Answer: 0.86 and -2800 (choice A)
Explanation:
Think of the given equation as y = 0.86x - 2800
Then compare it to y = mx + b
We see that m = 0.86 is the slope and b = -2800 is the y intercept.
Answer:
Slope: 0.86 , Y-intercept:-2800
Step-by-step explanation:
Linear equations go by the form of y=mx + c
where m is the gradient(slope of the graph) and c is the y-intercept
Use the power series method to solve the given initial-value problem. (Format your final answer as an elementary function.)
(x − 1)y'' − xy' + y = 0, y(0) = −7, y'(0) = 3
You're looking for a solution of the form
[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n[/tex]
Differentiating twice yields
[tex]\displaystyle y' = \sum_{n=0}^\infty n a_n x^{n-1} = \sum_{n=0}^\infty (n+1) a_{n+1} x^n[/tex]
[tex]\displaystyle y'' = \sum_{n=0}^\infty n(n-1) a_n x^{n-2} = \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n[/tex]
Substitute these series into the DE:
[tex]\displaystyle (x-1) \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n - x \sum_{n=0}^\infty (n+1) a_{n+1} x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]
[tex]\displaystyle \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^{n+1} - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=0}^\infty (n+1) a_{n+1} x^{n+1} + \sum_{n=0}^\infty a_n x^n = 0[/tex]
[tex]\displaystyle \sum_{n=1}^\infty n(n+1) a_{n+1} x^n - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=1}^\infty n a_n x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]
Two of these series start with a linear term, while the other two start with a constant. Remove the constant terms of the latter two series, then condense the remaining series into one:
[tex]\displaystyle a_0-2a_2 + \sum_{n=1}^\infty \bigg(n(n+1)a_{n+1}-(n+1)(n+2)a_{n+2}-na_n+a_n\bigg) x^n = 0[/tex]
which indicates that the coefficients in the series solution are governed by the recurrence,
[tex]\begin{cases}y(0)=a_0 = -7\\y'(0)=a_1 = 3\\(n+1)(n+2)a_{n+2}-n(n+1)a_{n+1}+(n-1)a_n=0&\text{for }n\ge0\end{cases}[/tex]
Use the recurrence to get the first few coefficients:
[tex]\{a_n\}_{n\ge0} = \left\{-7,3,-\dfrac72,-\dfrac76,-\dfrac7{24},-\dfrac7{120},\ldots\right\}[/tex]
You might recognize that each coefficient in the n-th position of the list (starting at n = 0) involving a factor of -7 has a denominator resembling a factorial. Indeed,
-7 = -7/0!
-7/2 = -7/2!
-7/6 = -7/3!
and so on, with only the coefficient in the n = 1 position being the odd one out. So we have
[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n \\\\ y = -\frac7{0!} + 3x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots[/tex]
which looks a lot like the power series expansion for -7eˣ.
Fortunately, we can rewrite the linear term as
3x = 10x - 7x = 10x - 7/1! x
and in doing so, we can condense this solution to
[tex]\displaystyle y = 10x -\frac7{0!} - \frac7{1!}x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots \\\\ \boxed{y = 10x - 7e^x}[/tex]
Just to confirm this solution is valid: we have
y = 10x - 7eˣ ==> y (0) = 0 - 7 = -7
y' = 10 - 7eˣ ==> y' (0) = 10 - 7 = 3
y'' = -7eˣ
and substituting into the DE gives
-7eˣ (x - 1) - x (10 - 7eˣ ) + (10x - 7eˣ ) = 0
as required.
Identify the slope and y intercept of the line with equation 2y = 5x + 4
Answer:
Slope is 5/2
y-intercept is 2
Step-by-step explanation:
Turn the equation into slope intercept form [ y = mx + b ].
2y = 5x + 4
~Divide everything by 2
y = 5/2x + 2
Remember that in slope intercept form, m = slope and b = y-intercept.
Best of Luck!
Answer:
slope: 2.5
y-intercept: 2
Step-by-step explanation:
First isolate the y variable which changes the equation to y=2.5x+2
The equation of a line is mx + b where m is the slope and b and the
y-intercept. Leading us to conclude that 2.5 is the slope and 2 is the y-intercept.
The diameters of ball bearings are distributed normally. The mean diameter is 7373 millimeters and the variance is 44. Find the probability that the diameter of a selected bearing is less than 7676 millimeters. Round your answer to four decimal places.
Answer:
0.9332
Step-by-step explanation:
We are given that
Mean diameter, [tex]\mu=73[/tex]
Variance, [tex]\sigma^2=4[/tex]
We have to find the probability that the diameter of a selected bearing is less than 76.
Standard deviation, [tex]\sigma=\sqrt{variance}=\sqrt{4}=2[/tex]
[tex]P(x<76)=P(\frac{x-\mu}{\sigma}<\frac{76-73}{2})[/tex]
[tex]P(x<76)=P(Z<\frac{3}{2})[/tex]
Where [tex]Z=\frac{x-\mu}{\sigma}[/tex]
[tex]P(x<76)=P(Z<1.5)[/tex]
[tex]P(x<76)=0.9332[/tex]
Hence, the probability that the diameter of a selected bearing is less than 76=0.9332
Help me please and thank you
Answer:
Option C is correct
Step-by-step explanation:
[tex]log( {10}^{3} )[/tex]
Use logarithm rules to move 3 out of the exponent.[tex]3 \: log \: (10)[/tex]
Logarithm base 10 of 10 is 1.[tex]3×1[/tex]
Multiply 3 by 1.[tex]3[/tex]
Hope it is helpful....i need help with this question asapppppp
9514 1404 393
Answer:
$11,680.58
Step-by-step explanation:
Usually, I would say copy the example, using 70,000 instead of 55,000. However, the example you show has a couple of errors in it. You need to do what it says, not follow what it did.
__
The first 48,535 is taxed at 15%, so the tax is 0.15×48535 = 7280.25.
The next (70,000 -48,535) = 21,465 is taxed at 20.5%, so the tax is ...
0.205×21,465 = 4400.325 ≈ 4400.33
The the total tax due on $70,000 is ...
$7280.25 +4400.33 = $11,680.58 . . . . tax due on $70,000
_____
Additional comments
The example shown has a couple of errors. The tax on the excess amount is figured at 2.05%, not 20.5%, and the 132.53 value from that is shown as 132.23.
__
Any tax table like this one can be reduced to a set of simpler formulas. Here are the formulas for the brackets shown in your tax table.
≤ 48535 -- income × 0.15
≤ 97069 -- income × 0.205 -2669.425
≤ 150,473 -- income × 0.26 -8008.22
≤ 214,368 -- income × 0.29 -12,522.41
> 214,368 -- income × 0.33 -21,097.13
In this case, the second row of this simpler table would give the tax on $70,000 as ...
tax = 70,000 × 0.205 -2669.425
tax = 14350 -2669.425 = 11680.575 ≈ 11,680.58 . . . same as above
(SAT PREP) Find the value of x in each of the following excersises
Answer:
The answer is 155.
Step-by-step explanation:
We can find the remaining parts of the triangle angles.
which one of these points lies on the line described by the equation below y - 5 = 6 ( x - 7 )
Answer:
the answer would be (7,5)
HURRY plSSSSSSSSSSSSSSSSSSSSSS
What is the measure of the unknown angle?
Image of a straight angle divided into two angles. One angle is eighty degrees and the other is unknown.
Answer:
The unknown is 100
Step-by-step explanation:
A straight line is 180 degrees
We have two angles x, and 80
x+80 = 180
x = 180-80
x= 100
If side A is 10 inches long, and side B is 24 inches, find the length of the unknown side.
Step-by-step explanation:
Right Triangles and the Pythagorean Theorem. The Pythagorean Theorem, a2+b2=c2, a 2 + b 2 = c 2 , can be used to find the length of any side of a right triangle.
what Is the si unit of temperature
Answer:
the Si unit of temprature in Kelvin (K)
Step-by-step explanation:
Answer:
The answer is Kelvin (k).
Step-by-step explanation:
The kelvin (K) is defined by taking the fixed numerical value of the Boltzmann constant k to be [tex]1.380649*10^{-23}[/tex] when expressed in the unit of joule per kelvin. The temperature 0 K is commonly referred to as "absolute zero." On the widely used Celsius temperature scale, water freezes at 0 °C and boils at about 100 °C. One Celsius degree is an interval of 1 K, and zero degrees Celsius is 273.15 K. An interval of one Celsius degree corresponds to an interval of 1.8 Fahrenheit degrees on the Fahrenheit temperature scale.
The kelvin is also the fundamental unit of the Kelvin scale, an absolute temperature scale named for the British physicist William Thomson (known as Lord Kelvin). An absolute temperature scale has as its zero point absolute zero (−273.15° on the Celsius temperature scale and −459.67° on the Fahrenheit temperature scale), the theoretical temperature at which the molecules of a substance have the lowest energy; hence, all values on such a scale are nonnegative.
The length of a rectangle is 10 yd less than three times the width, and the area of the rectangle is 77 yd^2. Find the dimensions of the rectangle.
Answer:
W=7 and L=11
Step-by-step explanation:
We have two unknowns so we must create two equations.
First the problem states that length of a rectangle is 10 yd less than three times the width so: L= 3w-10
Next we are given the area so: L X W = 77
Then solve for the variable algebraically. It is just a system of equations.
3W^2 - 10W - 77 = 0
(3W + 11)(W - 7) = 0
W = -11/3 and/or W=7
Discard the negative solution as the width of the rectangle cannot be less then 0.
So W=7
Plug that into the first equation.
3(7)-10= 11 so L=11
An expression is shown below:
6x2y − 3xy − 24xy2 + 12y2
Part A: Rewrite the expression by factoring out the greatest common factor. (4 points)
Part B: Factor the entire expression completely. Show the steps of your work. (6 points)
Given:
The given expression is:
[tex]6x^2y-3xy-24xy^2+12y^2[/tex]
To find:
Part A: The expression by factoring out the greatest common factor.
Part B: Factor the entire expression completely.
Solution:
Part A:
We have,
[tex]6x^2y-3xy-24xy^2+12y^2[/tex]
Taking out the highest common factor 3y, we get
[tex]=3y(2x^2-x-8xy+4y)[/tex]
Therefore, the required expression is [tex]3y(2x^2-x-8xy+4y)[/tex].
Part B:
From part A, we have,
[tex]3y(2x^2-x-8xy+4y)[/tex]
By grouping method, we get
[tex]=3y(x(2x-1)-4y(2x-1))[/tex]
[tex]=3y(x-4y)(2x-1)[/tex]
Therefore, the required factored form of the given expression is [tex]3y(x-4y)(2x-1)[/tex].
Write the equation of the line that passes through the points (- 5, 1) and (2, 0) . Put your answer in fully reduced slope intercept form, unless it is a vertical or horizontal line
Pls help me with this one:(
Answer:
y=-1/7x + 12/7
Step-by-step explanation:
Start by finding the slope
m=(1-0)/(-5-2)
m=-1/7
next plug the slope and the point (-5,1) into point slope formula
y-y1=m(x-x1)
y1=1
x1= -5
m=-1/7
y- 1 = -1/7(x - -5)
y-1=-1/7(x+5)
Distribute -1/7 first
y- 1=-1/7x + 5/7
Add 1 on both sides, but since its a fraction add 7/7
y=-1/7x + (5/7+7/7)
y=-1/7x+12/7
Answer:
Step-by-step explanation:
(-5,1) (2,0)
m=(y-y)/(x-x)
m = (0-1)/2- -5)
m = -1/7
(2,0)
y-0= -1/7 (x-2)
y = -1/7x + 2/7
NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW!!!
Chapter 11 part 2:
What are three different properties of logarithmic functions when encountering the operations of addition, subtraction, and multiplication? Provide an example of each.
The three main log rules you'll encounter are
log(A*B) = log(A) + log(B)log(A/B) = log(A) - log(B)log(A^B) = B*log(A)The first rule allows us to go from a log of some product, to a sum of two logs. In short, we go from product to sum. The second rule allows us to go from a quotient to a difference. Lastly, the third rule allows to go from an exponential to a product.
Here are examples of each rule being used (in the exact order they were given earlier).
log(2*3) = log(2) + log(3)log(5/8) = log(5) - log(8)log(7^4) = 4*log(7)----------------
Here's a slightly more complicated example where the log rules are used.
log(x^2y/z)
log(x^2y) - log(z)
log(x^2) + log(y) - log(z)
2*log(x) + log(y) - log(z)
Hopefully you can see which rules are being used for any given step. If not, then let me know and I'll go into more detail.
a) Everyone on the team talks until the entire team agrees on one decision. O b) Everyone on the team discusses options and then votes. O c) The team passes the decision-making responsibility to an outside person. O di The team leader makes a decision without input from the other members.
Answer:
a) Everyone on the team talks until the entire team agrees on one decision.
Step-by-step explanation:
Option B consists of voting and not everyone would like the outcome. Option C is making an outsider the decision maker, which can't be helpful since he / she won't have as strong opinions as the team itself. Option D is just plain wrong as it defeats the purpose of team work and deciding as one team. So, I believe option A makes the most sense
Charity is planting trees along her driveway, and she has 6 pine trees and 6 willows to plant in one row. What is the probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other
Answer:
0.0022 = 0.22% probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
In this question, the elements are arranged, so we have to use the arrangements formula.
Arrangements formula:
The number of possible arrangements of n elements is:
[tex]A_{n} = n![/tex]
Desired outcomes:
Pine trees(6!) then the willows(6!) or
Willows(6!) then the pine trees(6!). So
[tex]D = 2*6!*6! = 1036800 [/tex]
Total outcomes:
12 trees, so:
[tex]T = 12! = 479001600 [/tex]
What is the probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other?
[tex]p = \frac{D}{T} = \frac{1036800 }{479001600 } = 0.0022[/tex]
0.0022 = 0.22% probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other.
John and mike got paid $40.00 for washing
car. John work one hour, mike worked 1.5 hrs.
How much do they get paid for time worked?
Solve the system of equations.
6x−y=−14
2x−3y=6
whats the answer please C:
Answer:
Step-by-step explanation:
If 5000 is divided by 10 and 10 again what answer will be reached
Hey there!
First, divide 5,000 by 10. You will get 500.
Now, 500 ÷ 10, and you will get your answer, 50.
Hope this helps! Have a great day!
what percent of 70 is 35
Answer:
50%
Step-by-step explanation:
35 is halve of 70 therefore it is 50%
hope it helps u...........
An electrician charges a fee of $40 plus $25 per hour. Let y be the cost in dollars of using the electrician for x hours. Choose the correct equation.
y = 40x - 25
y = 25x + 40
y = 25x - 40
y = 40x + 25
Answer:
y = 25x + 40
Step-by-step explanation:
The electrician charges $25 per hour.
The number of hours is x.
Therefore after x hours the electrician will charge $25x. (multiply the charge by the number of hours $25 * x)
Therefore fee(y) charged by the electrician = $40 + $25x
Hence y = 25x + 40
I’m new to this app and I need help with those two questions please help!!
y=x²-10x-7
a>0 so we will be looking for minimum
x=-b/2a=10/2=5
y=25-50-7=-32
Answer: (5;32)
y=-4x²-8x+1
а<0 so we will be looking for maximum
х=-b/2a=8/-8=-1
у=4+8+1=13
Maximum point (-1;13)
e lifetimes of lightbulbs of a particular type are normally distributed with a mean of290 hours and astandard deviation of6 hours. What percentage of the bulbs have lifetimes that lie within 1 standarddeviation to either side of the mean
Answer:
Step-by-step explanation:
[tex]p(\overline{X}-\sigma \leq X \leq \overline{X}+\sigma)\\\\=p(\dfrac{\overline{X}-\sigma -\overline{X} }{\sigma} \leq Z \leq \dfrac{\overline{X}+\sigma -\overline{X} }{\sigma} )\\\\=p ( -1 \leq Z \leq 1)\\\\=2*(\ p (Z \leq 1)-0.5)\\\\=2*(0.8413-0.5)\\\\=0.6826\\\\\approx{68\%}[/tex]
If (4x-5) :(9x-5) = 3:8 find the value of x.
Answer:
x is 5
Step-by-step explanation:
[tex] \frac{4x - 5}{9x - 5} = \frac{3}{8} \\ \\ 8(4x - 5) = 3(9x - 5) \\ 32x - 40 = 27x - 15 \\ 5x = 25 \\ x = \frac{25}{5} \\ \\ x = 5[/tex]
Step-by-step explanation:
as you can see as i solved above. all you need to do was to rationalize the both equations
If two numbers differ by 9 the same of their squares is 653. What are the numbers?
Answer:
Two numbers differ by 9 and the sum of their square is 653. What are the numbers?
Well,that's a mathematical question from algebra and it's quite difficult to answer such questions by writing through the circumstances offered by apps like quora.
However,I have tried to answer your question in an understandable way.Hope you may not find it difficult to analyze.
Let the numbers be x and (9+x)
Therefore,according to given,
x^2 + (9+x)^2 =653
=>x^2 + (9)^2 + x^2 + 2×(9)×(x)=653 (Applying the formula of (a+b)^2)
=>x^2 + 81 + x^2 + 18x =653
=>2x^2 + 18x + (81-653)=0
=>2x^2 + 18x - 572=0
=>2x^2 + (44x - 26x) - 572=0
=>2x^2 + 44x - 26x - 572=0
=>2x(x + 22) - 26(x + 22)=0
=>(x + 22)(2x - 26)=0
But since the number can't be negative
Therefore, x=13
Hence,the required numbers are 13 and 22.
Step-by-step explanation:
in first hope you like it
a man spends RS 608 a month. If he earns Rs 640, what percentage of his invome does he save??.
Please explanation
Answer:
5%
Step-by-step explanation:
given,
Earns= Rs 640
spends= Rs 608
saves= (Rs 640 - Rs 608)
=Rs 32
therefore, 32/640x100
answer = 5%
Answer From Gauth Math
Answer:
5%
Step-by-step explanation:
save=640-608=32
(32/640)*100%
5%
A capark has 34 rows and each row can acommodate 40 cars. If there are 976 cars parked, how many cars can still be parked?
Answer:
384 cars
Step-by-step explanation:
To find the total number of spaces in the carpark, we must multiply the number of rows by how many cars they can accommodate:
34 ⋅ 40 = 1360
As you can see, we have 1360 total spaces. Since there are 976 cars parked, and we want to find out how many spaces are left, we have to subtract the amount of cars parked from the total spaces.
1360 - 976 = 384
Therefore, our answer is 384, specifically, 384 cars.
Answer:
384 cars.
Step-by-step explanation:
40 * 34 - 976
= 1360 - 976
= 384.
Select the statement that best justifies the conclusion based on the given information.
If a(b + c) = d, then ab + ac = d.
associative
commutative
distributive
closure
Answer:
distributive
Step-by-step explanation:
a(b + c)=ab + ac
it's distributive one
Air-USA has a policy of booking as many as 22 people on an airplane that can only seat 20 people. (Past studies have revealed that only 82% of the booked passengers actually show up for the flight.) a) Find the probability that if Air-USA books 22 people, not enough seats will be available. Round your answer to 4 decimal places. P ( X > 20 )
Answer:
The answer is "0.07404893".
Step-by-step explanation:
Applying the binomial distribution:
[tex]n = 22\\\\p= 82\%=0.82\\\\q = 1-0.82 = 0.18\\\\[/tex]
Calculating the probability for not enough seats:
[tex]=P(X>20)\\\\= P(21) + P(22)\\\\[/tex]
[tex]= \binom{22}{21} (0.82)^{21}(0.18)^1+ \binom{22}{22} (0.82)^{22}(0.18)[/tex]
[tex]=0 .06134598+ 0.01270295\\\\=0.07404893[/tex]
Martha, Lee, Nancy, Paul, and Armando have all been invited to a dinner party. They arrive randomly, and each person arrives at a different time.
a. In how many ways can they arrive?
b. In how many ways can Martha arrive first and Armando last?
c. Find the probability that Martha will arrive first and Armando last.
Show your work
Answer:
a) 120
b) 6
c) 1/20
Step-by-step explanation:
a) 5! = 120
b) (5 - 2)! = 6
c) 6/120 = 1/20