Answer:
3/7
Step-by-step explanation:
there are is a total of 7 socks and 3 are blue making blue socks be 3/7
What is the surface area of a cube measure 8 c/w?
Answer:
512
Step-by-step explanation:
if 8 is the edge using the formula
V=a³=8³
V=512
A garden is rectangular with a width of 8 feet and a length of 10 feet. If it is surrounded by a walkway 2 feet wide, how many square feet of area does the walkway cover?
Answer:
The rea of walk way is 32 ft^2.
Step-by-step explanation:
width, w = 8 feet
length, L = 10 feet
width of walkway, d = 2 feet
length of outer, L' = 10 + 2 + 2 = 14 feet
Area of outer, A' = L' x w = 14 x 8 = 112 ft^2
Area of inner, A = L x w = 10 x 8 = 80 ft^2
The area of walkway = A' - A = 112 - 80 = 32 ft^2
The rea of walk way is 32 ft^2.
It took francisco 60 minutes to walk from his house to his grandmother’s house. what is 60 written as a product of factors greater than 1? each factor can have only 1 and itself as factors.
Answer:
2 × 2 × 3 × 5
Step-by-step explanation:
Given that,
The number = 60
To find,
Factors of 60 greater than 1 = ?
Procedure:
As we know,
Any of various numbers multiplied together to form a whole.
To find the factors of a number, we will have to do its prime factorization.
So,
The prime factorization of 60:
1 * 2 * 2 * 3 * 5 = 60
Since the factors greater than 1 are asked, the factors would be;
2 * 2 * 3 * 5
Thus, 2 * 2 * 3 * 5 is the correct answer.
9. Find the remainder when the polynomial: p(x) = x⁴ + 2x³- 3x² + x - 1 is divided by (x - 2)
pls it's urgent
Answer:
answer is 21..............
Explanation:
p(x) = x⁴ + 2x³- 3x² + x - 1
Factor of p(x)
x-2=0
x=2
Then by using synthetic division
Please help me solve this problem
Answer:
-4
they wanted you to compute using x as 3
-2*3 + 2 = -4
Step-by-step explanation:
the third term and the fifth term of a geometric progression are 2 and 1/8 respectively. If all terms are positive, find the sum to the infinity of the progression
Answer:
42 + 2/3
Step-by-step explanation:
First, to calculate the sum of an infinite geometric series, our formula is
a₁/(1-r), with a₁ being the first term of the series and r being the common ratio. Therefore, we want to find both a₁ and r.
To find r, we can first determine that 2 * r = a₄ and a₄ * r = a₅, as the ratio separates one number from the next in a geometric series. Therefore, we have
2 * r * r = a₅
2 * r² = 1/8
divide both sides by 2 to isolate the r²
r² = 1/16
square root both sides to isolate r
r =± 1/4. Note the ± because r²=1/16 regardless of whether r = 1/4 or -1/4. However, because all terms are positive, r must be positive as well, or a₄, for example, would be 2 * (-1/4) = -0.5
Therefore, r = 1/4 .
To find the first term, we know that a₁ * r = a₂, and a₂ * r = a₃. Therefore, a₁ * r² = a₃ = 2
a₁ * 1/16 = 2
divide both sides by 1/16 to isolate a₁
a₁ = 2 * 1/ (1/16)
= 2 * 16
= 32
Plugging a₁ and r into our infinite geometric series formula, we have
a₁/(1-r)
= 32 / (1-1/4)
= 32/ (3/4)
= 32/ 0.75
= 42 + 2/3
Please someone tell me the answer of these questions
Answer:
VERTICALLY OPP ANGLES
Step-by-step explanation:
I'LL GIVE BRAINLIEST !!! FASTER
please explain how do you get the answer
Answer:
84°
Step-by-step explanation:
angles in a quadrilateral add to 360°. 360-(114+76)=5x =170°. 170°/5 = 32°. x=32°
angles on a straight line add to 180°.
2x = 64°. 180-64=116°. y=116°.
y-x = 116-32 = 84°
Answer:
[tex]78[/tex]
Step-by-step explanation:
The inner angles of a quadrilateral all add up to 360. This means we can write the following
[tex]114 + 76 + 3x + 2x = 360\\190 + 5x = 360\\5x = 170\\x = 34[/tex]
Now that we have x we can find y. Notice that y and 2x are on the same line. Any line cutting another straight line will create two angles that add up to 180.
Therefore we can write
[tex]2x + y = 180\\2(34) + y = 180\\y = 112[/tex]
Finally computing y - x
[tex]y - x = 112 - 34 = 78[/tex]
I need HELP ASAP!! Please explain how to solve the problem
Answer:
[tex](x+1)^2+(y+4)^2=9\\[/tex]
Step-by-step explanation:
The general format for the equation of a circle is the following:
[tex](x-h)^2+(y-k)^2=a^2\\[/tex]
Where [tex](h,k)[/tex] is the center of the circle and ([tex]a[/tex]) is the circle's radius. Please note, that the circle ([tex](x-h)^2+(y-k)^2=a^2\\[/tex]) has a center that is (h) units to the right of the origin, and (k) units above the origin.
The given circle has a center at [tex](-1,-4)[/tex], moreover, its radius is (3) units. Therefore, one must substitute these points into the equation of a circle and simplify to find its equation:
[tex](x-h)^2+(y-k)^2=a^2\\[/tex]
[tex](x-(-1))^2+(y-(-4))^2=(3)^2\\[/tex]
[tex](x+1)^2+(y+4)^2=9\\[/tex]
Answer:
Step-by-step explanation: Let's first determine the center of the circle
which is represented by the red dot and it has the coordinates (-1, -4).
The radius of the circle is a segment that joins the center of the
circle to a point on the circle and all radii of a circle are congruent.
The radius of the circle shown here is 3.
Now, the equation of a circle is (x - h)² + (y - k)² = r² where
(h, k) is the center of the circle and r is the radius.
Now we plug all our given information into the formula.
So we have [x - (-1)]² + [y - (-4)]² = (3)².
Notice that I changed the parentheses in the formula to brackets
so that we wouldn't be dealing with too many sets of parentheses.
Changing the brackets back to parentheses,
our equation is (x + 1)² + (y + 4)² = 9.
The perimeter of a rectangle is 18cm . if the length is (x+2), find it's width.
Answer:
W = 7 - x
Step-by-step explanation:
The perimeter is P= 2L + 2×W , where L is the length and W is the width.
If L = (x+2) , replacing L with the expression x+2 we have
P= 2×(X+2) + 2W ⇔ 18 = 2x + 4 + 2W ⇔ 2W =18 - 2x - 4 ⇔ 2W = 14 - 2x
⇔ W = 7 - x
Triangle Q R S is shown. Line R Q extends through point P. Angle Q S R is 35 degrees. Angle S R Q is 58 degrees. Exterior angle S Q P is x degrees. What is the value of x?
The triangle is missing and so i have attached it.
Answer:
x = 93°
Step-by-step explanation:
From the triangle attached, we can say that;
<SQP + <SQR = 180°
This is because sum of angles on a straight line equals 180°.
Secondly, we know that sum of angles in a triangle also equals 180°.
Thus;
<SQR + <QSR + <SRQ = 180
From the attached triangle, we see that;
<QSR = 35°
<SRQ = 58°
Thus;
<SQR + 35° + 58° = 180°
<SQR + 93° = 180°
<SQR = 180° - 93°
<SQR = 87°
From earlier on, we saw that;
<SQP + <SQR = 180°
Plugging in <SQR = 87°, we have;
<SQP + 87° = 180°
<SQP = 180° - 87°
<SQP = 93°
We are told in the question that <SQP is denoted by x.
Thus;
x = 93°
Answer:
The value of x is answer D: 93
pls help, and explain. I will give brainliest
Answer:
Nicole should take 13 1/8 cups of snack mix.
Step-by-step explanation:
If a serving size is 7/8 and Nicole wants to take 15 serving sizes (15 7/8's), then we must multiply 7/8 by 15:
15 × 7/8
Write 15 over 1 (15 = 15/1) to make the calculations easier:
15/1 × 7/8
Multiply the numerators and denominators separately:
15 × 7 / 1 × 8
105 / 8
Instructions don't say you have to do this but I will convert this improper fraction into a mixed number:
105/8 = 13 1/8
At a particular restaurant, each slider has 225 calories and each chicken wing has 70 calories. A combination meal with sliders and chicken wings has a total of 7 sliders and chicken wings altogether and contains 1110 calories. Write a system of equations that could be used to determine the number of sliders in the combination meal and the number of chicken wings in the combination meal. Define the variables that you use to write the system.
Answer:
X+y=7
Step-by-step explanation:
i remember doing something like this but mines had the word onion rings .
Given an arithmetic progression 17,13,9,..... find the number of terms required so that its sum is - 33 .
Answer:
11 terms.
Step-by-step explanation:
We are given the arithmetic sequence:
17, 13, 9, ...
And we want to find the number of terms required such that the sum is -33.
Recall that the sum of an arithmetic series is given by:
[tex]\displaystyle S = \frac{k}{2}\left( a + x_k\right)[/tex]
Where k is the number of terms, a is the first term, and x_k is the last term.
The desired sum is -33. The first term is 17 as well. Thus:
[tex]\displaystyle (-33) = \frac{k}{2} \left( (17) +x_k\right)[/tex]
Simplify:
[tex]-66 = k(17 + x_k)[/tex]
We can write a direct formula to find the last term x_k. The direct formula of an arithmetic sequence has the form:
[tex]x_ n = a + d(n-1)[/tex]
Where a is the initial term and d is the common difference.
The initial term is 17 and the common difference is -4. Hence:
[tex]\displaystyle x_n = 17 - 4(n-1)[/tex]
Then the last term is given by:
[tex]x_k = 17 - 4(k-1)[/tex]
Substitute:
[tex]\displaystyle -66 = k\left( 17 + \left( 17 - 4(k-1)\right)\right)[/tex]
Solve for k:
[tex]\displaystyle \begin{aligned} -66 &= k(17 + (17 - 4k + 4)) \\ -66 &= k(38 -4k) \\ -66 &= -4k^2 + 38k \\ 4k^2 -38k -66 &= 0 \\ 2k^2 - 19k -33 &= 0 \\ (k-11)(2k+3) &= 0 \\ k-11&= 0 \text{ or } 2k+3 = 0 \\ \\ k &= 11 \text{ or } k = -\frac{3}{2}\end{aligned}[/tex]
Since we cannot have a negative amount of terms, we can ignore the second solution.
Therefore, the given sequence must have 11 terms such that it sums to -33.
Answer:
Here is 2 methods
Step-by-step explanation:
1) we use excel to find n=11 for lasy students
2) mathematical method
[tex]u_1=17\\u_2=13=17+(2-1)*(-4)\\u_3=9=17+(3-1)*(-4)\\\\\\\boxed{u_n=17+(n-1)*(-4)}\\\\\\\displaystyle s_n=\sum_{i=1}^nu_i\\=\sum_{i=1}^n(17+(i-1)*(-4))\\\\\\=(\sum_{i=1}^n 17) + (-4)*\sum_{i=1}^n (i) +4*\sum_{i=1}^n (1)\\\\\\=17*n+4*n-4*\frac{n*(n+1)}{2} \\\\\\=21n-2n^2-2n\\\\\\=-2n^2+19n\\\\=-33\\\\\\\Longrightarrow\ 2n^2-19n-33=0[/tex]
[tex]\Delta=19^2+4*2*33=625=25^2\\\\n=\dfrac{19-25}{4} =-1.5\ (excluded)\ or\ n=\dfrac{19+25}{4}=11\\\\[/tex]
Match function with its corresponding graph
Answer:
Step-by-step explanation:
We can see that there are roots at (-2,0) and (-1,0)
also, the root at (-2,0) should bounce right off
and the root at (-1,0) should go through
With all that being said it has to be B
Correct gets 5 stars and brainliest
Answer:
13 mi
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2+b^2 = c^2 where a and b are the legs and c is the hypotenuse
5^2 +12^2 = c^2
25+144 = c^2
169 = c^2
Taking the square root of each side
sqrt(169) = sqrt(c^2)
13 = c
the tub started with gallons of water
Answer:
huh?
Step-by-step explanation:
What is the axis of symmetry for y = 3x^2 + x - 2
A. -5x+4y=-20
B. -5x-4y=-20
C. -5x+4y=0
D. 5x+4y=-20
y=8200(0.96)^x growth or decay find
Answer:
This would be a .04 or 4% decay.....
for every "time unit" (x in this case) you will be multiplying
the amount by .96 ... in other words if you started with one dollar
the results would be 96 cents... after two "time" steps you would have
only 92 cents (.96 *.96)
Step-by-step explanation:
which inequality is represented on the number line shown?
Answer: A x> -2
Step-by-step explanation:
arshad's father bought x sweets .(x-4)were eaten by children and 20 were left.how many sweets did his father bring
Answer:
24
Step-by-step explanation:
20+4
simple
x-4=20
x=20+4
x=24
mark me as brainliest
Answer:
24 sweets
Step-by-step explanation:
Remaining sweets = 20
x - 4 = 20
Add 4 to both sides.
x = 20 +4
x = 24
What's 672 divided by 32
Find the area of the shape:
Answer:
(8×6)+2×((14+6)×6)
=48+2×(20×6)
=48+240
=288
Step-by-step explanation:
please mark me as brainliest
A giant pie is created in an attempt to break a world record for baking. The pie is shown below:
What is the area of the slice of pie that was cut, rounded to the nearest hundredth?
Answer:
Area of the slice of pie = 22.09 ft²
Step-by-step explanation:
Area of the slice of pie = Area of the sector of the circle with the central angle 45°
Area of the sector = [tex]\frac{\theta}{360^{\circ}}(\pi r^{2} )[/tex] [Here, r = radius of the circle]
= [tex]\frac{45^{\circ}}{360^{\circ}}(\pi )(\frac{15}{2})^2[/tex]
= 22.09 ft²
Area of the slice of pie = 22.09 ft²
Answer:
22.08ft^2
Step-by-step explanation:
A = πr^2(x/360) d = 15
Since r is half of diameter this means that r = 15/2 =7.5
so Lets use the Area of Sector formua
A =3.14(7.5)^2 (45/360)
A =3.14(56.25) (45/360)
A = 176.625 (45/360)
A = 176.625 (0.125)
A = 22.078125
rounded to the nearest 10th would make it 22.08
Find the first five terms. Please solve
Answer:
a1=3, a2=6, a3=12, a4=24, a5=48
Step-by-step explanation:
a7=a*r^6=192
a10=a*r^9=1536, r^3=8, r=2 and a=3
a1=3, a2=6, a3=12, a4=24, a5=48
How many people can Liam buy lunch for
Answer:
At most, Liam can only buy lunch for 6 people.
Step-by-step explanation:
It isn't going to be a decimal answer because there can't be half of a person
All you have to do is divide 50 by 8 and round down because you don't want to spend more than 50 dollars.
Writing it mathematically, it would be:
p [tex]\leq[/tex] 6
A student simplified the rational expression
using the steps shown.
(x^2/5 • x^4/5 / x^2/5)^1/2 = (x^6/5/x^2/5)^1/2=(x^3)^1/2=x^3/2
Is the answer correct? Explain.
Answer:
Does the answer help you?
Answer:
[tex]\textbf{No, the answer is not correct }[/tex].
Step-by-step explanation:
The student didn't use the quotient of powers property correctly. Instead of subtracting, the student divided the exponents within the parenthesis. So, x to the two-fifths power is the correct simplified form.
[tex](\frac{x^{2/5}\times x^{4/5} }{x^{2/5} } )[/tex]
[tex]=(\frac{x^{6/5} }{x^{2/5} } )^{1/2}[/tex]
[tex]=x^{6/5-2/5} )^{1/2}[/tex]
[tex]=(x^{4/5} )^{1/2} =x^{2/5}[/tex]
OAmalOHopeO
đồ thị hàm số có bao nhiêu tiệm cận
Answer:
c
Step-by-step explanation:
Helpo pleasssse
On my hw I have a parabola that opens down with its vertex at (-3,-6)......
For the range would I say that {yER | y > -6} OR {yER | y < -6} ????
I'm just confused from the negative numbers
Answer: The range is [tex]\{y \in \mathbb{R}\ | \ y \le -6\}[/tex]
Explanation:
The parabola opens down, forming a "frowny face" in a way (just without the eyes). Or you can think of it as a hill or mountain. This means that the vertex (-3,-6) is at the top of that mountain. It's the highest point of that parabola.
The range is the set of all possible y values. We see that y = -6 is the largest it can get. So y = -6 or y is smaller than this. We would then write [tex]y \le -6[/tex] to describe all the possible y values.
Therefore, the range is [tex]\{y \in \mathbb{R}\ | \ y \le -6\}[/tex]
This translates to "y is a real number such that y is -6 or smaller".
So the second answer you wrote is close, but you forgot the "or equal to" portion of the inequality sign.
See below for a visual example of what's going on.