Answer:
A) C_{eq} = 15 10⁻⁶ F, B) U₃ = 3 J, U₄ = 0.5 J
Explanation:
In a complicated circuit, the method of solving them is to work the circuit in pairs, finding the equivalent capacitance to reduce the circuit to simpler forms.
In this case let's start by finding the equivalent capacitance.
A) Let's solve the part where C1 and C3 are. These two capacitors are in serious
[tex]\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_3}[/tex] (you has an mistake in the formula)
[tex]\frac{1}{C_{eq1}} = (\frac{1}{30} + \frac{1}{15}) \ 10^{6}[/tex]
[tex]\frac{1}{C_{eq1}}[/tex] = 0.1 10⁶
[tex]C_{eq1}[/tex] = 10 10⁻⁶ F
capacitors C₂, C₄ and C₅ are in series
[tex]\frac{1}{C_{eq2}} = \frac{1}{C_2} + \frac{1}{C_4} + \frac{1}{C_5}[/tex]
[tex]\frac{1}{C_{eq2} } = (\frac{1}{15} + \frac{1}{30} + \frac{1}{10} ) \ 10^6[/tex]
[tex]\frac{1}{C_{eq2} }[/tex] = 0.2 10⁶
[tex]C_{eq2}[/tex] = 5 10⁻⁶ F
the two equivalent capacitors are in parallel therefore
C_{eq} = C_{eq1} + C_{eq2}
C_{eq} = (10 + 5) 10⁻⁶
C_{eq} = 15 10⁻⁶ F
B) the energy stored in C₃
The charge on the parallel voltage is constant
is the sum of the charge on each branch
Q = C_{eq} V
Q = 15 10⁻⁶ 6
Q = 90 10⁻⁶ C
the charge on each branch is
Q₁ = Ceq1 V
Q₁ = 10 10⁻⁶ 6
Q₁ = 60 10⁻⁶ C
Q₂ = C_{eq2} V
Q₂ = 5 10⁻⁶ 6
Q₂ = 30 10⁻⁶ C
now let's analyze the load on each branch
Branch C₁ and C₃
In series combination the charge is constant Q = Q₁ = Q₃
U₃ = [tex]\frac{Q^2}{2 C_3}[/tex]
U₃ =[tex]\frac{ 60 \ 10^{-6}}{2 \ 10 \ 10^{-6}}[/tex]
U₃ = 3 J
In Branch C₂, C₄, C₅
since the capacitors are in series the charge is constant Q = Q₂ = Q₄ = Q₅
U₄ = [tex]\frac{30 \ 10^{-6}}{ 2 \ 30 \ 10^{-6}}[/tex]
U₄ = 0.5 J
HELP ME PLZ FAST
There is more than 1 answer,
The picture is down
Answer:
test her prototype and collect data about its flight
state the laws of reflection
Answer:
Explanation:
The law of reflection says that the reflected angle (measured from a vertical line to the surface called the normal) is equal to the reflected angle measured from the same normal line.
All other properties of reflection flow from this one statement.
trong cùng một nhiệt độ, lượng năng lượng trên mỗi mol của chất khí nào lớn nhất
a) Khí đơn nguyên tử
b) Khí có từ ba nguyên tử
c) Khí lưỡng nguyên tử
A projectile is fired into the air from the top of a 200-m cliff above a valley as shown below. Its initial velocity is 60 m/s at 60° above the horizontal. Calculate (a) the maximum height, (b) the time required to reach its highest point, (c) the total time of flight, (d) the components of its velocity just before striking the ground, and (e) the horizontal distance traveled from the base of the cliff.
a) y(max) = 337.76 m
b) t₁ = 5.30 s the time for y maximum
c)t₂ = 13.60 s time for y = 0 time when the fly finish
d) vₓ = 30 m/s vy = - 81.32 m/s
e)x = 408 m
Equations for projectile motion:
v₀ₓ = v₀ * cosα v₀ₓ = 60*(1/2) v₀ₓ = 30 m/s ( constant )
v₀y = v₀ * sinα v₀y = 60*(√3/2) v₀y = 30*√3 m/s
a) Maximum height:
The following equation describes the motion in y coordinates
y = y₀ + v₀y*t - (1/2)*g*t² (1)
To find h(max), we need to calculate t₁ ( time for h maximum)
we take derivative on both sides of the equation
dy/dt = v₀y - g*t
dy/dt = 0 v₀y - g*t₁ = 0 t₁ = v₀y/g
v₀y = 60*sin60° = 60*√3/2 = 30*√3
g = 9.8 m/s²
t₁ = 5.30 s the time for y maximum
And y maximum is obtained from the substitution of t₁ in equation (1)
y (max) = 200 + 30*√3 * (5.30) - (1/2)*9.8*(5.3)²
y (max) = 200 + 275.40 - 137.64
y(max) = 337.76 m
Total time of flying (t₂) is when coordinate y = 0
y = 0 = y₀ + v₀y*t₂ - (1/2)* g*t₂²
0 = 200 + 30*√3*t₂ - 4.9*t₂² 4.9 t₂² - 51.96*t₂ - 200 = 0
The above equation is a second-degree equation, solving for t₂
t = [51.96 ±√ (51.96)² + 4*4.9*200]/9.8
t = [51.96 ±√2700 + 3920]/9.8
t = [51.96 ± 81.36]/9.8
t = 51.96 - 81.36)/9.8 we dismiss this solution ( negative time)
t₂ = 13.60 s time for y = 0 time when the fly finish
The components of the velocity just before striking the ground are:
vₓ = v₀ *cos60° vₓ = 30 m/s as we said before v₀ₓ is constant
vy = v₀y - g *t vy = 30*√3 - 9.8 * (13.60)
vy = 51.96 - 133.28 vy = - 81.32 m/s
The sign minus means that vy change direction
Finally the horizontal distance is:
x = vₓ * t
x = 30 * 13.60 m
x = 408 m
I need help with this please!!!!
Answer:
1.84 hours
I hope it's helps you
A car is traveling at 118 km/h when the driver sees an accident 85 m ahead and slams on the brakes. What minimum constant deceleration is required to stop the car in time to avoid a pileup
Answer:
The constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²
Explanation:
From the question, the car is traveling at 118 km/h, that is the initial velocity, u = 118km/h
The distance between the car and the accident at the moment when the driver sees the accident is 85 m, that is s = 85 ,
Since the driver slams on the brakes and the car will come to a stop, then the final velocity, v = 0 km/h = 0 m/s
First, convert 118 km/h to m/s
118 km/h = (118 × 1000) /3600 = 32.7778 m/s
∴ u = 32.7778 m/s
Now, to determine the deceleration, a, required to stop,
From one of the equations of motion for linear motion,
v² = u² + 2as
Then
0² = (32.7778)² + 2×a×85
0 = 1074.3841 + 170a
∴ 170a = - 1074.3841
a = - 1074.3841 / 170
a = - 6.3199
a ≅ - 6.32 m/s²
Hence, the constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²
As a skydiver accelerates downward, what force increases? A. Gravity B. Thrust C. Air resistance D. Centripetal
Answer:
(A) Gravity is you're answer.
Explanation:
When an object or human is falling at an increased rate, The force of gravity is taking place.
Mass A, 2.0 kg, is moving with an initial velocity of 15 m/s in the x-direction, and it collides with mass M, 4.0 kg, initially moving at 7.0 m/s in the x-direction. After the collision, the two objects stick together and move as one. What is the change in kinetic energy of the system as a result of the collision, in joules
Answer:
the change in the kinetic energy of the system is -42.47 J
Explanation:
Given;
mass A, Ma = 2 kg
initial velocity of mass A, Ua = 15 m/s
Mass M, Mm = 4 kg
initial velocity of mass M, Um = 7 m/s
Let the common velocity of the two masses after collision = V
Apply the principle of conservation of linear momentum, to determine the final velocity of the two masses;
[tex]M_aU_a + M_mU_m = V(M_a + M_m)\\\\(2\times 15 )+ (4\times 7) = V(2+4)\\\\58 = 6V\\\\V = \frac{58}{6} = 9.67 \ m/s[/tex]
The initial kinetic of the two masses;
[tex]K.E_i = \frac{1}{2} M_aU_a^2 \ + \ \frac{1}{2} M_mU_m^2\\\\K.E_i = (0.5 \times 2\times 15^2) \ + \ (0.5 \times 4\times 7^2)\\\\K.E_i = 323 \ J[/tex]
The final kinetic energy of the two masses;
[tex]K.E_f = \frac{1}{2} M_aV^2 \ + \ \frac{1}{2} M_mV^2\\\\K.E_f = \frac{1}{2} V^2(M_a + M_m)\\\\K.E_f = \frac{1}{2} \times 9.67^2(2+ 4)\\\\K.E_f = 280.53 \ J[/tex]
The change in kinetic energy is calculated as;
[tex]\Delta K.E = K.E_f \ - \ K.E_i\\\\\Delta K.E = 280.53 \ J \ - \ 323 \ J\\\\\Delta K.E = -42.47 \ J[/tex]
Therefore, the change in the kinetic energy of the system is -42.47 J
Vặt nhỏ được ném lên từ điểm A trên mặt đất với vận tốc đầu 20m/s theo phương thẳng đứng. Xác định độ cao của điểm O mà vật đạt được. Bỏ qua ma sát
Explanation:
mặt đất với vận tốc ban đầu 20m/s. Bỏ qua mọi ma sát, lấy g = 10 m/s2. Độ cao cực đại mà vật đạt được là.
When a charged particle moves at an angle of 26.1 with respect to a magnetic field, it experiences a magnetic force of magnitude F. At what angle (less than 90o) with respect to this field will this particle, moving at the same speed?
Answer:
The angle is 153.9 degree.
Explanation:
Let the magnetic field is B and the charge is q. Angle = 26.1 degree
The force is F.
Let the angle is A'.
Now equate the magnetic forces
[tex]q v B sin 26.1 = q v B sin A'\\\\A' = 180 - 26.1 = 153.9[/tex]
Air is compressed polytropically from 150 kPa, 5 meter cube to 800 kPa. The polytropic exponent for the process is 1.28. Determine the work per unit mass of air required for the process in kilojoules
a) 1184
b) -1184
c) 678
d) -678
Answer:
wegkwe fhkrbhefdb
Explanation:B
: A fan is placed on a horizontal track and given a slight push toward an end stop 1.80 meters away. Immediately after the push, the fan of the cart engages and slows the cart with an acceleration of -0.45 m/s2. What is the maximum possible velocity (magnitude) the cart can have after the push so that the cart turns around just before it hits the end-stop
Answer:
The initial velocity is 1.27 m/s.
Explanation:
distance, s = 1.8 m
acceleration, a = - 0.45 m/s^2
final velocity, v = 0
let the initial velocity is u.
Use third equation of motion
[tex]v^2 = u^2 + 2 a s \\\\0 = u^2 - 2 \times 0.45\times 1.8\\\\u = 1.27 m/s[/tex]
We have that the Initial velocity is mathematically given as
u=1.27m/s
Maximum possible velocity
Question Parameters:
a slight push toward an end stop 1.80 meters away
he fan of the cart engages and slows the cart with an acceleration of -0.45 m/s2
Generally the equation for the third equation of motion is mathematically given as
Vf^2 = Vi^2 + 2ad
Therefore
0=u^2+0.45*1.8
u=1.27m/s
For more information on velocity visit
https://brainly.com/question/17617636
A mass is tired to spring and begins vibration periodically the distance between it's lowest position is 48cm what is the Amplitude of the vibration
Answer:
The amplitude of vibration of the spring is "24 cm"
The periodic vibrating body's motion follows a sinusoidal path. This sinusoidal path is illustrated in the attached picture.
From the picture, it can be clearly seen that the amplitude of the periodic vibration motion is the distance from its mean position to the highest point.
Since the distance of both the highest and the lowest points from the mean position is the same. Therefore, the distance between the lowest and the highest point must be equal to two times the amplitude of the wave.
Amplitude = 24 cm
A solenoid has a length , a radius , and turns. The solenoid has a net resistance . A circular loop with radius is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance . At a time , the solenoid is connected to a battery that supplies a potential . At a time , what current flows through the outer loop
This question is incomplete, the complete question is;
A solenoid has a length 11.34 cm , a radius 1.85 cm , and 1627 turns. The solenoid has a net resistance of 144.9 Ω . A circular loop with radius of 3.77 cm is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance of 1651.6 Ω. At a time of 0 s , the solenoid is connected to a battery that supplies a potential 34.95 V. At a time 2.58 μs , what current flows through the outer loop?
Answer:
the current flows through the outer loop is 1.3 × 10⁻⁵ A
Explanation:
Given the data in the question;
Length [tex]l[/tex] = 11.34 cm = 0.1134 m
radius a = 1.85 cm = 0.0185 m
turns N = 1627
Net resistance [tex]R_{sol[/tex] = 144.9 Ω
radius b = 3.77 cm = 0.0377 m
[tex]R_o[/tex] = 1651.6 Ω
ε = 34.95 V
t = 2.58 μs = 2.58 × 10⁻⁶ s
Now, Inductance; L = μ₀N²πa² / [tex]l[/tex]
so
L = [ ( 4π × 10⁻⁷ ) × ( 1627 )² × π( 0.0185 )² ] / 0.1134
L = 0.003576665 / 0.1134
L = 0.03154
Now,
ε = d∅/dt = [tex]\frac{d}{dt}[/tex]( BA ) = [tex]\frac{d}{dt}[/tex][ (μ₀In)πa² ]
so
ε = μ₀n [tex]\frac{dI}{dt}[/tex]( πa² )
ε = [ μ₀Nπa² / [tex]l[/tex] ] [tex]\frac{dI}{dt}[/tex]
ε = [ μ₀Nπa² / [tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]
I = ε/[tex]R_o[/tex] = [ μ₀Nπa² / [tex]R_o[/tex][tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]
so we substitute in our values;
I = [ (( 4π × 10⁻⁷ ) × 1627 × π(0.0185)²) / (1651.6 ×0.1134) ] [ ( 34.95 / 0.03154)e^( -2.58 × 10⁻⁶ / 144.9 ) ]
I = [ 2.198319 × 10⁻⁶ / 187.29144 ] [ 1108.116677 × e^( -1.7805 × 10⁻⁸ )
I = [ 1.17374 × 10⁻⁸ ] × [ 1108.116677 × 0.99999998 ]
I = [ 1.17374 × 10⁻⁸ ] × [ 1108.11665 ]
I = 1.3 × 10⁻⁵ A
Therefore, the current flows through the outer loop is 1.3 × 10⁻⁵ A
Answer:
1.28 *10^-5 A
Explanation:
Same work as above answer. Needs to be more precise
An object of mass 80 kg is released from rest from a boat into the water and allowed to sink. While gravity is pulling the object down, a buoyancy force of 1/50 times the weight of the object is pushing the object up (weight=mg). If we assume that water resistance exerts a force on the abject that is proportional to the velocity of the object, with proportionality constant 10 N-sec/m, find the equation of motion of the object. After how many seconds will the velocity of the object be 40 m/s? Assume that the acceleration due to gravity is 9.81 m/sec^2.
Answer:
a) Fnet = mg - Fb - Fr
b) 8.67 secs
Explanation:
mass of object = 80 kg
Buoyancy force = 1/50 * weight ( 80 * 9.81 ) = 15.696
Proportionality constant = 10 N-sec/m
a) Calculate equation of motion of the object
Force of resistance on object due to water = Fr ∝ V
= Fr = Kv = 10 V
Given that : Fb( due to buoyancy ) , Fr ( Force of resistance ) acts in the positive y-direction on the object while mg ( weight ) acts in the negative y - direction on the object.
Fnet = mg - Fb - Fr
∴ Equation of motion of the object ( Ma = mg - Fb - Fr )
b) Calculate how long before velocity of the object hits 40 m/s
Ma = mg - Fb - Fr
a = 9.81 - 0.1962 - 0.125 V = 9.6138 - 0.125 V
V = u + at ---- ( 1 )
u = 0
V = 40 m/s
a = 9.6138 - 0.125 V
back to equation 1
40 = 0 + ( 9.6138 - 0.125 (40) ) t
40 = 4.6138 t
∴ t = 40 / 4.6138 = 8.67 secs
How do you know that a liquid exerts pressure?
Answer:
The pressure of water progressively increases as the depth of the water increases. The pressure increases as the depth of a point in a liquid increases. The walls of the vessel in which liquids are held are likewise subjected to pressure. The sideways pressure exerted by liquids increases as the liquid depth increases.
Express 6revolutions to radians
Answer:
About 37.70 radians.
Explanation:
1 revolution = 2[tex]\pi[/tex] radians
∴ 6 revolutions = (6)(2[tex]\pi[/tex] radians)
6 revolutions = 37.6991 or ≈ 37.70 radians
what is the major difference between the natural frequency and the damped frequency of oscillation.
Answer:
This causes the amplitude of the oscillation to decay over time. The damped oscillation frequency does not equal the natural frequency. Damping causes the frequency of the damped oscillation to be slightly less than the natural frequency
You're carrying a 3.0-m-long, 24 kg pole to a construction site when you decide to stop for a rest. You place one end of the pole on a fence post and hold the other end of the pole 35 cm from its tip. How much force must you exert to keep the pole motionless in a horizontal position?
Answer:
[tex]F=133N[/tex]
Explanation:
From the question we are told that:
Length [tex]l=3.0m[/tex]
Mass [tex]m=24kg[/tex]
Distance from Tip [tex]d=35cm[/tex]
Generally, the equation for Torque Balance is mathematically given by
[tex]mg(l/2)=F(l-d)[/tex]
[tex]2*9.81(3/2)=F(3-35*10^-2)[/tex]
Therefore
[tex]F=133N[/tex]
1 Poin Question 4 A 85-kg man stands in an elevator that has a downward acceleration of 2 m/s2. The force exerted by him on the floor is about: (Assume g = 9.8 m/s2) А ON B 663 N C) 833 N D) 1003 N
Answer:
D) 1003 N
Explanation:
Given the following data;
Mass of man = 85 kg
Acceleration of elevator = 2 m/s²
Acceleration due to gravity, g = 9.8 m/s²
To find the force exerted by the man on the floor;
Force = mg + ma
A 1050 kg car accelerates from 11.3 m/s to 26.2 m/s . What impulse does the engine give?
Answer:
I = 15,645. kg*m/s or 15,645 N*s
Explanation:
I = m(^v)
I = 1050kg((26.2m/s-11.3m/s)
I = 15,645. kg*m/s
A car is driving towards an intersection when the light turns red. The brakes apply a constant force of 1,398 newtons to bring the car to a complete stop in 25 meters. If the weight of the car is 4,729 newtons, how fast was the car going initially
Answer:
the initial velocity of the car is 12.04 m/s
Explanation:
Given;
force applied by the break, f = 1,398 N
distance moved by the car before stopping, d = 25 m
weight of the car, W = 4,729 N
The mass of the car is calculated as;
W = mg
m = W/g
m = (4,729) / (9.81)
m = 482.06 kg
The deceleration of the car when the force was applied;
-F = ma
a = -F/m
a = -1,398 / 482.06
a = -2.9 m/s²
The initial velocity of the car is calculated as;
v² = u² + 2ad
where;
v is the final velocity of the car at the point it stops = 0
u is the initial velocity of the car before the break was applied
0 = u² + 2(-a)d
0 = u² - 2ad
u² = 2ad
u = √2ad
u = √(2 x 2.9 x 25)
u =√(145)
u = 12.04 m/s
Therefore, the initial velocity of the car is 12.04 m/s
A diffraction grating has 6000 lines per centimeter ruled on it. What is the angular separation (in degrees) between the second and the third orders on the same side of the central bright fringe when the grating is illuminated with a beam of light of wavelength 500 nm
Explanation:
Hope it Will help he hsuejwoamxgehanwpalasmbwfwfqoqlmdbehendalmZbgevzuxwllw. yeh we pabdvddxhspapalw. X
The angular separation (in degrees) between the second and the third orders on the same side of the central bright fringe if the wavelength is 500 nm and A diffraction grating has 6000 lines per centimeter ruled on it, is 27.29°.
What is diffraction?Waves spreading outward around obstructions are known as diffraction. Sound, electromagnetic radiation like light, X-rays, and gamma rays, as well as very small moving particles like atoms, neutrons, and electrons that exhibit wavelike qualities all exhibit diffraction.
Given:
The number of lines = 6000 per cm,
The Wavelength, λ = 500 nm = 500 × 10 ⁻⁹ m
Calculate the diffraction grating,
[tex]d = 1 / no\ of\ lines[/tex]
d = 10⁻² / 6000 m,
Calculate the second-order maxima angle and third-order maxima angle by the formula given below,
[tex]dsin\theta_1 = n_1 \lambda[/tex]
[tex]sin\theta_1 = n_1\lambda / d[/tex]
[tex]\theta _1 = sin^{-1}[2\times 500\times 10 ^{-9}/10^{-2}\times 6000][/tex]
θ₁ = sin⁻¹(0.6)
θ₁ = 36.87°
Similarly, for θ₂,
θ₂ = sin⁻¹(3 × 500 × 10 ⁻⁹ / 10⁻² × 6000)
θ₂ = sin⁻¹(0.9)
θ₂ = 64.16°
Calculate the separation as follows,
θ₂ - θ₁ = 64.16° - 36.87°
θ₂ - θ₁ = 27.29°
Therefore, the angular separation (in degrees) between the second and the third orders on the same side of the central bright fringe if the wavelength is 500 nm and A diffraction grating has 6000 lines per centimeter ruled on it, is 27.29°.
To know more about diffraction:
https://brainly.com/question/12290582
#SPJ2
If a boy lifts a mass of 6kg to a height of 10m and travels horizontally with a constant velocity of 4.2m/s, calculate the work done? Explain your answer.
Answer:
W = 641.52 J
Explanation:
The work done here will be the sum of potential energy and the kinetic energy of the boy. Here potential energy accounts for vertical motion part while the kinetic energy accounts for the horizontal motion part:
[tex]Work\ Done = Kinetic\ Energy + Potential\ Energy\\\\W = K.E +P.E\\\\W = \frac{1}{2}mv^2+mgh\\\\[/tex]
where,
W = Work Done = ?
m = mass = 6 kg
v = speed = 4.2 m/s
g = acceleration dueto gravity = 9.81 m/s²
h = height = 10 m
Therefore,
[tex]W = \frac{1}{2}(6\ kg)(4.2\ m/s)^2+(6\ kg)(9.81\ m/s^2)(10\ m)[/tex]
W = 52.92 J + 588.6 J
W = 641.52 J
May someone help...please. Pretty please...
If a person is 18 % shorter than average, what is the ratio of his walking pace (that is, the frequency 'f' of his motion) to the walking pace of a person of average height? Assume that a person's leg swings like a pendulum and that the angular amplitude of everybody's stride is about the same.
f(short)/f(avg)=?
We have that the ratio of his walking pace to the walking pace of a person of average height is
[tex]\frac{V_2}{V_1}=1.10[/tex]
given the assumption and the calculation given below
From the question we are told that:
Consider a person 18\% shorter than average
Let average height of a person be [tex]10m[/tex]
Therefore
The height of an [tex]18\%[/tex] shorter man is mathematically given as
H=10*0.18
H=8.2m
Generally, the equation for velocity is mathematically given by
[tex]v=\frac{1}{2\pi} \sqrt{{g}{l}}[/tex]
Where we have the Assumption that a person's leg swings like a pendulum and that the angular amplitude of everybody's stride is about the same
Therefore
[tex]\frac{V_1}{V_2}=\frac{l_1}{l_2}[/tex]
[tex]\frac{V_1}{V_2}={82}{100}[/tex]
[tex]\frac{V_2}{V_1}=1.10[/tex]
In conclusion
The ratio of his walking pace (that is, the frequency 'f' of his motion) to the walking pace of a person of average height is
[tex]\frac{V_2}{V_1}=1.10[/tex]
For more information on this visit
https://brainly.com/question/21196186
The temperature of a body falls from 30°C to 20°C in 5 minutes. The air
temperature is 13°C. Find the temperature after a further 5 minutes.
Answer:
15.88
is the correct answer
What is cubical expansivity of liquid while freezing
Answer:
"the ratio of increase in the volume of a solid per degree rise of temperature to its initial volume" -web
Explanation:
tbh up above ✅
Answer:
cubic meter
Explanation:
Increase in volume of a body on heating is referred to as volumetric expansion or cubical expansion
What is utilization of energy
Explanation:
Energy utilization focuses on technologies that can lead to new and potentially more efficient ways of using electricity in residential, commercial and industrial settings—as well as in the transportation sector
A car accelerates from 0 m/s to 25 m/s in 5 seconds. What is the average acceleration of the car.
Answer:
5 m/s I hope it will help you
Explanation:
mark me as a brainlist answer
a bullet is dropped from the same height when another bullet is fired horizontally they will hit the ground
Answer:
simultaneously
Time taken to reach the ground depends on the vertical component of velocity, not horizontal component of velocity.