The hottest ordinary star in our galaxy has a surface temperature of 53,000 K. Part A What is the peak wavelength of its thermal radiation

Answers

Answer 1

Answer:

[tex]\lambda=5.46\times 10^{-8}\ m[/tex]

Explanation:

The hottest ordinary star in our galaxy has a surface temperature of 53,000 K.

We need to find the peak wavelength of its thermal radiation.

Using Wein's law,

[tex]\lambda T=2.898\times 10^{-3}\\\\\lambda=\dfrac{2.898\times 10^{-3}}{53000}\\\\=5.46\times 10^{-8}\ m[/tex]

So, the peak wavelength of its thermal radiation is equal to [tex]5.46\times 10^{-8}\ m[/tex].


Related Questions

The tub of a washer goes into its spin-dry cycle, starting from rest and reaching an angular speed of 3.0 rev/s in 13.0 s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub slows to rest in 12.0 s. Through how many revolutions does the tub turn during this 25 s interval

Answers

Answer:

The tub turns 37.520 revolutions during the 25-second interval.

Explanation:

The total number of revolutions done by the tub of the washer ([tex]\Delta n[/tex]), in revolutions, is the sum of the number of revolutions done in the acceleration ([tex]\Delta n_{1}[/tex]), in revolutions, and deceleration stages ([tex]\Delta n_{2}[/tex]), in revolutions:

[tex]\Delta n = \Delta n_{1} + \Delta n_{2}[/tex] (1)

Then, we expand the previous expression by kinematic equations for uniform accelerated motion:

[tex]\Delta n = \frac{1}{2}\cdot ( \ddot n_{1}\cdot t_{1}^{2} - \ddot n_{2} \cdot t_{2}^{2})[/tex] (1b)

Where:

[tex]\ddot n_{1}, \ddot n_{2}[/tex] - Angular accelerations for acceleration and deceleration stages, in revolutions per square second.

[tex]t_{1}, t_{2}[/tex] - Acceleration and deceleration times, in seconds.

And each acceleration is determined by the following formulas:

Acceleration

[tex]\ddot n_{1} = \frac{\dot n}{t_{1}}[/tex] (2)

Deceleration

[tex]\ddot n_{2} = -\frac{\dot n}{t_{2} }[/tex] (3)

Where [tex]\dot n[/tex] is the maximum angular velocity of the tub of the washer, in revolutions per second.

If we know that [tex]\dot n = 3\,\frac{rev}{s}[/tex], [tex]t_{1} = 13\,s[/tex] and [tex]t_{2} = 12\,s[/tex], then the quantity of revolutions done by the tub is:

[tex]\ddot n_{1} = \frac{3\,\frac{rev}{s} }{13\,s}[/tex]

[tex]\ddot n_{1} = 0.231\,\frac{rev}{s^{2}}[/tex]

[tex]\ddot n_{2} = -\frac{3\,\frac{rev}{s} }{12\,s}[/tex]

[tex]\ddot n_{2} = -0.25\,\frac{rev}{s^{2}}[/tex]

[tex]\Delta n = \frac{1}{2}\cdot ( \ddot n_{1}\cdot t_{1}^{2} + \ddot n_{2} \cdot t_{2}^{2})[/tex]

[tex]\Delta n = \frac{1}{2}\cdot \left[\left(0.231\,\frac{rev}{s^{2}} \right)\cdot (13\,s)^{2}-\left(-0.25\,\frac{rev}{s^{2}} \right)\cdot (12\,s)^{2}\right][/tex]

[tex]\Delta n = 37.520\,rev[/tex]

The tub turns 37.520 revolutions during the 25-second interval.

how can the starch be removed from the leaves of potted plants​

Answers

Answer:

Explanation:

There are two main ways to de-starch leaves of a plant - the 'Light Exclusion' Method and the 'Carbon Dioxide Deprivation' Method. The 'Light Exclusion' method is a simpler procedure and is used often. Leaves can be destarched by depriving them of light for an extended period of time, usually 24-48 hours.

Newton's law of cooling states that the rate of change of temperature of an object in a surrounding medium is proportional to the difference of the temperature of the medium and the temperature of the object. Suppose a metal bar, initially at temperature 50 degrees Celsius, is placed in a room which is held at the constant temperature of 40 degrees Celsius. One minute later the bar has cooled to 40.18316 degrees . Write the differential equation that models the temperature in the bar (in degrees Celsius) as a function of time (in minutes). Hint: You will need to find the constant of proportionality. Start by calling the constant k and solving the initial value problem to obtain the temperature as a function of k and t . Then use the observed temperature after one minute to solve for k .

Answers

Answer:

Newton's law of cooling says that the temperature of a body changes at a rate proportional to the difference between its temperature and that of the surrounding medium (the ambient temperature); dT/dt = -K(T - Tₐ) where T = the temperature of the body (°C), t = time (min), k = the proportionality constant (per minute),

Explanation:

The equation of damped oscillations is given in the form x=0.05e^-0.25sin½πt (m). Find the velocity of an oscillating point at the moments of time: 0, T, 2T, 3T and 4T.​

Answers

Explanation:

The logarithmic damping decrement of a mathematical pendulum is DeltaT=0.5. How will the amplitude of oscillations decrease during one full oscillation of the pendulum

who is corazon aquino? ​

Answers

Answer:

Maria Corazon Sumulong Cojuangco Aquino, popularly known as Cory Aquino, was a Filipino politician who served as the 11th President of the Philippines, the first woman to hold that office.

Answer:

Former President of the Philippines

Explanation:

A wave has a frequency of 87.00 Hz and has a wavelength of 74.62 m. What is its
velocity?

Answers

Answer:

v = 6491.94 m/s

Explanation:

We are given;

Frequency; f = 87 Hz

Wavelength;λ = 74.62 m

Formula for velocity(v) of waves from the wave equation is;

v = fλ

Thus;

v = 87 × 74.62

v = 6491.94 m/s

A long, straight metal rod has a radius of 5.75 cm and a charge per unit length of 33.3 nC/m. Find the electric field at the following distances from the axis of the rod, where distances are measured perpendicular to the rod's axis.

Answers

Answer:

Explanation:

From the question;

We will make assumptions of certain values since they are not given but the process to achieve the end result will be the same thing.

We are to calculate the following task, i.e. to determine the electric field at the distances:

a)  at 4.75 cm

b)  at 20.5 cm

c) at 125.0 cm

Given that:

the charge (q) = 33.3 nC/m

= 33.3 × 10⁻⁹ c/m

radius of rod = 5.75 cm

a) from the given information, we will realize that the distance lies inside the rod. Provided that there is no charge distribution inside the rod.

Then, the electric field will be zero.

b) The electric field formula [tex]E = \dfrac{kq }{d}[/tex]

[tex]E = \dfrac{9 \times 10^9 \times (33.3 \times 10^{-9}) }{0.205}[/tex]

E = 1461.95 N/C

c) The electric field E is calculated as:

[tex]E = \dfrac{9 \times 10^9 \times (33.3 \times 10^{-9}) }{1.25}[/tex]

E = 239.76 N/C

You want to calculate how long it takes a ball to fall to the ground from a
height of 20 m. Which equation can you use to calculate the time? (Assume
no air resistance.)
O A. vz? = v? +2aAd
B. a =
V₂-vi
At
O c. At=V1
4
a
O D. At=
2Ad
a

Answers

If a person wants to calculate the length of time it takes for a ball to fall from a height of 20m, the correct equation that they should use is:

D. Δt= √2Δd/a

What is the equation for finding the length of time for a free fall?

The free fall formula should be used to obtain the length of time that it takes for a ball to fall from a given height. This formula also factors the height or distance from which the fall occurred and this is denoted by the letter d. The small letter 'a' is denotative of acceleration due to gravity and this is a constant pegged at -9.98 m/s².

So, the change in height is obtained and multiplied by two. This is further divided by the acceleration and the square root of the derived answer translates to the time taken for the ball to fall from the height of 20m. Of all the options listed, option D represents the correct equation.

Learn more about free fall here:

https://brainly.com/question/12167131

#SPJ1

galileo was a contemporary of

Answers

Brahe & Kepler

Answer from Quizlet

A certain microscope is provided with objectives that have focal lengths of 20 mm , 4 mm , and 1.4 mm and with eyepieces that have angular magnifications of 5.00 × and 15.0 × . Each objective forms an image 120 mm beyond its second focal point.

Answers

Answer:

Explanation:

Given that:

Focal length for the objective lens = 20 mm, 4 mm, 1.4 mm

For objective lens of focal length f₁ = 20 mm

s₁' = 120 mm + 20 mm = 140 mm

Magnification [tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{140}{20}[/tex]

[tex]m_1 = 7 \ m[/tex]

For objective lens of focal length f₁ = 4 mm

s₁' = 120 mm + 4 mm = 124 mm

[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{124}{4}[/tex]

[tex]m_1 = 31 \ m[/tex]

For objective lens of focal length f₁ = 1.4 mm

s₁' = 120 mm + 1.4 mm = 121.4 mm

[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{121.4}{1.4}[/tex]

[tex]m_1 = 86.71 \ m[/tex]

The magnification of the eyepiece is given as:

[tex]m_e = 5X \ and \ m_e = 15X[/tex]

Thus, the largest angular magnification when  [tex]m_1 \ and \ m_e \ are \ large \ is:[/tex]

[tex]M_{large}= (m_1)_{large} \times (m_e)_{large}[/tex]

= 86.71 × 15

= 1300.65

The smallest angular magnification derived when [tex]m_1 \ and \ m_e \ are \ small \ is:[/tex]

[tex]M_{small}= (m_1)_{small} \times (m_e)_{small}[/tex]

= 7 × 5

= 35

The largest magnification will be 1300.65 and the smallest magnification will be 35.

What is magnification?

Magnification is defined as the ratio of the size of the image of an object to the actual size of the object.

Now for objective lens and eyepieces, it is defined as the ratio of the focal length of the objective lens to the focal length of the eyepiece.

It is given in the question:

Focal lengths for the objective lens is = 20 mm, 4 mm, 1.4 mm

now we will calculate the magnification for all three focal lengths of the objective lens.

Also, each objective forms an image 120 mm beyond its second focal point.

(1) For an objective lens of focal length   [tex]f_1=20 \ mm[/tex]

[tex]s_1'=120\ mm +20 \ mm =140\ mm[/tex]

Magnification will be calculated as

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{140}{20} =7[/tex]

(2) For an objective lens of focal length [tex]f_1= \ 4 \ mm[/tex]

s₁' = 120 mm + 4 mm = 124 mm

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{124}{4} =31[/tex]

(3) For an objective lens of focal length [tex]f_1=1.4\ mm[/tex]

s₁' = 120 mm + 1.4 mm = 121.4 mm

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{121.4}{1.4} =86.71[/tex]

Now the magnification of the eyepiece is given as:

[tex]m_e=5x\ \ \ & \ \ m_e=15x[/tex]

Thus, the largest angular magnification when  

[tex]m_1 = 86.17\ \ \ \ m_e=15x[/tex]

[tex]m_{large}= (m_1)_{large}\times (m_e)_{large}[/tex]

[tex]m_{large}=86.71\times 15=1300.65[/tex]

The smallest angular magnification derived when

[tex]m_1=7\ \ \ \ m_e=5[/tex]

[tex]m_{small}=(m_1)_{small}\times (m_e)_{small}[/tex]

[tex]m_{small}=7\times 5=35[/tex]

Thus the largest magnification will be 1300.65 and the smallest magnification will be 35.

To know more about magnification follow

https://brainly.com/question/1599771

A toy car of mass 600g moves through 6m in 2 seconds. The average kinetic energy of the toy car is​

Answers

Answer:

12

Explanation:

I'm a beginner so am not sureeeeee

From 2 King 6:1-6, one of the disciples of Elisha was cutting a tree and the ax head fell into the water. While we do not know how high the ax head was when it fell into the water, we will work through a physics example of the ax head's vertical motion as if it were dropped into the water. ( Due date 09/07)
Write your name and date. The due date of this assignment is the height the ax head falls from in meters into the water. For example, if the due date is July 15, then the ax head fell 15 meters to the water.
Write Newton’s 2nd Law in Equation Form.
Write the quantity and units of average gravitational acceleration on the surface of Earth.
Given the ax head mentioned in the opening portion with the height being equal in numerical value of the due day of this assignment. How long does it take for the ax to fall to the river surface?
Compute the final speed of the ax when it hits the water.

Answers

Answer:

time of fall is 1.75 s and the velocity with which it strikes the water is 17.15 m/s.

Explanation:

Height, h =  15 m

Newton's second law

Force = mass x acceleration

The unit of gravitational force is Newton and the value is m x g.

where, m is the mas and g is the acceleration due to gravity.  

Let the time of fall is t.

Use second equation of motion

[tex]s= u t +0.5 at^2\\\\15 = 0 +0.5\times 9.8\times t^{2}\\\\t = 1.75 s[/tex]

Let the final speed is v.

Use third equation of motion

[tex]v^2 = u^2 + 2 a s\\\\v^2 = 0 + 2 \times 9.8\times 15\\\\v =17.15 m/s[/tex]

A horizontal, uniform board of weight 125 N and length 4 m is supported by vertical chains at each end. A person weighing 500 N is sitting on the board. The tension in the right chain is 250 N. How far from the left end of the board is the person sitting

Answers

Answer:

the person  is sitting 1.5 m from the left end of the board

Explanation:

Given the data in the question;

Wb = 125 N

Wm = 500 N

T₂ = 250 N

Now, we know that;

T₁ + T₂ = Wb + Wm

T₁ + 250 = 125 + 500

T₁ = 125 + 500 - 250

T₁ = 375 N

so tension of the left chain is 375 N.

Now, taking torque about the left end

500 × d + 125 × 2 = 250 × 4

500d + 250 = 1000

500d = 1000 - 250

500d = 750

d = 750 / 500

d = 1.5 m

Therefore, the person  is sitting 1.5 m from the left end of the board.

Give the number of protons and the number of neutrons in the nucleus of each of the following isotopes Aluminum 25 :13 protons and 12 neutrons

Answers

Answer:

No of proton is 13 and nucleus is 13

define emperical formula and what is the dimensional formula of force and energy​

Answers

Answer:

An empirical formula represents the simplest whole number ratio of various atoms present in a compound.The dimensional formula of force is [[tex]MLT^{-2}[/tex]]The dimensional formula of energy is [[tex]ML^{2} T^{-2}[/tex]]

You are using a constant force to speed up a toy car from an initial speed of 6.5 m/s
to a final speed of 22.9 m/s. If the toy car has a mass of 340 g, what is the work
needed to speed this car up?

Answers

By the work-energy theorem, the total work done on the car is equal to the change in its kinetic energy:

W = ∆K

W = 1/2 (0.34 kg) (22.9 m/s)² - 1/2 (0.34 kg) (6.5 m/s)²

W82 J

A hockey puck is sliding across the ice with an initial velocity of 25 m/s. If the coefficient of friction between the hockey puck and the ice is 0.08, how much time (in seconds) will it take before the hockey puck slides to a stop

Answers

Answer: 31.89seconds

Explanation:

Based on the information given, we are meant to calculate deceleration which will be:

t = V/a

where, a = mg

Therefore, t = V/mg

t = 25/0.08 × 9.8

t = 25/0.784

t = 31.89seconds

Therefore, the time that it will take before the hockey puck slides to a stop is 31.89seconds.

The liquid and gaseous state of hydrogen are in thermal equilibrium at 20.3 K. Even though it is on the point of condensation, model the gas as ideal and determine the most probable speed of the molecules (in m/s). What If? At what temperature (in K) would an atom of xenon in a canister of xenon gas have the same most probable speed as the hydrogen in thermal equilibrium at 20.3 K?

Answers

Answer:

a) the most probable speed of the molecules is 409.2 m/s

b) required temperature of xenon is 1322 K

Explanation:

Given the data in the question;

a)

Maximum probable speed of hydrogen molecule (H₂)

[tex]V_{H_2[/tex] = √( 2RT / [tex]M_{H_2[/tex] )

where R = 8.314 m³.Pa.K⁻¹.mol⁻¹ and given that T = 20.3 K

molar mass of H₂; [tex]M_{H_2[/tex] = 2.01588 g/mol

we substitute

[tex]V_{H_2[/tex] = √( (2 × 8.314 × 20.3 ) / 2.01588 × 10⁻³  )

[tex]V_{H_2[/tex] = √( 337.5484 / 2.01588 × 10⁻³  )

[tex]V_{H_2[/tex] = 409.2 m/s

Therefore, the most probable speed of the molecules is 409.2 m/s

b)

Temperature of xenon  = ?

Temperature of hydrogen = 20.3 K

we know that;

T = (Vxe² × Mxe) / 2R

molar mass of xenon; Mxe = 131.292 g/mol

so we substitute

T = ( (409.2)² × 131.292 × 10⁻³) / 2( 8.314  )

T = 21984.14167 / 16.628

T = 1322 K

Therefore, required temperature of xenon is 1322 K

in which states of matter will a substance have a fixed volume

Answers

Answer:

Solid is the state in which Matter maintains a fixed volume

Answer:

The state of matter that has a fixed volume is Solid.

Explanation:

Solid substances will maintain a fixed volume and shape.

A 7.5-kg rock and a 8.9 × 10-4-kg pebble are held near the surface of the earth. (a) Determine the magnitude of the gravitational force exerted on each by the earth. (b) Calculate the magnitude of the acceleration of each object when released.

Answers

Answer:

F' = 73.7 N

F = 8.749×10⁻³ N

a' = a =  9.83 m/s²

Explanation:

(a)

For the rock

Applying

F' = Gm'm/r²................... Equation 1

Where F = magnitude of the gravitational force on the rock, G = Gravitational constant, m' = mass of the rock, m = mass of the earth, r = radius of the earth.

From the question,

Given: m' = 7.5 kg

Constant: m = 5.98×10²⁴ kg, G = 6.67×10⁻¹¹ Nm²/kg², r = 6.37×10⁶ m

Substitute these values into equation 1

F' = 6.67×10⁻¹¹ (7.5)(5.98×10²⁴)/(6.37×10⁶)²

F' = 7.37×10¹ N

F' = 73.7 N

Also, For the pebble,

F = GMm/r².............. Equation 2

Where M = mass of the pebble, F = Gravitational force exerted on the pebble by the earth

Given: M = 8.9×10⁻⁴ kg,

Substitute into equation 2

F = 6.67×10⁻¹¹(8.9×10⁻⁴)(5.98×10²⁴)/(6.37×10⁶)²

F = 8.749×10⁻³ N

(b)

For the rock,

a' = F'/m'

Where a' = magnitude of the acceleration of the rock

a' = 73.7/7.5

a' = 9.83 m/s²

For the pebble,

a = F/M

Where a = acceleration of the pebble

a = (8.749×10⁻³)/(8.9×10⁻⁴)

a = 9.83 m/s²

The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue). Light from a hydrogen lamp illuminates a diffraction grating with 550 lines/mm , and the light is observed on a screen 1.7 m behind the grating.
What is the distance between the first-order red and blue fringes?
Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

Δd = 7.22 10⁻² m

Explanation:

For this exercise we must use the dispersion relationship of a diffraction grating

           d sin θ = m λ

let's use trigonometry

           tan θ = y / L

     

how the angles are small

           tant θ = sinθ  /cos θ = sin θ

we substitute  

           sin θ = y / L

          d y / L = m λ

          y = m λ L / d

let's use direct ruler rule to find the distance between two slits

           

If there are 500 lines in 1 me, what distance is there between two lines

         d = 2/500

        d = 0.004 me = 4 10⁻⁶ m

diffraction gratings are built so that most of the energy is in the first order of diffraction m = 1

let's calculate for each wavelength

λ = 656 nm = 656 10⁻⁹ m

         d₁ = 1 656 10⁻⁹ 1.7 / 4 10⁻⁶

         d₁ = 2.788 10⁻¹ m

λ = 486 nm = 486 10⁻⁹ m

         d₂ = 1 486 10⁻⁹ 1.7 / 4 10⁻⁶

         d₂ = 2.066 10⁻¹ m

the distance between the two lines is

         Δd = d1 -d2

         Δd = (2,788 - 2,066) 10⁻¹

         Δd = 7.22 10⁻² m

Water with a volume flow rate of 0.001 m3/s, flows inside a horizontal pipe with diameter of 1.2 m. If the pipe length is 10m and we assume fully developed internal flow, find the pressure drop across this pipe length.

Answers

Answer:

[tex]\triangle P=1.95*10^{-4}[/tex]

Explanation:

Mass [tex]m=0.001[/tex]

Diameter [tex]d=1.2m[/tex]

Length [tex]l=10m[/tex]

Generally the equation for Volume flow rate is mathematically given by

 [tex]Q=AV[/tex]

 [tex]V=\frac{Q}{\pi/4D^2}[/tex]

 [tex]V=\frac{0.001}{\pi/4(1.2)^2}[/tex]

 [tex]V=8.84*10^{-4}[/tex]

Generally the equation for Friction factor is mathematically given by

 [tex]F=\frac{64}{Re}[/tex]

Where Re

Re=Reynolds Number

 [tex]Re=\frac{pVD}{\mu}[/tex]

 [tex]Re=\frac{1000*8.84*10^{-4}*1.2}{1.002*10^{-3}}[/tex]

 [tex]Re=1040[/tex]

Therefore

 [tex]F=\frac{64}{Re}[/tex]

 [tex]F=\frac{64}{1040}[/tex]

 [tex]F=0.06[/tex]

Generally the equation for Friction factor is mathematically given by

 [tex]Head loss=\frac{fLv^2}{2dg}[/tex]

 [tex]H=\frac{0.06*10*(8.9*10^-4)^2}{2*1.2*9.81}[/tex]

 [tex]H=19.9*10^{-9}[/tex]

Where

[tex]H=\frac{\triangle P}{\rho g}[/tex]

[tex]\triangle P=\frac{19.9*10^{-9}}{10^3*(9.81)}[/tex]

[tex]\triangle P=H*\rho g[/tex]

[tex]\triangle P=1.95*10^{-4}[/tex]

 

When a condenser discharges electricity, the instantaneous rate of change of the voltage is proportional to the voltage in the condenser. Suppose you have a discharging condenser and the instantaneous rate of change of the voltage is -0.01 of the voltage (in volts per second). How many seconds does it take for the voltage to decrease by 90 %?

Answers

Answer:

460.52 s

Explanation:

Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that

dV/dt ∝ V

dV/dt = kV

separating the variables, we have

dV/V = kdt

integrating both sides, we have

∫dV/V = ∫kdt

㏑(V/V₀) = kt

V/V₀ = [tex]e^{kt}[/tex]

Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V

Since dV/dt = kV

-0.01V = kV

k = -0.01

So, V/V₀ = [tex]e^{-0.01t}[/tex]

V = V₀[tex]e^{-0.01t}[/tex]

Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀

So, V = 0.1V₀

Thus

V = V₀[tex]e^{-0.01t}[/tex]

0.1V₀ = V₀[tex]e^{-0.01t}[/tex]

0.1V₀/V₀ = [tex]e^{-0.01t}[/tex]

0.1 = [tex]e^{-0.01t}[/tex]

to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have

㏑(0.01) = -0.01t

So, t = ㏑(0.01)/-0.01

t = -4.6052/-0.01

t = 460.52 s

The diagram shows the molecular structure of ethane. What is the chemical
formula for ethane?
Ethane
H H
H-C-C-H
| |
H H

Answers

D
The C comes first and as there r 2 it would like like C2.
Then count how many h’s there r=6
So the overall formula should be C2H6

3. Four charges having charge q are placed at the corners of a square with sides of length L. What is the magnitude of the force acting on any of the charges

Answers

Answer:

Fr = 1.91 * 9*10⁹*q²/L²

Explanation:

Let´s say that the corners of the square are  A B C and D

We are going to find out the force on the charge placed on B  ( the charge placed in the upper right corner.

As all the charges are positive (the same sign), then all the three forces on the charge in B are of rejection.

Force due to charge placed in A

module   Fₓ =  K* q² / L²   in the direction of x

Force due to charge placed in C

module  Fy = K* q²/L²   in the direction of y

Force due to  the charge placed in D

That force will have the direction of the diagonal of the square, and the distance between charges placed in D and A is the length of the diagonal.

d²  =  L²  +  L²  =  2*L²

d  =  √2 * L

The module of the force due to charge place in D

F₄₅ = K*q²/ 2*L²

To get the force we need to add first  Fₓ  and  Fy  

Fx + Fy  =  F₁

module of  F₁ = √ Fx² + Fy²    the direction will be the same as the diagonal of the square then:

F₁   =   √  ( K* q²/L² )²  +   ( K* q²/L² )²

F₁  =  √ 2  *  K*q²/L²

And now we add forces F₁   and F₄₅   to get the net force Fr on charge in point B.

The direction of Fr is the direction of the diagonal and is of rejection

the module is

Fr  =  F₁  *  F₄₅

Fr  =  √ 2  *  K*q²/L²  +   K*q²/ 2*L²

Fr  = ( √ 2 + 0,5 ) * K*q² /L²

K  =  9*10⁹  Nm²C²

Fr = 1.91 * 9*10⁹*q²/L²

We don´t know units of L and q

How can i prove the conservation of mechanical energy?​

Answers

Answer:

We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved

Explanation:

An electric drill starts from rest and rotates with a constant angular acceleration. After the drill has rotated through a certain angle, the magnitude of the centripetal acceleration of a point on the drill is 8.2 times the magnitude of the tangential acceleration. What is the angle?

Answers

Answer:

The angle is 4.1 rad.

         

Explanation:

The centripetal acceleration (α) is given by:

[tex] \alpha = \omega^{2} r [/tex]    (1)                  

Where:

ω: is the angular velocity  

r: is the radius

And the tangential acceleration (a) is:                      

[tex] a = \alpha r [/tex]      (2)

Since the magnitude of "α" is 8.2 times the magnitude of "a" (equating (2) and (1)) we have:

[tex] \omega^{2} r = 8.2\alpha r   [/tex]

[tex] \omega^{2} = 8.2\alpha [/tex]    (3)      

Now, we can find the angle with the following equation:

[tex] \omega_{f}^{2} = \omega_{0}^{2} + 2\alpha \Delta \theta [/tex]

Where:

[tex] \omega_{f}[/tex]: is the final angular velocity                                                                              [tex] \omega_{0}[/tex]: is the initial angular velocity = 0 (it starts from rest)

[tex]\Delta \theta[/tex]: is the angle

[tex] \omega^{2} = 2\alpha \Delta \theta [/tex]     (4)    

By entering equation (3) into (4) we can calculate the angle:

[tex] 8.2\alpha = 2\alpha \Delta \theta [/tex]

[tex] \Delta \theta = 4.1 rad [/tex]

Therefore, the angle is 4.1 rad.

I hope it helps you!                  

A balloon pops, making a loud noise that startles you. What kind of energy best describes this experience?

A. Thermal Energy
B. Sound Energy
C. Gravitational Energy
D. Radiant Energy

Answers

The correct answer is b

At the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height of 4.35 m above where it started. Using conservation of energy, find the height of the ball when it has a speed of 2.5 m/s.

Answers

Answer:

0.32 m.

Explanation:

To solve this problem, we must recognise that:

1. At the maximum height, the velocity of the ball is zero.

2. When the velocity of the ball is 2.5 m/s above the ground, it is assumed that the potential energy and kinetic energy of the ball are the same.

With the above information in mind, we shall determine the height of the ball when it has a speed of 2.5 m/s. This can be obtained as follow:

Mass (m) = constant

Acceleration due to gravity (g) = 9.8 m/s²

Velocity (v) = 2.5 m/s

Height (h) =?

PE = KE

Recall:

PE = mgh

KE = ½mv²

Thus,

PE = KE

mgh = ½mv²

Cancel m from both side

gh = ½v²

9.8 × h = ½ × 2.5²

9.8 × h = ½ × 6.25

9.8 × h = 3.125

Divide both side by 9.8

h = 3.125 / 9.8

h = 0.32 m

Thus, the height of the ball when it has a speed of 2.5 m/s is 0.32 m.

Consider a sample containing 1.70 mol of an ideal diatomic gas.
(a) Assuming the molecules rotate but do not vibrate, find the total heat capacity of the sample at constant volume. nCv = J/K
(b) Assuming the molecules rotate but do not vibrate, find the total heat capacity of the sample at constant pressure. nCp = J/K
(c) Assuming the molecules both rotate and vibrate, find the total heat capacity of the sample at constant volume. nCv = J/K
(d) Assuming the molecules both rotate and vibrate, find the total heat capacity of the sample at constant pressure. nCp = J/K

Answers

I don't know

because I don't know

Other Questions
how much does a customer save for buying a sound system marked $1,200 at a discount of 15% Jack described the functions of two human body organs and labeled them A and B. Look at the table and select which of the following correctly identifies the organs.Table with columns A and B. Column A incudes the text: made of a muscle that works on its own and pumps blood to all parts of the body, while column B includes the text: communicates with all parts of the body and processes information A is the brain and B is the pancreas A is the heart and B is the brain A is the lungs and B is the stomach A is the stomach and B is the heart Can someone please help me The measure of the angle of depression from the top of a 270-meter building to a park bench on the ground is 3645. How far away is the park bench from the building? Round to the nearest whole number. Which of these statements about enslaved people is true? Check all of the boxes that apply.All enslaved people were considered property.Enslaved people could not be sold away from their wives and children.Enslaved people performed a wide variety of jobs.All Southerners favored slavery. Which cells are not locked into becoming one particular kind of cell and are capable of developing into specialized tissues (example; nerve cells, muscle cells and skin cells) ? HELPPPPPP PLEASEEEEE ILL GIVE BRAINLIEST AND POINTS!!!(you dont need to answer them both but at least help me with one)Why has the Ugandan government pushed Abstinence as a means of combating the spread of HIV/AIDS?On a separate piece of paper, construct a population pyramid to illustrate the current age groups infected by HIV/AIDS in Uganda. Can someone help me with this, Thx! Use the periodic table to determine the amount of copper and aluminum nitrate formed in the reaction.Type the correct answer in the box. Express your answer to the correct number of significant figures.In the reaction, moles of Cu and moles of Al(NO3)3 are formed. Michelle is a financial analyst who works 47.75 hours a week. Michelle earns $27 per hour as a financial analyst, and herovertime pay rate is time-and-a-half. If full-time employment is considered 40 hours per week, how much does Michelleearn each week? Round to the nearest penny.O $1,353.78$1,393.88$1,423,68o $1.453.68 Plz help will be marked BRAINLIEST Can someone answer the question? alguien que sea kpoper y otaku soy una chica y soy bi :) Each day, Deanne starts working at 10:00 a.m. and Stephanie starts working at noon. At which time each day are the earnings for Deanne equal to the earnings for Stephanie? Which president is known for promoting health care, protecting women's rights, and balancing the federal budget? Please help asap or give explanation for brainliest What are the real roots of the function in the graph? 2w - 5 = 8W = Plllssssss helppoo Please helpIt is our choices that show what we truly are, for more then our abilities - A l b u s D u m b l e d o r e Read and respond to the quote. Do you agree or disagree with the quote? How can the quote relate to or impact YOUR life? 58:36If Ze orders a book from Store Y, how much tax will she pay?Comparison of Online BookstoresStore XStore YCost of book$17.00$18.00Tax rate6%8%Shipping10% of cost before taxFREE$1.44$2.25O $12.25O $14.40