Explanation:
The ratio of the areas is the square of the ratio of the radii.
A/A = 3.16² = 9.99
The ratio of the volumes is the cube of the ratio of the radii.
V/V = 3.16³ = 31.6
Hi please may someone help me especially on the sketch part.
An object falls from a hovering helicopter and hits the ground at a speed of 30 m/s. How long does it take the object to reach the ground and how far does it fall? Sketch a velocity-time graph for the object (ignore air resistance).
Ignoring the air resistance it will take about 3 seconds for the object to reach the ground.We know that the acceleration due to gravity is 10m/s2.
We also know that the final velocity is 30 m/s while the initial velocity is 0 m/s
we can use the formulae for acceleration to calculate the time taken/
(final - initial velocity)/timetaken=10
(30-0)/timetaken=10
timetaken =30/10=3 seconds
the unit of energy is a derived unit
Explanation:
Hi, there!!
Energy is defined as the capacity or ability to do work. It's SI unit is Joule.
here,
Joule = (kg×m×m)/(s×s)
= kg×m^2/s^2.
Therefore, the derived unit is kg.m^2 by s^2.
Hope it helps...
I need help pls now plleeeeeeeeaaassseeeee
Answer:
[tex]r = \frac{v}{i} = v = ri \\ i = \frac{v}{r} [/tex]
A 1.00-kg glider attached to a spring with a force constant 25.0 N/m oscillates on a frictionless, horizontal air track. At t = 0, the glider is released from rest at x = -2.80 cm (that is, the spring is compressed by 2.80 cm). (a) Find the period of the glider's motion. How does the period depend on the mass and the spring constant? Does it depend on the amplitude of oscillation? s (b) Find the maximum values of its speed and acceleration. speed m/s acceleration m/s2 (c) Find the position, velocity, and acceleration as functions of time. (Where position is in m, velocity is in m/s, acceleration is in m/s2, and t is in s. Use the following as necessary: t.) x(t) = v(t) = a(t) =
Answer:
a) T = 1.26 s , b) v_max = 0.14 m / s , a_max = 0.7 m / s²
c) x = 0.028 cos (5 t) , v = - 0.14 sin 5t, a = - 0.7 cos 5t
Explanation:
This is a simple harmonic motion exercise that is described by the equation
x = A cos (wt +Ф)
with
w = √ (k / m)
let's apply this expression to our case
a) Angular velocity is related to frequency
w = 2π f
frequency and period are related
f = 1 / T
we substitute
2π / T = √ (k / m)
T = 2π √(m / k)
let's calculate
T = 2π √(1/25)
T = 1.26 s
In the expression for the period, the amplitude does not appear, therefore there is no dependence, as long as Hooke's law is fulfilled, which is correct for small amplitudes.
b) in the initial equation we have the position as a function of time, let's use the definition of speed and acceleration
v = dx / dt
v = - A w sin (wt + Ф)
the speed is maximum when the sine is -1
v_max = A w
w = √ (k / m)
w = √ 25/1
w = 5 rad / s
the amplitude of the movement is equal to the maximum compression of the spring
A = 2.8 cm = 0.028 m
we substitute
v_max = 0.028 5
v_max = 0.14 m / s
acceleration
a = dv / dt
a = - A w² cos (wt + Ф)
the acceleration is maximum when the cosine is -1
a_max = A w²
let's calculate
a_max = 0.028 5²
a_max = 0.7 m / s²
c) let's start by finding the phase constant
v = -A w cos (wt + Ф)
at t = 0 they indicate that the system has v = 0
0 = -A w sin (0 + Ф)
Ф = sin⁻¹ 0
Ф = 0
we write the equation
x = 0.028 cos (5 t)
v = - A w sin (wt + Ф)
v = - 0.028 5 sin (5t + 0)
v = - 0.14 sin 5t
acceleration
a = - A w² cos (wt + Ф)
a = - 0.028 5 2 cos (5 t + 0)
a = - 0.7 cos 5t
whats suface tension
Answer: "Surface tension is a film of a liquid caused by the attraction of the particles in the surface layer by the bulk of the liquid, which tends to minimize surface area."
Hope this helps!
Answer:
Explanation:
Surface tension is the property of a liquid surface. It is an effect where the surface of the liquid is strong.
example - small insects can walk on water as they do not have enough weight to penetrate it.
This image might help you
Hope it helps
plz mark as brainliest!!!!!!!
You are the driver of the car in the photos above. You Are traveling at 30 mph when suddenly the car goes from its position in the first photo to the position in the second photo. What is happening
Answer:
the car uses teleportation, to zip to one side of the photo, to the other
Explanation:
You are hiking in a canyon and you notice an echo. You decide to let out a yell and notice it took 2 seconds before you heard the echo of your yell. How far away is the canyon wall that reflected your yell
Answer:
d = 343 m
Explanation:
Given that,
You notice that an echo took 2 seconds before you heard the echo of your yell.
We need to find that how far away is the canyon wall that reflected your yell. It means we need to find the distance.
The distance covered by an object is given by :
d = v × t
v is speed of sound in air, v = 343 m/s
The sound took 1 s to reach the wall and 1 s back to you.
It means that,
d = 343 × 1
d = 343 m
So, canyon will reflect your yell at a distance of 343 m
An object accelerates to a velocity of 230 m/s over a time of 2.5 s. The acceleration it experienced was 42 m/s2. What was its initial velocity?
Answer:
230 = x + 105
x= 125
Explanation:
v = v0 + at
Matter is anything that has mass and takes up
space.
Which of the following is an example of
matter?
A. ear phones
B. music
C. sunlight
D. heat
Answer: ear phones
Explanation:
You can physically hold ear phones, but you can't hold music, sunlight, or heat.
please help ASAP.
these are examination questions ..
no nonsense answers .
i will mark as brainliest if you got it correct .
Answer:
1st question c part
2nd question c part
Question 1 (2 points)
(01.01 LC)
Which of the following is a characteristic of science? (2 points)
QU
Reproducible by other scientists
Ob
The personal opinion of the scientist
С
Using variable conditions for each test
d
Including only the data that supports a hypothesis
Answer:
Reproducible by other scientists
Explanation:
I just took the test
Which of the following illustrates an increase in potential energy? Group of answer choices a wind-up toy winding down a person climbs a set of stairs an apple dropping from a tree a firecracker explodes
Answer:
A person climbs a set of stairs
Explanation:
Potential energy is said to be possessed by an object due to its position. As the height from the ground level increase, the potential energy increases. It is calculated by the below formula as :
P = mgh
Out of the given options, the option that illustrates an increase in potential energy is option (b) i.e. a person climbs a set of stairs. As he steps one stair, its position from ground increases. It means its potential energy increases.
Dennis throws a volleyball up in the air. It reaches its maximum height 1.1\, \text s1.1s1, point, 1, start text, s, end text later. We can ignore air resistance. What was the volleyball's velocity at the moment it was tossed into the air?
Answer:
If max height = 1.1 meters, then initial velocity is 3.28 m/s
If max height is 1.1 feet, then the initial velocity is 5.93 ft/s
Explanation:
Recall the formulas for vertical motion under the acceleration of gravity;
for the vertical velocity of the object we have
[tex]v=v_0-g \,t[/tex]
for the object's vertical displacement we have
[tex]y-y_0=v_0\,t - \frac{g}{2} \,t^2[/tex]
If the maximum height reached by the object is given in meters, we use the value for g in [tex]m/s^2[/tex] which is: [tex]9.8\,\,m/s^2[/tex]
If the maximum height of the object is given in feet, we use the value for g in [tex]ft/s^2[/tex] which is : [tex]32\,\,ft/s^2[/tex]
Now, when the ball reaches its maximum height, the ball's velocity is zero, so that allows us to solve for the time (t) the process of reaching the max height takes:
[tex]v=v_0-g \,t\\0=v_0-g \,t\\g\,\,t=v_0\\t=\frac{v_0}{g}[/tex]
and now we use this to express the maximum height in the second equation we typed:
[tex]y-y_0=v_0\,t - \frac{g}{2} \,t^2\\max\,height=v_0\,(\frac{v_0}{g}) - \frac{g}{2} \,(\frac{v_0}{g})^2\\max\,height= \frac{v_0^2}{2\,g}[/tex]
Then if the max height is 1.1 meters, we use the following formula to solve for [tex]v_0[/tex]:
[tex]1.1= \frac{v_0^2}{2\,9.8}\\(9.8)\,(1.1)=v_0^2\\v_0=10.78\\v_0=\sqrt{10.78} \\v_0=3.28\,\,m/s[/tex]
If the max height is 1.1 feet, we use the following formula to solve for [tex]v_0[/tex]:
[tex]1.1= \frac{v_0^2}{2\,32}\\(32)\,(1.1)=v_0^2\\v_0=35.2\\v_0=\sqrt{35.2} \\v_0=5.93\,\,ft/s[/tex]
Answer:
11
Explanation:
for khan academy, this is the answer
What two factors determine how much potential energy an object has?
Answer:
The mass of the object and its height in the gravitational field of the Earth.
Explanation:
If we are talking about gravitational potential energy which is defined as:
[tex]U=m\,*\,g\,*\,h[/tex]
being "m" the object's mass, "g" the acceleration due to gravity, and "h" the height at which the object is located relative to the conventionally picked level for zero of potential energy.
As long as the value of "g" is constant, the only two variables that determine the gravitational potential energy are the mass (m) of the object and its relative height (h).
Answer:
The objects weight and height above Earth's surface
Explanation:
K12 :)
i)Distinguish between different methods of charging. ii) You are provided with a positively charged gold leaf electroscope. State and explain what happens when a. a glass rod rubbed with silk is brought near the disc of electroscope. b. an ebonite rod rubbed with fur is brought near the disc of electroscope. c. an uncharged metal rod is brought near the disc of electroscope d. a glass rod rubbed with silk is rolled on the disc of electroscope.
Answer:
Explanation:
On rubbing a glass rod with silk, the electrons from the glass rod get transferred to the silk. The silk now has an excess of electrons and so is negatively-charged. On the other hand, the glass rod is deficient in electrons and hence is positively-charged.
In the above case, the silk undergoes negative electrification.
Now, when the positively charged glass rod is touched on the disc of a negatively charged gold leaf electroscope, the electrons shifts towards rod, hence amount of charge on gold leaves decreases and the divergence between the gold leaves decreases as unlike charges attract each other.
Hence, the divergence decreases when a glass rod rubbed with silk is brought near the disc of negatively charged electroscope.
hope it helps pls mark me as brainliest
Question is on the picture. Answers: A. 0.1 J/g*C B. 0.2 J/g*C C. 0.4 J/g*C D. 4 J/g*C
Answer:
B. 0.2 J/g/°C
Explanation:
The solid phase is the first segment (from 0°C to 50°C).
q = mCΔT
200 J = (20 g) C (50°C)
C = 0.2 J/g/°C
Matter must have two physical properties 1. Have mass, and 2
∆ Must move
∆ Use energy
∆ Take up space
∆ Be measure
able
Answer:
Take up space
Explanation:
Actually we know this by the definition of matter which states that "matter is any substance that has mass and takes up space by having volume."
hope it helped you:)
A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 1.00 cm thick flat piece of crown glass and back to air again. The beam strikes at an incident angle of 30 degrees. (a) At what angles do the two colors emerge
Answer:
The color blue emerges at 19.16° and the color red emerges at 19.32°.
Explanation:
The angle at which the two colors emerge can be calculated using the Snell's Law:
[tex]n_{1}sin(\theta_{1}) = n_{2}sin(\theta_{2})[/tex]
Where:
n₁ is the refractive index of the incident medium (air) = 1.0003
n₂ is the refractive index of the refractive medium:
blue light in crown glass = 1.524
red light in crown glass = 1.512
θ₁ is the angle of the incident light = 30°
θ₂ is the angle of the refracted light
For the red wavelengths we have:
[tex] \theta_{2} = arcsin(\frac{n_{1}sin(\theta_{1})}{n_{2}}) = arcsin(\frac{1.0003*sin(30)}{1.512}) = 19.32 ^{\circ} [/tex]
For the blue wavelengths we have:
[tex] \theta_{2} = arcsin(\frac{n_{1}sin(\theta_{1})}{n_{2}}) = arcsin(\frac{1.0003*sin(30)}{1.524}) = 19.16 ^{\circ} [/tex]
Therefore, the color blue emerges at 19.16° and the color red emerges at 19.32°.
I hope it helps you!
Shortly after receiving a traffic ticket for speeding, Fred made numerous comments about the road signs being inadequate and is GPS telling him a different speed limit. This would be an example of:
Answer:
External locus of control
Explanation:
External locus of control is an attitude people possess that makes them attribute their failures or successes to factors other than themselves. The opposite of this type of attitude is the Internal locus of control where the individuals take responsibility for the outcomes of their actions whether good or bad. One good thing about the external locus of control is that when the individuals with this characteristic record successes, they attribute it to others and this presents them as people with team spirit. However, when they record failures, they do not want to take the blame, but rather attribute it to others.
Fred exhibits an external locus of control because he attributed his speeding to other factors like the road signs and GPS instead of fully admitting that it was his fault.
The ways to measure the mass and volume of irregular object
Answer:
When we have irregular objects, it may become very hard to calculate the volume of the object, as we actually can not use any simple equation to find it.
The mass is less tricky, just find a scale and wheight it, now we know the mass of the irregular object.
One way to measure the volume of the object is using water... how we do it?
Get some recipient with water, measure the height of the water.
Introduce your object into the water and totally submerge it, now the level of the water will rise. This is because as you introduce the object under the water, you are displacing up a given volume of water that has the same volume as the irregular object.
Now that you know the height of the water before and after you put your object, you can easily calculate the volume of water displaced, and that will be the volume of the object (the tricky part may be totally submerging the object if, for example, is wood and it floats, here you can use a thin wire to push it down but it will affect a little bit the measures.)