Answer:
3.75m on the left end
Explanation:
Given data
Tim's weight = 500N= 0.5kN
Tim's fathers weight= 500*2= 1000N= 1kN
Tim and the fathers weight = 500+1000= 1500N= 1.5kN
Tim's uncle weight= 1.5kN
Length of seesaw= 5m
let the distance Tim's uncle sits be x
We know that summation of clockwise moment equals the summation of anticlockwise moment
Taking moment about the center of the seesaw
1.5*2.5= 1*x
3.75= 1x
Divide boths sides by 1
x= 3.75/1
x= 3.75m
Hence Tim's uncle will sit 3.75m on the left end
Which landform is produced at location E where the Mississippi River enters the Gulf of
Mexico?
a delta a drumlin an out wash an escarpment
Answer:
a delta
Explanation:
The landform produced at the location E where the Mississippi River enters the Gulf of Mexico is a delta.
A delta is a depositional landform where a smaller body of water enters into a larger one.
The Gulf of Mexico contains a larger body of water and as the Mississippi river enters into it, it splits up into many distributaries.
So, this feature is a delta.
Two objects travel the same distance. The one that is moving faster will:
Take more time to go the distance
Take less time to go the same distance
Take the same time as the slower object
None of the above
Answer: take less time to go the same distance
Explanation:
Because if it is going faster let’s say mph 60 mph is 60 miles per hour if you are going 40 miles per hour it will take you longer to get to your destination.
An 8.00 kg mass moving east at 15.4 m/s on a frictionless horizontal surface collides with a 10.0 kg object that is initially at rest. After the collision, the 8.00 kg object moves south at 3.90 m/s. (a) What is the velocity of the 10.0 kg object after the collision
Answer:
9.3m/s
Explanation:
Based on the law of conservation of momentum
Sum of momentum before collision = sum of momentum after collision
m1u1 +m2u2 = m1v1+m2v2
m1 = 8kg
u1 = 15.4m/s
m2 = 10kg
u2 = 0m/s(at rest)
v1 = 3.9m/s
Required
v2.
Substitute
8(15.4)+10(0) = 8(3.9)+10v2
123.2=31.2+10v2
123.2-31.2 = 10v2
92 = 10v2
v2 = 92/10
v2 = 9.2m/s
Hence the velocity of the 10.0 kg object after the collision is 9.2m/s
One of the disadvantages of experimental research is that __________.
A.
it isn’t easily replicated
B.
it doesn’t often reflect reality
C.
the results aren’t generalizable
D.
conditions are not controllable
Please select the best answer from the choices provided
Answer:
B
Explanation:
Consider a swimmer that swims a complete round-trip lap of a 50 m long pool in 100 seconds. The swimmer's... average speed is 0 m/s and average velocity is 0 m/s. average speed is 0.5 m/s and average velocity is 0.5 m/s. average speed is 1 m/s and average velocity is 0 m/s. average speed is 0 m/s and average velocity is 1 m/s.What is the swimmers average speed and average velocity?
Answer:
average speed is 1 m/s and average velocity is 0 m/s.
Explanation:
Given that :
Length of round trip = 50 m
Time taken = 100 seconds
The average speed :
Total distance / total time taken
Length of complete round trip :
(50 + 50) m, total. Distance = 100 m
100 / 100 = 1m/s
The average velocity :
Total Displacement / total time taken
Total Displacement of round trip = end point - start point = 0
0 / 100 = 0
Average speed is 1 m/s and average velocity is 0 m/s.
The average speed is defined as the ratio of distance to time. Speed is a scalar quantity hence it does not take direction into account while velocity is a vector quantity hence it takes direction into account.
The speed is obtained from;
Speed = Distance/time = 2(50 m)/100 s = 1 m/s.
The velocity is 0 m/s since it is complete round-trip lap.
Learn more about speed: https://brainly.com/question/7359669
It has been argued that power plants should make use of off-peak hours (such as late at night) to generate mechanical energy and store it until it is needed during peak load times, such as the middle of the day. One suggestion has been to store the energy in large flywheels spinning on nearly frictionless ball-bearings. Consider a flywheel made of iron, with a density of 7800 kg/m^3 , in the shape of a uniform disk with a thickness of 11.3 cm.
Required:
a. What would the diameter of such a disk need to be if it is to store an amount of kinetic energy of 14.1 MJ when spinning at an angular velocity of 93.0 rpm about an axis perpendicular to the disk at its center?
b. What would be the centripetal acceleration of a point on its rim when spinning at this rate?
Answer:
Explanation:
kinetic energy = 14.1 MJ = 14.1 x 10⁶ J
Let radius of flywheel be r .
volume of flywheel = π r² x t where t is thickness
= 3.14 x r² x .113 m³
= .04 r² m³
mass = volume x density
= .04 r² x 7800 = 312.73 r²kg
moment of inertia I = 1 / 2 mass x radius²
= .5 x 312.73 r² x r²
= 156.37 r⁴ kg m²
angular velocity ω = 2π x 93/60
= 9.734 rad /s
kinetic energy = 1/2 Iω² where ω is angular velocity
= .5 x 156.37 r⁴ x 9.734²
= 7408.08 r⁴
Given
7408.08 r⁴ = 14.1 x 10⁶
r⁴ = .19 x 10⁴
r = .66 x 10
= 6.60 m .
Diameter = 13.2 m
b )
centripetal acceleration of a point on its rim = ω² r
= 9.734² x 6.6
= 625.35 m /s²
Which of the following is a mixture?
a air
biron
Chydrogen
d nickel
Answer:
it will option option A hope it helps
A sinusoidal wave is traveling on a string with speed 19.3 cm/s. The displacement of the particles of the string at x = 6.0 cm is found to vary with time according to the equation y = (2.6 cm) sin[1.8 - (5.8 s-1)t]. The linear density of the string is 5.0 g/cm. What are (a) the frequency and (b) the wavelength of the wave? If the wave equation is of the form
Answer:
Explanation:
equation of wave is given by the following equation
y = (2.6 cm) sin[1.8 - (5.8 s-1)t].
Comparing it with standard form of wave
y = A sin ( ωt - kx )
we get
ω = 5.8
2πn = 5.8
n = .92 per second
kx = 1.8
k x 6 = 1.8
k = 0.3
[tex]\frac{2\pi}{\lambda}[/tex] = 0.3
λ = 20.9 cm
At an airport, two business partners both walk at 1.5 m/sm/s from the gate to the main terminal, one on a moving sidewalk and the other on the floor next to it. The partner on the moving sidewalk gets to the end in 60 ss, and the partner on the floor reaches the end of the sidewalk in 90s.
Required:
What is the speed of the sidewalk in the Earth reference frame?
Answer:
[tex]v=0.8m/s[/tex]
Explanation:
From the question we are told that
Distance [tex]d=1.5m/sm/s[/tex]
Time [tex]t_1=60s[/tex]
Time [tex]t_2=90s[/tex]
Generally the the equation for the distance traveled is mathematically given as
[tex]d=vt[/tex]
[tex]d=1.5*90[/tex]
[tex]d=138m[/tex]
Generally equation for speed of side walk is mathematically given as
[tex]d=(v+u)t[/tex]
[tex]v=\frac{d}{t}-u[/tex]
[tex]v=\frac{138}{60}-1.5[/tex]
[tex]v=0.8m/s[/tex]
Car À moves at a speed of 8m/s for 43 seconds. Car B moves at a speed of 7 m/s for 50 seconds. Which car traveled a longer distance
Please show working
Distance = (speed) x (time)
Car A: Distance = (8 m/s) x (43 s) = 344 meters
Car B: Distance = (7 m/s) x (50 s) = 350 meters
350 meters is a longer distance than 344 meters.
Car-B traveled a longer distance than Car-A did.
Answer:
[tex]\boxed {\boxed {\sf Car \ B : 350 \ meters }}[/tex]
Explanation:
Distance is equal to the product of speed and time.
[tex]d=s*t[/tex]
1. Car A
Car A has a speed of 8 meters per second and travels for 43 seconds.
[tex]s= 8 \ m/s \\t= 43 \ s[/tex]
Substitute the values into the formula.
[tex]d= 8 \ m/s *43 \ s[/tex]
Multiply and note that the seconds will cancel out.
[tex]d= 8 \ m*43= 344 \ m[/tex]
2. Car B
Car B has a speed of 7 meters per second and travels for 50 seconds.
[tex]s= 7 \ m/s \\t= 50 \ s[/tex]
Substitute the values in and multiply.
[tex]d= 7 \ m/s * 50 \ s[/tex]
[tex]d= 7 \ m * 50 = 350 \ m[/tex]
350 meters is a longer distance than 344 meters, so Car B traveled the longer distance.
a wooden block is cut into two pieces, one with three times the mass of the other. a depression is made in both faces of the cut so that a fire cracker can be placed in it and the block is reassembled. the reassembled block is set on rough surface and the fuse is lit. when the fire cracker explodes, the two blocks separate. what is the ratio of distances traveled by blocks?
Answer:
1/9
Explanation:
Let A denote the bigger piece and let B denote the smaller piece.
We are told that one with three times the mass of the other.
Therefore, we have;
M_a = 3M_b
Firecracker is placed in the block and it explodes and thus, momentum is conserved.
Thus;
V_ai = V_bi = 0
Where V_ai is initial velocity of piece A and V_bi is initial velocity of piece B.
Since initial momentum equals final momentum, we have;
P_i = P_f
Thus;
0 = (M_a × V_af) + (M_b × V_bf)
Since M_a = 3M_b, we have;
(3M_b × V_af) + (M_b × Vbf) = 0
Making V_af the subject, we have;
V_af = -⅓V_bf
The kinetic energy gained by each block during the explosion will later be lost due to the negative work done by friction. Thus;
W_f = -½M_b•(v_bf)²
Now, let's express the work is in terms of the force and the distance.
Thus;
W_f = F_f × Δx × cos 180°
Frictional force is also expressed as μmg
Thus;
W_f = -μM_b × g × Δx
Earlier, we saw that;
W_f = -½M_b•(v_bf)²
Thus;
-½M_b•(v_bf)²= -μM_b × g × Δx
Δx = (v_bf)²/2μg
Let the distance travelled by block A be Δx_a and that travelled by B be Δx_b
Thus;
Δx_a/Δx_b = ((v_ba)²/2μg)/((v_bf)²/2μg)
Δx_a/Δx_b = ((v_af)²/((v_bf)²)
Δx_a/Δx_b = (-⅓V_bf)²/(V_bf)²
Δx_a/Δx_b = 1/9
A Physics 206 student astutely notices that her friend's car, which has extremely bad shocks, has a frequency of oscillation of 0.5 Hz after hitting a bump. She asks her friend how much the car weighs and converts that to a mass of 1,750 kg. After a few minutes of figuring on the back of an envelope (a habit all physics-types learn to do) she announces the value of the total spring constant of her friend's car. What value did she find
Answer:
i don't see anythiung
Explanation:
two identical balls are rolling down a hill ball 2 is rolling faster than ball 1 which ball has more kinetic energy
A gas is enclosed in a cylinder fitted with a light frictionless piston and maintained at atmospheric pressure. When 1400 kcal of heat is added to the gas, the volume is observed to increase slowly from 12.0 m3 to 19.9 m3.
a) Calculate the work done by the gas.
I found this to be 7.4 * 10^5 J
b) Calculate the change in internal energy of the gas
____ J
Answer:
(a) The work done by the gas 8.005 x 10⁵ J
(b) the change in internal energy is 5.0575 x 10⁶ J
Explanation:
Given;
heat added to the gas, Q = 1400 kcal = 1400 kcal x 4184 J/kcal = 5.858 x 10⁶ J.
change in volume, ΔV = 19.9 m³ - 12.0 m³ = 7.9 m³
atmospheric pressure, P = 101325 N/m²
(a) The work done by the gas = PΔV
= 101325 x 7.9
= 8.005 x 10⁵ J
(b) the change in internal energy is obtained from first law of thermodynamic;
ΔU = Q - W
ΔU = 5.858 x 10⁶ J - 8.005 x 10⁵ J
ΔU = 58.58 x 10⁵J - 8.005 x 10⁵ J
ΔU = 5.0575 x 10⁶ J
An RC car is carrying a tiny slingshot with a spring constant of 85 N/m at 0.2 m off the ground at 5.6 m/s. The sling shot is pulled back 3.5 cm from a relaxed state and shoots a 25 g steel pellet in the same direction the car is moving. What is the velocity of the steel pellet relative to the ground as it leaves the sling shot
Answer:
The velocity of the steel pellet relative to the ground when it leaves the sling shot is approximately 5.960 meters per second.
Explanation:
Let suppose that RC car-slingshot-steelpellet is a conservative system, that is, that non-conservative forces (i.e. friction, air viscosity) can be neglected. The velocity of the steel pellet can be found by means of the Principle of Energy Conservation and under the consideration that change in gravitational potential energy is negligible and that the RC car travels at constant velocity:
[tex]\frac{1}{2}\cdot (m_{C}+m_{P})\cdot v_{o}^{2} + \frac{1}{2}\cdot k\cdot x^{2} = \frac{1}{2}\cdot m_{C}\cdot v_{o}^{2} + \frac{1}{2}\cdot m_{P}\cdot v^{2}[/tex]
[tex]\frac{1}{2}\cdot m_{P}\cdot v_{o}^{2} + \frac{1}{2}\cdot k\cdot x^{2} = \frac{1}{2}\cdot m_{P}\cdot v^{2}[/tex]
[tex]m_{P}\cdot v_{o}^{2} + k\cdot x^{2} = m_{P}\cdot v^{2}[/tex]
[tex]v^{2} = v_{o}^{2} + \frac{k}{m_{P}}\cdot x^{2}[/tex]
[tex]v = \sqrt{v_{o}^{2}+\frac{k}{m_{P}}\cdot x^{2} }[/tex] (1)
Where:
[tex]v_{o}[/tex] - Initial velocity of the steel pellet, measured in meters per second.
[tex]v[/tex] - Final velocity of the steel pellet, measured in meters per second.
[tex]k[/tex] - Spring constant, measured in newtons per meter.
[tex]m_{P}[/tex] - Mass of the steel pellet, measured in kilograms.
[tex]m_{C}[/tex] - Mass of the RC car, measured in kilograms.
[tex]x[/tex] - Initial deformation of the spring, measured in meters.
If we know that [tex]v_{o} = 5.6\,\frac{m}{s}[/tex], [tex]k = 85\,\frac{N}{m}[/tex], [tex]m_{P} = 0.025\,kg[/tex] and [tex]x = 0.035\,m[/tex], then the velocity of the steel pellet relative to the ground when it leaves the sling shot is:
[tex]v = \sqrt{\left(5.6\,\frac{m}{s} \right)^{2}+\frac{\left(85\,\frac{N}{m} \right)\cdot (0.035\,m)^{2}}{0.025\,kg} }[/tex]
[tex]v \approx 5.960\,\frac{m}{s}[/tex]
The velocity of the steel pellet relative to the ground when it leaves the sling shot is approximately 5.960 meters per second.
3. What is the SI unit of force? What is this unit equivalent to in terms of fundamental units?
4. Why is force a vector quantity?
Answer:
force = mass * acceleration
therefore the SI unit is kg*m/s2 or newton's
it's a vector quantity because it has both direction(acceleration) and size (mass)
HELP PLEASE!!!
Running at 3.0 m/s, Burce, the 50.0 kg quarterback, collides with Max, the 100.0 kg tackle, who is traveling at 6.0 m/s in the other direction. Upon collision, Max continues to travel forward at 2.0 m/s.If the collision between the players lasted for 0.04 s, determine the impact force on either during the collision
Answer:
10kN
Explanation:
Given data
m1= 50kg
u1= 3m/s
m2= 100kg
u2= 6m/s
v1= 2m/s
time= 0.04s
let us find the final velocity of Bruce v1
from the conservation of linear momentum
m1u1+m2u2=m1v1+m2v2
substitute
50*3+100*6= 50*v1+100*2
150+600=50v1+200
750-200=50v1
550= 50v1
divide both sides by 50
v1= 550/50
v1=11 m/s
From
F= mΔv/t
for Bruce
F=50*(11-3)/0.04
F=50*8/0.04
F=400/0.04
F=10000
F=10kN
for Max
F=100*(6-2)/0.04
F=100*4/0.04
F=400/0.04
F=10000
F=10kN
A group of 25 particles have the following speeds: two have speed 11 m/s, seven have 16 m/s , four have 19 m/s, three have 26 m/s, six have 31 m/s, one has 37 m/s, and two have 45 m/s.
Requiredd:
a. Determine the average speed.
b. Determine the rms speed.
c. Determine the most probable speed.
Answer:
a) Average speed is 24.04 m/s
b) the rms speed is 25.84 m/s
c) the most probable speed is 16 m/s
Explanation:
Given the data in the question;
a) Determine the average speed.
To determine the average speed, we simply divide total some of speed by number of particles;
Average speed = [(2×11 m/s)+(7×16 m/s)+(4×19 m/s)+(3×26 m/s)+(6×31 m/s)+(1×37 m/s)+(2×45 m/s)] / 25
= 601 / 25
= 24.04 m/s
Therefore, Average speed is 24.04 m/s
b) Determine the rms speed
we know that (rms speed)² = sum of square speed / total number of particles
so
(rms speed)² = [(2×11²)+(7×16²)+(4×19²)+(3×26²)+(6×31²)+(1×37²)+(2×45²)] / 25
(rms speed)² = 16691 / 25
(rms speed)² = 667.64
(rms speed) = √ 667.64
(rms speed) = 25.84 m/s
Therefore, the rms speed is 25.84 m/s
c) Determine the most probable speed.
Most particles (7) have velocity 16 m/s
i.e 7 is the maximum number of particle for a particular speed ,
Therefore, the most probable speed is 16 m/s
The electric field between two parallel plates is uniform, with magnitude 628 N/C. A proton is held stationary at the positive plate, and an electron is held stationary at the negative plate. The plate separation is 4.22 cm. At the same moment, both particles are released.
A. Calculate the distance (in cm) from the positive plate at which the two pass each other.
B. Repeat part (a) for a sodlum lon (Nat) and a chlorlde lon (CI).
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
Data Given:
Electric Field between two parallel plates = 628 N/C
Separation = 4.22 cm
a) In this part, we are asked to calculate the distance from positive plate at which the electron and proton pass each other.
Solution:
First of all:
Force on proton due to the Electric field between the plates is:
[tex]F_{p}[/tex] = [tex]q_{p}[/tex]E
and, we know that, F = ma
So,
[tex]m_{p}[/tex]a = [tex]q_{p}[/tex]E
a = [tex]\frac{q_{p}.E }{m_{p} }[/tex] Equation 1
So,
The distance covered by the electron is:
S = ut + 1/2[tex]at^{2}[/tex]
Here, u = 0.
S = 1/2[tex]at^{2}[/tex]
Put equation 1 into the above equation:
S = 1/2 x ([tex]\frac{q_{p}.E }{m_{p} }[/tex] )[tex]t^{2}[/tex] Equation 2
So,
Similarly, the distance covered by electron will be:
(D-S) = 1/2 x ([tex]\frac{q_{e}.E }{m_{e} }[/tex] )[tex]t^{2}[/tex] Equation 3
We know that the charge of electron is equal to the charge of proton so,
[tex]q_{p}[/tex] = [tex]q_{e}[/tex] = q
By dividing the equation 2 by equation 3, we get:
[tex]\frac{S}{D-S}[/tex] = [tex]\frac{m_{e} }{m_{p} }[/tex]
Solve the above equation for S,
S[tex]m_{p}[/tex] = [tex]m_{e}[/tex]D - [tex]m_{e}[/tex]S
So,
S = [tex]\frac{m_{e}.D }{(m_{e} + m_{p}) }[/tex]
Plugging in the values,
As we know the mass of electron is 9.1 x [tex]10^{-31}[/tex] and the mass of proton is 1.67 x [tex]10^{-27}[/tex]
S = [tex]\frac{9.1 . 10^{-31} . 4.22 }{(9.1 . 10^{-31} + 1.67 . 10^{-27} }[/tex]
S = 0.002298 cm (Distance from the positive plate at which the two pass each other)
b) In this part, we to calculate distance for Sodium ion and chloride ion as above.
So,
we already have the equation, we need to put the values in it.
So,
S = [tex]\frac{m_{Cl}.D }{(m_{Cl} + m_{Na}) }[/tex]
As we know the mass of chlorine is 35.5 and of sodium is 23
S = [tex]\frac{35.5 . 4.22}{(35.5 + 23)}[/tex]
S = 2.56 cm
, puck 1 of mass m1 ! 0.20 kg is sent sliding across a frictionless lab bench, to undergo a one-dimensional elastic collision with stationary puck 2. Puck 2 then slides off the bench and lands a distance d from the base of the bench. Puck 1 rebounds from the collision and slides off the opposite edge of the bench, landing a distance 2d from the base of the bench. What is the mass of puck 2
Answer:
1 kg
Explanation:
Assuming that,
Δx(2) = v(2)t, where Δx(2) = d and v(2) = 2m1 / (m1 + m2) v1i
On the other hand again, if we assume that
Δx(1) = v(1)t, where Δx(1) = -2d, and v(1)t = m1 - m2 / m1 + m2 v1i
From the above, we proceed to dividing Δx(2) by Δx(1), so that we have
d/-2d = [2m1 / (m1 + m2) v1i] / [m1 - m2 / m1 + m2 v1i], this is further simplified to
1/-2 = [2m1 / (m1 + m2)] / [m1 - m2 / m1 + m2]
1/-2 = 2m1 / (m1 + m2) * m1 + m2 / m1 - m2
1/-2 = 2m1 / m1 - m2, if we cross multiply, we have
m1 - m2 = -2 * 2m1
m1 - m2 = -4m1
m2 = 5m1
From the question, we're told that m1 = 0.2 kg, if we substitute for that, we have
m2 = 5 * 0.2
m2 = 1 kg
How could a change in straight line motion due to unbalanced forces be predicted from an understanding of inertia?
Answer:
If the force goes in the direction of movement, the speed must increase and if the net force goes in the opposite direction, the speed must decrease.
Explanation:
The principle of inertia or Newton's first law states that every body remains static or with constant velocity if there is no net force acting on it.
Based on this principle, if we have a net force, the velocity of the body changes by having an unbalanced force acting.
If the force goes in the direction of movement, the speed must increase and if the net force goes in the opposite direction, the speed must decrease.
In what way did the cloud model resemble the Bohr model
Answer:
While Bohr's atomic model hypothesizes that electrons move in particular energy levels around the nucleus, the electron cloud model suggests that electrons move in an unpredictable pattern but are more likely to be in certain regions than others.
Explanation:
Earth has a mass of 5.98 1024 kg and a radius of 6.38 106 m. Assume it is a uniform solid sphere. The distance of Earth from the Sun is 1.50 1011 m. (Assume Earth completes a single rotation in 24.0 hours and orbits the Sun once every 365 Earth days.) (a) What is the rotational kinetic energy of Earth on its axis
Answer:
Explanation
Rotational kinetic energy of the earth = 1/2 Iω²
where I is moment of inertia of the earth and ω is angular velocity .
I = 2/5 m R² , m is mass and R is radius of the earth .
I = 2/5 x 5.98 x 10²⁴ x ( 6.38 x 10⁶ )²
=97.36 x 10³⁶
ω = 1 / T
T = 24 x 60 x 60 = 86400 s
ω = 1 / 86400
= 11.57 x 10⁻⁶ rad / s
Rotational Kinetic energy = 1/2 Iω²
= .5 x 97.36 x 10³⁶ x (11.57 x 10⁻⁶ )²
= 6516.54 x 10²⁴ J
Magnification of lens is 1. What does it mean?
Answer:
It means when you look into the lens your vision magnifies by x1
Explanation:
How much force is needed to accelerate a 65 kg rider AND her 215 kg motor scooter 8 m/s?? (treat
the masses as like terms)
Answer:
Force = 2240 Newton.
Explanation:
Given the following data;
Mass A= 65kg
Mass B = 215kg
Acceleration = 8m/s²
To find the force;
Force is given by the multiplication of mass and acceleration.
Mathematically, Force is;
[tex] F = ma[/tex]
Where;
F represents force.
m represents the mass of an object.
a represents acceleration.
First of all, we would have to find the total mass.
Total mass = Mass A + Mass B
Total mass = 65 + 215
Total mass = 280kg
Substituting into the equation, we have
[tex] Force = 280 * 8 [/tex]
Force = 2240 Newton.
As a person pushes a box across a floor, the energy from the person's moving arm is transferred to the box, and the box and the floor becomes warm. During the process, what happens to energy
Answer:
isnt heat transfer
Explanation:
sorry if im wrong
A ratio is another name for a decimal true or false
A mass m is gently placed on the end of a freely hanging spring. The mass then falls 33 cm before it stops and begins to rise. What is the frequency of the oscillation
Answer:
Explanation:
The mass falls by .33 m before it begins to rise . At that point loss of potential energy is equal to gain of elastic energy .
1/2 k x² = mgx
.5 x k x .33² = m x 9.8 x .33
k / m = 59.4
frequency of oscillation = [tex]\frac{1}{2\pi} \times\sqrt{\frac{k}{m} }[/tex]
= [tex]\frac{1}{2\pi} \times\sqrt{59.4}[/tex]
= 1.22 per second .
A rocket burns fuel to create hot gases that explode violently out of the rocket engine. This explosion creates thrust. Thrust is a force that pushes the rocket upward. What force must thrust overcome in order to send a rocket up into space?
Answer:
Thrust due to fuel consumption must overcome gravitational force from the Earth to send the rocket up into space.
Explanation:
From the concept of Escape Velocity, derived from Newton's Law of Gravitation, definition of Work, Work-Energy Theorem and Principle of Energy Conservation, which is the minimum speed such that rocket can overcome gravitational forces exerted by the Earth, and according to the Tsiolkovski's Rocket Equation, which states that thrust done by the rocket is equal to the change in linear momentum of the rocket itself, we conclude that thrust due to fuel consumption must overcome gravitational force from the Earth to send the rocket up into space.
Two particles, an electron and a proton, are initially at rest in a uniform electric field of magnitude 554 N/C. If the particles are free to move, what are their speeds (in m/s) after 51.6 ns
Answer:
the speed of electron is 5.021 x 10⁶ m/s
the speed of proton is 2733.91 m/s
Explanation:
Given;
magnitude of electric field, E = 554 N/C
charge of the particles, Q = 1.6 x 10⁻¹⁹ C
time of motion, t = 51.6 ns = 51.6 x 10⁻⁹ s
The force experienced by each particle is calculated as;
F = EQ
F = (554)(1.6 x 10⁻¹⁹)
F = 8.864 x 10⁻¹⁷ N
The speed of the particles are calculated as;
[tex]F = ma\\\\F = \frac{mv}{t} \\\\v = \frac{Ft}{m} \\\\v_e = \frac{Ft}{m_e}\\\\v_e = \frac{(8.864 \times 10^{-17})(51.6\times 10^{-9})}{9.11 \times \ 10^{-31}}\\\\v_e = 5.021 \times 10^{6} \ m/s[/tex]
[tex]v_p = \frac{Ft}{m_p}\\\\v_p = \frac{(8.864 \times 10^{-17})(51.6\times 10^{-9})}{1.673 \times \ 10^{-27}}\\\\v_p = 2733.91 \ m/s[/tex]