dq / dt

in this case they give us the total current and the total time, so we can find the total charge

            i = q / t

            q = i t

            q = 17 90 10⁻⁶

            q = 1.53 10⁻³ C

answer is 1.5 mC

A magnetic field near the floor points down and is increasing. Looking down at the floor, does the non-Coulomb electric field curl clockwise or counter-clockwise?
a. clockwiseb. counter-clockwise c. no curly E

Answers

Answer:

when a magnetic field near the floors points down and is increasing then the electric field curl (a) clockwise.

Explanation:

The magnetic field this is the area that is around a magnet  which there is presence of magnetic force. The Moving electric charges can create magnetic fields.  we say In physics, that the magnetic field is a field that passes through space and which makes a magnetic force move electric charges.

The Non-coulomb electric field curls ; ( B ) counterclockwise

Non-coulomb electric field also known as induced EMF is the Negative time rate of change of a magnetic flux in a closed loop through the loop. Non-coulomb electric field is expressed as ; Fnc = qEnc

Given that the magnetic field points downwards and the value of the electric field ( ε ) is increasing ( i.e.  ε > 0  ) The direction of the non-coulomb electric field will curl in a counter-clockwise direction.

Hence we can conclude that The Non-coulomb electric field curls in a counterclockwise direction.

Learn more :  https://brainly.com/question/12975267

A sphere of radius R has charge Q. The electric field strength at distance r > R is Ei.
What is the ratio Ef /Ei of the final to initial electric field strengths if (a) Q is halved, (b) R is halved, and (c) r is halved (but is still > R)? Each part changes only one quantity; the other quantities have their initial values.

Answers

Answer:

A. Ef/ Ei = 1/2

B. EF/ Ei = 1

C Ef / Ei = 4

Explanation:

To solve this we apply Coulomb's law which States that

E = Kq / r^2

Where

q = charge r = straight line distance from q to the point in question and

K = Coulomb's constant

Then

Ei = K Q / r^2

So

A) If Q is halved then

Ef = K Q / (2 r^2)

Ef/Ei = 1/2

B) If R is halved, the value of the E-f

at a distance r remains unchanged. So

Ef/Ei = 1

C) if r is now r/2 then

Ef = K Q / (r/2)^2 = K Q / r^2/4 = 4 K Q / r^2

Ef / Ei = 4

A damped oscillator is released from rest with an initial displacement of 10.00 cm. At the end of the first complete oscillation, the displacement reaches 9.05 cm. When 4 more oscillations are completed, what is the displacement reached

Answers

Answer:

The  displacement is  [tex]A_r = 6.071 \ cm[/tex]

Explanation:

From the question we are told that

   The initial displacement is [tex]A_o = 10 \ cm[/tex]

     The displacement at the end of first oscillation is  [tex]A_d = 9.05 \ cm[/tex]

     

Generally the damping constant of this damped oscillator is mathematically represented as  

           [tex]\eta = \frac{A_d}{A_o}[/tex]

substituting values

           [tex]\eta = \frac{9.05}{10}[/tex]

        [tex]\eta = 0.905[/tex]

The displacement after 4 more oscillation is mathematically represented as

       [tex]A_r = \eta^4 * A_d[/tex]

substituting values

      [tex]A_r = (0.905)^4 * (9.05)[/tex]

      [tex]A_r = 6.071 \ cm[/tex]

Answer:

Displacement reached is 6.0708 cm

Explanation:

Formula for damping Constant "C"

[tex]C^n=\frac{A_2}{A_1}[/tex]                  where n=1,2,3,........n

Where:

[tex]A_2[/tex] is the displacement after first oscillation    

[tex]A_1\\[/tex] is the initial Displacement

[tex]A_1=10\ cm\\A_2=9.05\ cm\\[/tex]

In our case, n=1.

[tex]C=\frac{9.05}{10}\\C=0.905[/tex]

After 4 more oscillation, n=4:

[tex]C^4=\frac{A_6}{A_2}[/tex]                                        

Where:

[tex]A_6[/tex] is the final Displacement after 4 more oscillations.

[tex]A_6=(0.905)^4*(9.05)\\A_6=6.0708\ cm[/tex]

Displacement reached is 6.0708 cm

IMPORTANT ANSWER ALL 3 PLEASE!

Answers

Answer:

4. Liters

5. Celsius

6. Grams

Other Questions
. A particular parcel of real estate (land) is sold for $20,000,000 and was originally purchased for $10,000,000. On a taxable sale, explain a circumstance (type of investor, intent, entity, etc.) that would pay the following U.S. federal income tax results on the $10,000,000 gain (exclude the 3.8% net investment income tax and any state taxes in the calculation): 2/3a - 1/6 =1/3 please help me Zanna rounded these numbers.7,494 7,5407,452First, she rounded them to the tens place. Then, she rounded them tothe hundreds place. Finally, she rounded them to the thousands place.At which place were the rounded numbers all the same? What was therounded number? Lauren is a college sophomore majoring in business. This semester Lauren is taking courses in accounting, economics, management information systems, public speaking, and statistics. The sizes of these classes are, respectively, 375, 35, 45, 25, and 60.Required:Find the mean and the median of the class sizes. What is a better measure of Lauren's "typical class size"the mean or the median? Who painted the image below? A painting titled Hunters in the Snow (Winter). Hunters walk through a snow-covered town while people skate on a lake covered by ice. Two parallel metal plates, each of area A, are separatedby a distance 3d. Both are connected to ground and each plate carries no charge. A third plate carrying charge Qis inserted between the two plates, located a distance dfrom the upper plate. As a result, negative charge is induced on each of the two original plates. a) In terms of Q, find the amount of charge on the upper plate, Q1, and the lower plate, Q2. (Hint: it must be true that Q Assume that a U.S. firm considers investing in British one-year Treasury securities. The interest rate on these securities is 12%, while the interest rate on the same securities in the U.S. is 10%. The firm believes that today's spot rate is an appropriate forecast for the spot rate of the pound in one year. Based on this information, the effective yield on British securities from the U.S. firm's perspective is: If X = 12 units, Y = 4 units, and h = 10 units, then what is the area of the trapezoid shown above? Fill in the blank in the following sentence with the appropriate verb in theconditional tense.Ellos(tener) una fiesta para celebrar.O A. tendranB. teneraC. tendrnO D. tendra What is the opposite of the opposite of negative 52? Browse this website documenting the Haymarket Square Riot of 1886. Once you have finished reading some of the materials, write a short reflective essay (2-3 paragraphs) about whether it was fair for the eight men to be put on trial for the riot. Be sure to include your opinion, using specific examples from the lesson and from the web resource. What is the author implying when they write Alcatraz Island is more suitable for an Indian Reservation, as determined by the white mans own standards? 55.5% repeating as a decimal Empirical evidence from 1960 to 2010 shows that convergence in economic growth is occurring in which of the following cases?a. All low-income countries are catching up to all high-income countries. b. Low-income industrial countries are catching up to high-income developing countries. c. Low-income developing countries are catching up to high-income industrial countries. d. Low-income industrial countries are catching up to high-income industrial countries. The function f(x) = -(x - 3)2 + 9 can be used to represent the area of a rectangle with a perimeter of 12 units, as afunction of the length of the rectangle, x. What is the maximum area of the rectangle? 3 square units 6 square units 9 square units12 square units Johnstones Realty is a new discount, menu-based brokerage firm. Its approach usually results in a lower listing commission rate than other firms offer. Johnstones also offers a lower cooperating brokerage split than most other firms. Business is booming for Johnstone's, and the remaining firms in town are concerned. These brokers agree to not show Johnstones listings to their buyer clients. What is this an example of? A firm has a debt-to-equity of 0.69 and a market-to-book ratio of 3.0. What is the ratio of the book value of debt to the market value of equity? A tour group is going sea diving. Sea level is O feet. The oceanfloor is -18 feet. One diver is already at -11 feet. The tour guideis keeping watch on the deck at 5 feet above sea level directlyabove the diver. What is the distance from the tour guide to thediver? Draw and label a number line to justify your answer. Which of the following images shows a scale copy of the trapezoid using a scale factor of 1/2PLEASE HELP An investigator claims, with 95 percent confidence, that the interval between 10 and 16 miles includes the mean commute distance for all California commuters. To have 95 percent confidence signifies that