The sum of the two numbers is 66. The larger number is 10 more than the smaller number. What are the numbers?

Answers

Answer 1

Answer:

28  and 38

Step-by-step explanation:

a+b = 66

a + 10 = b

using substitution, a + (a+10) = 66

2a = 56

a = 28

28 + 10 = 38

b = 38


Related Questions

1/2-5(2/3x + 6)+4/5x?

Answers

Answer:

[tex]-29.5-\frac{38}{15}x[/tex]

Step-by-step explanation:

First, we must expand out the -5.

-5 times 2/3x is equal to -10/3x, and -5 times 6 is equal to -30. 1/2 minus 30 is equal to -29.5, and 4/5x minus 10/3x is equal to -38/15x.

Clear parentheses by applying the distributive property.

-(-4s + 9t + 7)

Answers

Answer:

4s-9t-7

Step-by-step explanation:

multiply the negative one with all terms inside the bracket, since they are all unlike terms the answer remains the same

Which graph shows data that would allow the most accurate prediction for the number of water bottles a vendor sells based on the daily high temperature?

Graph A
Daily High Temperatures and Bottled Water Sales

On a graph, points are scattered all over the graph.

Graph B
Daily High Temperatures and Bottled Water Sales

On a graph, points are scattered all over the graph.
Graph C
Daily High Temperatures and Bottled Water Sales

On a graph, points are grouped together and form a line with positive slope.
Graph D
Daily High Temperatures and Bottled Water Sales

On a graph, points are grouped together and increase.
PLS HELP ILL GIVE BRAINLIEST FAST

Answers

9514 1404 393

Answer:

  Graph C: Daily High Temperatures and Bottled Water Sales

  On a graph, points are grouped together and form a line with positive slope.

Step-by-step explanation:

Apparently, Graph C shows data with the greatest degree of correlation. This suggests that any model of the data is likely to have less error than if the data were less well correlated.

Answer:

Graph C: Daily High Temperatures and Bottled Water Sales

On a graph, points are grouped together and form a line with positive slope.

Step-by-step explanation:

Select the correct answer
The equation of a line is y= 15x-2 What are its slope and y-intercept?
A.slope = 15 and y-intercept=-2
B.slope = 15 and y-intercept = 2
C.slope = 2 and y-intercept=15
D.siope =-2 and y-intercept=15
RES

Answers

Answer:

A

Step-by-step explanation:

Slope = term that multiply x

y intercept = the number without a variable

Denver's elevation is 5280 feet above sea level. Death Valley is -282 feet. Is Death Valley located above sea level or below sea level???
(plz answer, due date is semtemper)

Answers

9514 1404 393

Answer:

  below

Step-by-step explanation:

When signed numbers are used to represent elevation with respect to sea level, positive signs are used for values above sea level, and negative signs are used for values below sea level. The given elevation of Death Valley indicates it is 282 feet below sea level.

If it's possible to tell, decide if a and b are positive or negative: a-3>b-3 and b>4

PLEASE HELP NEED ASAPPPPPPP

Answers

Answer:

a and b are positive

Step-by-step explanation:

We are given that

[tex]a-3>b-3[/tex]

[tex]b>4[/tex]

We have to find that a and b are positive or negative.

We have

[tex]b>4[/tex]

It means b is positive and greater than 4.

[tex]a-3>b-3[/tex]

Adding 3 on both sides

[tex]a-3+3>b-3+3[/tex]

[tex]a>b>4[/tex]

[tex]\implies a>4[/tex]

Hence, a is positive and greater than 4.

Therefore, a and b are positive

How many millitiers are in 4.55 liters?

Answers

Answer:

v nnv vb n

Step-by-step explanation:

b ng chfxhc.jx.gc,fhxfgfdkhgvn gghcjfuoctykfd mmyegfiuegfypgerukf khergfuoegrfyurgfirge jgreuyofrgiregvoifgr riygfepiygfreu;k frugfyrfbhrevf rrgfbreuobghfre rgeuherhbgerui freurehuregh ruogysfhurgiugwhlerghre rgiuyrge97grukbgr ker ruipuhrgeugregariyarga ;rskfglfsglgsfuifgryrgljs kjger;ugiergs hope this was helpful good luck!

How many millitiers are in 4.55 liters?

In a certain town, 22% of voters favor the construction of a new hospital. For groups of 21 voters, find the variance for the number who did not favor the new hospital.
a. 1.9 voters
b. 4.6 voters
c. none of the given answers is correct
d. 3.6 voters
e. 13 voters

Answers

Answer:

Variance = 3.6 voteres

Step-by-step explanation:

Probability of favour voters, P = 0.22

Total number of voters, n = 21

The probability of voters who are in not favour of new hospital construction = 1  - P

The probability of voters who are in not favour of new hospital construction = 1  - 0.22

The probability of voters who are in not favour of new hospital construction, P* = 0.78

Variance = n x p* x (1 - p*)

Variance = 21 x 0.78 x 0.22

Variance = 3.6 voters

what is 32⋅(12)x+1=2x−14?

Answers

Answer:

[tex]x=-\frac{15}{382}[/tex]

Step-by-step explanation:

32 × 12x + 1 = 2x - 14

384x + 1 = 2x - 14

384x + 1 - 1 = 2x - 14 - 1

384x = 2x - 15

384x - 2x = 2x - 2x - 15

382x = - 15

382x ÷ 382 = - 15 ÷ 382

[tex]x=-\frac{15}{382}[/tex]

Suppose we take a poll (random sample) of 3923 students classified as Juniors and find that 3196 of them believe that they will find a job immediately after graduation. What is the 99 % confidence interval for the proportion of GSU Juniors who believe that they will, immediately, be employed after graduation.

Answers

Answer:

The 99% confidence interval for the proportion of GSU Juniors who believe that they will, immediately, be employed after graduation is (0.7987, 0.8307).

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].

Suppose we take a poll (random sample) of 3923 students classified as Juniors and find that 3196 of them believe that they will find a job immediately after graduation.

This means that [tex]n = 3923, \pi = \frac{3196}{3923} = 0.8147[/tex]

99% confidence level

So [tex]\alpha = 0.01[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].  

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.8147 - 2.575\sqrt{\frac{0.8147*0.1853}{3923}} = 0.7987[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.8147 + 2.575\sqrt{\frac{0.8147*0.1853}{3923}} = 0.8307[/tex]

The 99% confidence interval for the proportion of GSU Juniors who believe that they will, immediately, be employed after graduation is (0.7987, 0.8307).

x=cos(2t), y=sin(2t) find a rectangular coordinate equation for the curve by eliminating the parameter​

Answers

Answer:

x^2+y^2=1

Step-by-step explanation:

Since cos^2(x)+sin^2(x)=1, x^2+y^2=1

Please help, I’m not sure about this question.

Answers

First set F equal to C and set it up as a system of equations

F=C

C=5/9*(F-32)

now plug F in for C and solve for F

F=5/9*(F-32)
9F/5=F-32
9F/5-F=-32
4F/5=-32
F/5=-8
F=-40

My class consists of 8 men and 7 women. I want to pick a group of 6 people for research.
Write each answer using fraction as needed.
a. In how many different ways can I pick this group?
b. What is the probability of having exactly 3 men in the group?
c. What is the probability of all the selected people in group are women?
d. What is the probability of having at least one man in the group?

Answers

Answer:

a.5005

b.[tex]\frac{1960}{5005}[/tex]

c.1/715

d.714/715

Step-by-step explanation:

We are given that

Total men=8

Total women=7

Total people, n=8+7=15

r=6

a.

Combination formula:

Selection of r out of n people by total number of ways

[tex]nC_r[/tex]

Using the formula

We have n=15

r=6

Total number of ways=[tex]15C_6[/tex]

Total number of ways=[tex]\frac{15!}{6!9!}[/tex]

Using the formula

[tex]nC_r=\frac{n!}{r!(n-r)!}[/tex]

Total number of ways=[tex]\frac{15\times 14\times 13\times 12\times 11\times 10\times 9!}{6\times 5\times 4\times 3\times 2\times 1\times 9!}[/tex]

Total number of ways=5005

b. The probability of having exactly 3 men in the group

=[tex]\frac{8C_3\times 7C_3}{15C_6}[/tex]

Using the formula

Probability,[tex]P(E)=\frac{favorable\;cases}{Total\;number\;of\;cases}[/tex]

The probability of having exactly 3 men in the group=[tex]\frac{\frac{8!}{3!5!}\times \frac{7!}{3!4!}}{5005}[/tex]

=[tex]\frac{\frac{8\times 7\times 6\times 5!}{3\times 2\times 1\times 5!}\times \frac{ 7\times 6\times 5\times 4!}{3\times 2\times 1\times 4!}}{5005}[/tex]

=[tex]\frac{56\times 35}{5005}[/tex]

The probability of having exactly 3 men in the group

=[tex]\frac{1960}{5005}[/tex]

c. The probability of all the selected people in the group are women

=[tex]\frac{8C_0\times 7C_6}{5005}[/tex]

The probability of all the selected people in the group are women

[tex]=\frac{\frac{8!}{0!8!}\times \frac{7\times 6!}{6!1!}}{5005}[/tex]

The probability of all the selected people in the group are women

[tex]=\frac{7}{5005}=\frac{1}{715}[/tex]

d. The probability of having at least one man in the group

=1- probability of all the selected people in group are women

The probability of having at least one man in the group

[tex]=1-\frac{1}{715}[/tex]

[tex]=\frac{715-1}{715}[/tex]

[tex]=\frac{714}{715}[/tex]

The probability of having at least one man in the group [tex]=\frac{714}{715}[/tex]

What is the simplified form of the following expression?

Answers

Answer:

-( cube root of 2x)-6(cube root of x)

6/5 times 17/18 in lowest terms

Answers

Answer:

17/15

Step-by-step explanation:

6/5 * 17/18

1/5 * 17/3

17/15

We need to multiply 6/5*17/18. 6 x 17 is 102, 5 x 18 is 90. 102/90 can both be divided by 6. This gives us 17/15. 17/15 as a mixed number is 1 2/15.

Suppose 5 men and 7 women are on a crowded elevator. At the next floor, four people get off the elevator. Find the probability that three are women.

0.010

0.354

0.424

0.25

Answers

Total People=5+7+4=16

Women=7

We know

[tex]\boxed{\sf P(W)=\dfrac{No.\:of\:women}{Total\:People}}[/tex]

[tex] \\ \sf \longmapsto \: p(w) = \frac{7}{16} [/tex]

A nut company is determining how to package their new type of party mix. The marketing department is experimenting with different-sized cans for the party mix packaging. The designers use the equation r=Vhπ⎯⎯⎯⎯⎯⎯√r=Vhπ to determine the radius of the can for a certain height hh and volume VV. The company decides they want the can to have a volume of 1280πcm31280π⁢cm3. Find the radius of the can if the height is 16cm16⁢cm. Keep your answers in simplified radical form.

Answers

Answer:

The radius of the can, in centimeters, is of [tex]4\sqrt{5}[/tex]

Step-by-step explanation:

Radius of the can:

The radius of the can is given by:

[tex]r^2 = \frac{V}{h\pi}[/tex]

In which V is the volume and h is the height.

In this question:

[tex]V = 1280\pi, h = 16[/tex]

Thus

[tex]r^2 = \frac{V}{h\pi}[/tex]

[tex]r^2 = \frac{1280\pi}{16\pi}[/tex]

[tex]r^2 = 80[/tex]

[tex]r = \sqrt{80}[/tex]

[tex]r = \sqrt{5*16}[/tex]

[tex]r = \sqrt{5}\sqrt{16}[/tex]

[tex]r = 4\sqrt{5}[/tex]

The radius of the can, in centimeters, is of [tex]4\sqrt{5}[/tex]

degree and classification of 4x^2+32x+63?
nvm its quadratic trinomial

Answers

Answer:

Pertaining to the mathematical expression conveyed, the answer to such proposed interrogate is acknowledged as the following:

Degree: 2nd degree term.

Classification: Quadratic trionomial.

Step-by-step explanation:

Evaluating the Degree:

The degree is acknowledged as the predominating term adjacent to a base of a peculiar value that denotes the particular allocation within a polynomial.

4x^2 has the highest degree of 2.

32x has the degree of one, being that x individually is x^1.

Since polynomials are defined by the term in which obtains the greatest degree, ^2 is referred to as quadratic, whereas ^3 is cubic, ^4…

Classification Evaluation:

Such could be determined by evaluating for the quantity of terms present within the mathematical expression or statement.

4x^2 is the first term.

32x is the second term.

63 is the third term (considered a constant).

Thus, the correct answer is a quadratic trinomial.

*I hope this helps.

Please Help me and don't report this

Answers

8 < x < 8.5 is your answer

other sides has to always be less than the hypotenuse

9514 1404 393

Answer:

  0.5 < x < 16.5

Step-by-step explanation:

The sum of the two shortest sides of a triangle must always exceed the length of the longest side.

If x and 8.0 are the short sides, then ...

  x + 8.0 > 8.5

  x > 0.5

If 8.0 and 8.5 are the short sides, then ...

  8.0 +8.5 > x

  16.5 > x

So, for the given triangle to exist, we must have ...

  0.5 < x < 16.5

_____

Additional comment

You will notice that the value 0.5 is the difference of the given sides, and 16.5 is their sum. This will always be the case for a problem like this. The third side length always lies between the difference and the sum of the other two sides.

Charles spent 1/4 of his allowance on a shirt, and 2/5 of the remainder on a book. A.What fraction of his allowance did he have left? B.If he spent $18 on the book, how much did he have at first?

Answers

Answer:

18.65

Step-by-step explanation:

1/4+2/5+18=18.65

18.65

hope it helps you good luck

Write an equation of the line through each pair of points in slope-intercept form.
a(– 3,–2) and (–3,4)

b(3,2)and (–4,–5)



Answer and I will give you brainiliest ​

Answers

Answer:

see below

Step-by-step explanation:

a) (– 3, –2) and (–3, 4)

First you want to find the slope of the line that passes through these points. To find the slope of the line, we use the slope formula: (y₂ - y₁) / (x₂ - x₁)

Plug in these values:

(4 - (-2) / (-3 - (-3))

Simplify the parentheses.

= (4 + 2) / (-3 + 3)

Simplify the fraction.

(6) / (0)

= undefined

If your slope is undefined, it is a vertical line. The equation of a vertical line is x = #.

In this case, the x-coordinate for both points is -3.

Therefore, your equation is x = -3.

b) (3, 2) and (–4, –5)

First you want to find the slope of the line that passes through these points. To find the slope of the line, we use the slope formula: (y₂ - y₁) / (x₂ - x₁)

Plug in these values:

(-5 - 2) / (-4 - 3)

Simplify the parentheses.

= (-7) / (-7)

Simplify the fraction.

-7/-7

= 1

This is your slope. Plug this value into the standard slope-intercept equation of y = mx + b.

y = 1x + b or y = x + b

To find b, we want to plug in a value that we know is on this line: in this case, I will use the first point (3, 2). Plug in the x and y values into the x and y of the standard equation.

2 = 1(3) + b

To find b, multiply the slope and the input of x(3)

2 = 3 + b

Now, subtract 3 from both sides to isolate b.

-1 = b

Plug this into your standard equation.

y = x - 1

This is your equation.

Check this by plugging in the other point you have not checked yet (-4, -5).

y = 1x - 1

-5 = 1(-4) - 1

-5 = -4 - 1

-5 = -5

Your equation is correct.

Hope this helps!

Write an equation for a line containing (–2,8) that is perpendicular to the line containing the points (3,–4)and (–7,1).





Answer and I will give you brainiliest

Answers

Answer:

y = 2x + 12

Step-by-step explanation:

the formula for a line is typically

y = ax + b

a is the slope of the line (expressed as y/x ratio describing how many units y changes, when x changes a certain amount of units).

b is the offset of the line in y direction (for x=0).

we have the points (3, -4) and (-7, 1).

to get the slope of the line let's wander from left to right (x direction).

to go from -7 to 3 x changes by 10 units.

at the same time y changes from 1 to -4, so it decreases by 5 units.

so, the slope is -5/10 = -1/2

and the line equation looks like

y = -1/2 x + b

to get b we simply use a point like (3, -4)

-4 = -1/2 × 3 + b

-4 = -3/2 + b

-5/2 = b

so, the full line equation is

y = -1/2 x - 5/2

now, for a perpendicular line the slope exchanges x and y and flips the sign.

in our case this means +2/1 or simply 2.

so, the line equation for the perpendicular line looks like

y = 2x + b

and to get b we use the point we know (-2, 8)

8 = 2×-2 + b

8 = -4 +b

12 = b

so, the full equation for the line is

y = 2x + 12

Answer:

2x-y+12= 0 or y = 2x+12 is the answer

Step-by-step explanation:

slope of the line joining (3,-4) and (-7,1) is 1-(-4)/-7-3

= -5/10

= - 1/2

slope of the line containing (-2,8) and that is perpendicular to the line containing (3,-4) and (-7,1) = 2

Equation of the line line containing (-2,8) and that is perpendicular to the line containing (3,-4) and (-7,1) is y-8 = 2(x-(-2))

y-8 = 2(x+2)

y- 8 = 2x+4

y=2x+12 (slope- intercept form) or 2x-y+12= 0 (point slope form)

The number of calls received by an office on Monday morning between 8:00 AM and 9:00 AM has a mean of 5. Calculate the probability of getting at least 4 calls between eight and nine in the morning.

Answers

Answer:

0.735 = 73.5% probability of getting at least 4 calls between eight and nine in the morning.

Step-by-step explanation:

We have the mean during a time interval, which means that the Poisson distribution is used to solve this question.

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given interval.

The number of calls received by an office on Monday morning between 8:00 AM and 9:00 AM has a mean of 5.

This means that [tex]\mu = 5[/tex]

Calculate the probability of getting at least 4 calls between eight and nine in the morning.

This is:

[tex]P(X \geq 4) = 1 - P(X < 4)[/tex]

In which

[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]

So

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-5}*5^{0}}{(0)!} = 0.0067[/tex]

[tex]P(X = 1) = \frac{e^{-5}*5^{1}}{(1)!} = 0.0337[/tex]

[tex]P(X = 2) = \frac{e^{-5}*5^{2}}{(2)!} = 0.0842[/tex]

[tex]P(X = 3) = \frac{e^{-5}*5^{3}}{(3)!} = 0.1404[/tex]

Then

[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0067 + 0.0337 + 0.0842 + 0.1404 = 0.265[/tex]

[tex]P(X \geq 4) = 1 - P(X < 4) = 1 - 0.265 = 0.735[/tex]

0.735 = 73.5% probability of getting at least 4 calls between eight and nine in the morning.

How many 10-letter words real or imaginary can. Be formed from the following letters R,S,P,Q,H,J,S,M,B,A

Answers

Answer: 3628800

Step-by-step explanation: there are 10 letters so we multiply each with the other 1x2x3x4x5x6x7x8x9x10 or 10! to know all possible combinations so the answer will be 3628800.

Hope it helped!

Answer:

[tex]1,814,400[/tex]

Step-by-step explanation:

The number of ways to arrange a word with [tex]d[/tex] distinct digits is each to [tex]d![/tex]. Since there are 10 letters, there are [tex]10![/tex] permutations initially formed.

However, there is one letter that is repeated, S. We need to account for that fact that switching the placement of the S's does not change the word, as they still appear the same. Therefore, divide [tex]10![/tex] by the number of ways you can arrange the 2 S's, which is simply [tex]2![/tex]. Therefore, our answer is:

[tex]\frac{10!}{2!}=10 \cdot 9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3=\boxed{1,814,000}[/tex]

Please help , write your answer I will be giving 10 points

Answers

Answer:

yes it represents the graph accurately

Need Help! ASAP!!! I gave a screen shot. Please someone give me the correct answer.

Answers

9514 1404 393

Answer:

  x ∈ {-35, 0, 35}

Step-by-step explanation:

We can solve for x and equate those values to find corresponding y-values. Substituting into the original expressions for x gives the possible x-values.

  [tex]x+xy^2=250y\ \Rightarrow\ x=\dfrac{250y}{1+y^2}\\\\x-xy^2=-240y\ \Rightarrow\ x=\dfrac{-240y}{1-y^2}\\\\\dfrac{250y}{1+y^2}+\dfrac{240y}{1-y^2}=0\\\\\dfrac{25y(1-y^2)+24y(1+y^2)}{(1+y^2)(1-y^2)}=0\\\\y(-y^2+49)=0=y(7-y)(7+y)\ \Rightarrow\ y\in\{-7,0,7\}\\\\x=\dfrac{250(\pm 7)}{1+(\pm7)^2}=\pm35,\quad=\dfrac{250(0)}{1+0^2}=0\\\\\boxed{x\in\{-35,0,35\}}[/tex]

1/2 + 4 5/8 please help

Answers

Answer:

[tex]5 \frac{1}{8}[/tex]

Step-by-step explanation:

Remember that [tex]\frac{1}{2} = \frac{4}{8}[/tex], so we want to find [tex]\frac{4}{8} + 4 + \frac{5}{8} = 4 + \frac{9}{8}[/tex]. However, this is not in it's simplest form because [tex]\frac{9}{8}[/tex] should be [tex]1 \frac{1}{8}[/tex]. Therefore, the final answer is [tex]4+1+\frac{1}{8} = 5 \frac{1}{8}[/tex].

Answer:

5 1/8 correct answer to question

The mean monthly rent for a one-bedroom apartment without a doorman in Manhattan is 2630. Assume the standard deviation is$500 . A real estate firm samples 100 apartments. Use the TI-84 Plus calculator.a) What is the probability that the sample mean rent is greater than $27007?b) What is the probability that the sample mean rent is between $2450 and $2550? c) Find the 25th percentile of the sample mean. d) Would it be unusual if the sample mean were greater than $26457?e) Do you think it would be unusual for an individual to have a rent greater than $2645? Explain. Assume the variable is normally distributed.

Answers

Answer:

a) 0.0808 = 8.08% probability that the sample mean rent is greater than $2700.

b) 0.0546 = 5.46% probability that the sample mean rent is between $2450 and $2550.

c) The 25th percentile of the sample mean is of $2596.

d) |Z| = 0.3 < 2, which means it would not be unusual if the sample mean was greater than $2645.

e) |Z| = 0.3 < 2, which means it would not be unusual if the sample mean was greater than $2645.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

If |Z|>2, the measure X is considered unusual.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The mean monthly rent for a one-bedroom apartment without a doorman in Manhattan is $2630. Assume the standard deviation is $500.

This means that [tex]\mu = 2630, \sigma = 500[/tex]

Sample of 100:

This means that [tex]n = 100, s = \frac{500}{\sqrt{100}} = 50[/tex]

a) What is the probability that the sample mean rent is greater than $2700?

This is the 1 subtracted by the p-value of Z when X = 2700. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{2700 - 2630}{50}[/tex]

[tex]Z = 1.4[/tex]

[tex]Z = 1.4[/tex] has a p-value 0.9192

1 - 0.9192 = 0.0808

0.0808 = 8.08% probability that the sample mean rent is greater than $2700.

b) What is the probability that the sample mean rent is between $2450 and $2550?

This is the p-value of Z when X = 2550 subtracted by the p-value of Z when X = 2450.

X = 2550

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{2550 - 2630}{50}[/tex]

[tex]Z = -1.6[/tex]

[tex]Z = -1.6[/tex] has a p-value 0.0548

X = 2450

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{2450 - 2630}{50}[/tex]

[tex]Z = -3.6[/tex]

[tex]Z = -3.6[/tex] has a p-value 0.0002

0.0548 - 0.0002 = 0.0546.

0.0546 = 5.46% probability that the sample mean rent is between $2450 and $2550.

c) Find the 25th percentile of the sample mean.

This is X when Z has a p-value of 0.25, so X when Z = -0.675.

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]-0.675 = \frac{X - 2630}{50}[/tex]

[tex]X - 2630 = -0.675*50[/tex]

[tex]X = 2596[/tex]

The 25th percentile of the sample mean is of $2596.

Question d and e)

We have to find the z-score when X = 2645.

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{2645 - 2630}{50}[/tex]

[tex]Z = 0.3[/tex]

|Z| = 0.3 < 2, which means it would not be unusual if the sample mean was greater than $2645.

the sum of five consecutive number is 45​

Answers

Answer:

7, 8, 9, 10, 11

Step-by-step explanation:

7+8+9+10+11

7 + 8 = 15

15 + 9 = 24

24 + 10 = 34

34 + 11 = 45

to solve algebraically, you can represent this as x + (x+1) + (x+2) + (x+3) + (x+4) = 45
after we combine like terms we get
5x + 10 = 45
- 10 - 10
———————
5x = 35
x = 7
which means, the answer is 7,8,9,10,11. you get this by substituting the x value into the equation

Flying with a tailwind, a flight crew flew 500 km in 4 hours. Flying against the tailwind, the crew flew 468 km in 4 hours. Find the speed of the plane in calm air and the speed of the wind, both in km per hour.

Answers

Answer:

spped of the plane in calm air=121 km/h

speed of the wind= 4km/h

Step-by-step explanation:

Let say V the speed of the plane in calm air

and v the speed of the wind

Flying with a tailwind, a flight crew flew 500 km in 4 hours ==> 500= (V+v)*4

Flying against the tailwind, the crew flew 468 km in 4 hours ==> 468 = (V-v)*4

We divide the 2 equations by 4 and then add the 2 results equations:

(500+468)/4=2V ==> V=121 (km/h)

We replace that value in the first equation:

V+v=500/4=125

v=125-121=4 (km/h)

Other Questions
The function f(x) is shown on the graph.What is f(0)?0 only-6 only-2,-1,1, and 3 only-6,-2,-1,1,and 3 only Hellllllllllllllllllpppppppppp How many of 320 million Americans would you predict wear contact lens Abe receives a check from Bea for fixing Bea's car. Bea's bank is Bank B. Abe deposits the check into his bank, Bank A. Select all the statements that correct describe the check-clearing process. Multiple select question. Bank A increases its reserves at the Federal Reserve Bank by more than the amount of the check. Bank A increases Abe's checkable deposits by the amount of the check. Total reserves in the banking system remain unchanged. Total reserves in the banking system increase. Ella has two 8-ft. long boards. Sheneeds to cut pieces that are 15 incheslong. How many 15-inch pieces canshe cut from the two boards?My sister needs help? A line plot with the lengths of meteors is shown. Two more identical meteor measurements were added so that the total length of all meteors measured is 16 inches. What is the length of each new meteor?A line plot with the title, length of meteors. The data is measurement in inches. The line plot goes from two eighths to one and seven eighths, with fourteen tick marks in all. The first tick mark is two eighths and has one data point. The second tick mark is three eighths and has three data points. The third tick mark is four eighths and has two data points. The fourth tick mark is five eighths and has no data points. The fifth tick mark is six eighths and has two data points. The sixth tick mark is seven eighths and has no data points. The seventh tick mark is one and has no data points. The eighth tick mark is one and one eighth and has no data points. The ninth tick mark is one and two eighths and has one data point. The tenth tick mark is one and three eighths and has two data points. The eleventh tick mark is one and four eighths and has no data points. The twelfth tick mark is one and five eighths and has no data points. The thirteenth tick mark is one and six eighths and has two data points. The fourteenth tick mark is one and seven eighths and has one data point. 1 inch one and one eighth inches one and two eighths inches one and three eighths inches DB is a diagonal of parallelogram ABCD What is the measurement of Please help ASAP Can a result that contains road maps for European countries have a highly meets rating Use the coordinates of the labeled point to find the point-slope equation of the line.(12, -1) which of the following union territories is located along the West Coast of India given f(x)=2x-4 and g(x)=x213, determine gf[x]] James Buchanan Was widely known in the 18th century as the best president is this true 1. Identify the taxa labeled A, B, C, andDin the chart.A.B.C.D. From what you know about "get, what does "Did you get how to do that math- problem?' mean?OA. Understand how to do the math problemB. Buy a program to help you with mathC. Pick up the math notesD. Keep up with the math notes PLEASE HELP ME FAST!!!QUESTION IN ATTACHMENTS To create a land breeze Group of answer choices the cool air over the land rises, creating low pressure. Warm air over water sinks, creating high pressure. This creates an offshore breeze. the warm air over the land rises, creating low pressure. Cool air over water sinks, creating high pressure. This creates an offshore breeze. the warm air over the land sinks, creating high pressure. Warm air over water rises, creating low pressure. This creates an offshore breeze. the cool air over the land sinks, creating high pressure. Warm air over water rises, creating low pressure. This creates an offshore breeze. Salma invested $8000 in a fund for 6 years and was paid simple interest. The total interest that she received on the investment was $1400. As a percentage, what was the annual interest rate of her investment? In the United States, if the price of imported oil rises so that the prices of gasoline and heating oil rise, then the a. consumer price index rises much more than does the GDP deflator. b. consumer price index rises slightly more than does the GDP deflator. c. GDP deflator rises much more than does the consumer price index. d. GDP deflator and the consumer price index rise by about the same amount. bob swarm 4/9 killometers to an island .then he swam 2/9 killometers to a boat how far did he swim in all Lines AB and CD (if present in the picture) are straight lines. Find x. Give reasons to justify your solutions.