Answer:
Smaller and upside down
Explanation:
To answer the question, we must recognise that the characteristics of the image formed by a convex lens depends on the position of the object from the lens.
From the diagram given in the question above, the following data were obtained:
1. The image is smaller than the object.
2. The image is inverted i.e upside down.
3. The image is closer to the lens
4. The image between 2f and f
Now, considering the options given in question above, the correct answer to the question is:
The image is smaller and upside down.
A mysterious constant force of 10 N acts horizontally on everything. The direction of the force is found to be always pointed toward a wall in a big hall. Find the potential energy of a particle due to this force when it is at a distance x from the wall, assuming the potential energy at the wall to be zero.
Answer:
it will be 10x
Explanation:
workdone(potential energy before it hits the wall)= horizontal force × distance
=10× x = 10x joules
A mysterious constant force of 10 N acts horizontally on everything. The direction of the force is found to be always pointed toward a wall in a big hall.The potential energy of a particle due to this force is 10x.
What is force?A force is an effect that can alter an object's motion according to physics. An object with mass can change its velocity, or accelerate, as a result of a force. An obvious way to describe force is as a push or a pull. A force is a vector quantity since it has both magnitude and direction.
Given in the question a mysterious constant force of 10 N acts horizontally on everything. The direction of the force is found to be always pointed toward a wall in a big hall the potential energy,
Work done (potential energy before it hits the wall)
= horizontal force × distance
=10× x = 10x joules
The potential energy of a particle due to this force is 10x.
To learn more about force refer to the link:
brainly.com/question/13191643
#SPJ2
A magnifying glass produces a maximum angular magnification of 5.4 when used by a young person with a near point of 20 cm. What is the maximum angular magnification obtained by an older person with a near point of 65 cm
An observer on Earth sees rocket 1 leave Earth and travel toward Planet X at 0.3c. The observer on Earth also sees that Planet X is stationary. An observer on Planet X sees rocket 2 travel toward Earth at 0.4c. What is the speed of rocket 1 according to an observer on rocket 2?
Answer:
0.625 c
Explanation:
Relative speed of a body may be defined as the speed of one body with respect to some other or the speed of one body in comparison to the speed of second body.
In the context,
The relative speed of body 2 with respect to body 1 can be expressed as :
[tex]$u'=\frac{u-v}{1-\frac{uv}{c^2}}$[/tex]
Speed of rocket 1 with respect to rocket 2 :
[tex]$u' = \frac{0.4 c- (-0.3 c)}{1-\frac{(0.4 c)(-0.3 c)}{c^2}}$[/tex]
[tex]$u' = \frac{0.7 c}{1.12}$[/tex]
[tex]u'=0.625 c[/tex]
Therefore, the speed of rocket 1 according to an observer on rocket 2 is 0.625 c
How can I solve this?
I managed to find Part A, but I got stuck trying to find Part B and C
Answer:
Parte B : 31.18º , Parte C: 31.17º
Explanation:
Parte B: The angle between the glass and the water before it enters the water is going to be equal to the value of the angle when it enters the glass , 27.13º.
Using the formula n1 senθ1 = n2 senθ2 , where n1=1.51 , θ1=27.13º, n2=1.33 , it gives us θ2=31.18º.
Parte C: n1= 1 , θ1=43.5º, n2=1.33
Using the same formula : n1 senθ1 = n2 senθ2 , it gives us θ2= 31.17º.
You have a 1 W light bulb in your lab. It puts out light of only 1 frequency. The wavelength of this light is 500nm. you set up a detector with a surface area of 1 square centimeter facing the light source at a distance of 100m.
Required:
a. Find the number of photons hitting the detector every second.
b. What is the maximum E field of the E M wave hitting the detector?
c. What is the maximum value of the B field of this E M wave?
d. How far away would you have to place the detector to only receive 1 photon per second from the light bulb?
Answer:
a) # _photon = 2.5 10¹⁸ photons / s, b) E = 10⁻² N / C, c) B = 3 10⁻¹¹ T
d) r= 2 10⁹ m
Explanation:
a) Let's solve this exercise in part, let's start by finding the energy of each photon using the Planck relation
E₀ = h f
c = λ f
E₀ = h c /λ
E₀ = 6.63 10⁻³³⁴ 3 10⁸/500 10⁻⁹
E₀ = 3.978 10⁻⁻¹⁹ J
Let's use a direct ratio rule to find the number of photons
#_foton = E / Eo
#_fototn = 1 / 3.978 10⁻¹⁹
# _photon = 2.5 10¹⁸ photons / s
b) The intensity received by the detector is related to the electric field
I = E²
Let's look for the intensity that the detector receives, suppose that the emission is shapeless throughout the space
I = P / A
P = I A
Let's use index 1 for the point on the bulb and index 2 for the point on the detector.
The area of a sphere is
A = 4π r²
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
I₂ = I₁ r₁²/r₂²
I₂ = I₁ 1 / 100²
I₂ = I₁ 10⁻⁴
we must know the intensity at the output of the bulb suppose that I₁ = 1 J
I₂ = 10⁻⁴ J
let's look for the electric field
E =√I
E = √10⁻⁴
E = 10⁻² N / C
c) for the calculation of the magnetic field we use that the field is in phase
E / B = c
B = E / c
B = 10⁻² / 3 10⁸
B = 3 10⁻¹¹ T
d) Let's use a direct proportions rule if we fear 2.5 10¹⁸ photons in an area A = 4π R² where R = 100 m how many photons are there in the area of the detector r = 1 cm, A’= 10⁻⁴ m²
#_photons = 2.5 10¹⁸ A_detector / A_sphere
#_photons = 2.5 1018 10-4 / 4π 10⁴
#_photons = 2 10⁹ photons in the detector area
for the number of photons to decrease to 1, the radius of the sphere must be 2 10⁹ m
How is the sun used to make food?
Answer:
Plants use a process called photosynthesis to make food. During photosynthesis, plants trap light energy with their leaves. Plants use the energy of the sun to change water and carbon dioxide into a sugar called glucose. Glucose is used by plants for energy and to make other substances like cellulose and starch.
Thank you
Answer:
Plants use a process called photosynthesis to make food. During photosynthesis, plants trap light energy with their leaves. Plants use the energy of the sun to change water and carbon dioxide into a sugar called glucose.
A car whose tire have radii 50cm travels at 20km/h. What is the angular velocity of the tires?
Convert to m/s
[tex]\\ \sf\longmapsto v=20\times 5/18=5.5m/s[/tex]
We know
[tex]\boxed{\sf \omega=\dfrac{rv}{|r|^2}}[/tex]
[tex]\\ \sf\longmapsto \omega=\dfrac{0.5(5.5)}{|0.5|^2}[/tex]
[tex]\\ \sf\longmapsto \omega=\dfrac{2.75}{0.25}[/tex]
[tex]\\ \sf\longmapsto \omega=11rad/s[/tex]
The area around a charged object that can exert a force on other charged objects is an electric ___
Describe how you could whether sound travels best through wood, plastic, or metal.
Answer:
metal
Explanation:
sound can travel best in materials with higher elastic properties like metal than it can through other solids like plastic or rubber which have lower elastic properties
I hope this helps
Flag question
Consider the pressure and force acting on the
dam retaining a reservoir of water. Suppose the
dam is 500-m wide
and the water is 80.0-m
deep at the dam, as illustrated below. What is
the average pressure on the dam due to the
water?
Answer:
P = density (p) * g * h
P = 1000 kg/m^3 * 9.8 m/s^2 * 40 m = 392,000 N/m^2
since kg m / s^2 = Newtons
The average pressure is 1/2 (pressure at 0m + pressure 80 m) for liquid of uniform density
A 55kg bungee jumper has fallen far enough that her bungee cord is beginning to stretch and resist her downward motion . Find the ( magnitude and direction ) exerted on her by the bungee cord at an instant when her downward acceleration has a magnitude of 7.1m/s2
Answer:
148.5 N
Explanation:
Given that,
The mass of a bungee jumper, m = 55 kg
The downward acceleration, a = 7.1 m/s²
We need to find the net force acting on the jumper. As it is moving in downward direction, net force is :
T = m(g-a)
Put all the values,
T = 55(9.8 - 7.1)
= 148.5 N
So, the force exerted on the bungee cord is 148.5 N.
Answer:
The downward force is 148.5 N.
Explanation:
mass, m = 55 kg
downwards acceleration, a = 7.1 m/s^2
Let the force is F.
According to the newton's second law
m g - F = m a
F = m (g - a)
F = 55 (9.8 - 7.1)
F = 148.5 N
Why do you think scientists needed to invent a temperature scale, instead of deciding if things were hot or cold?
For the same reason that we need units of length, instead of just "long" or "short". And units of distance instead of "near" and "far". And units of time instead of "early" and "late" or "old" and "new". And units of weight instead of "light" and "heavy". And units of sound-pressure instead of "loud" and "soft".
"Hot" and "cold" mean different things to different people, and may even mean different things to the same person at different times.
A person who grew up in Panama, and comes to visit Chicago in July, says it's cold.
A person who lives in Chicago, and goes to visit Jamaica in January, says it's hot.
A professional chef, following a recipe, can't just cook the steak until it's "hot inside". He needs a number, so he can cook it the same every time.
A technician in a Chemistry lab may have two solutions, and he's supposed to pour half of the cooler one into the warmer one. One of them is 25°C and the other one is 22°C. He's got a problem. He can't tell the difference. He never learned temperature scales. All he knows is "hot" and "cold", and they both feel luke-warm to him. He doesn't even have a way to measure them, because temperature scales were never invented. He's stumped. And while he's standing there scratching his head, both solutions drift to the same temperature, and the lab goes up in flames. The technician is so petrified, he becomes overwhelmed with shame and regret, and makes himself sick and feverish. His forehead feels hot but nobody can measure his temperature, so nobody knows how sick he is.
All because Franz Fahrenheit and Sven Celsius had planned to invent measurable scales in their lab, but decided to go fishing that day.
How much energy is stored in a spring that is compressed 0.650m if the spring constant is 725N/m?
Answer:
53.8Joule
Explanation:
hope it is helpful
please mark it as brainliest
Answer:
approximate 153.1J
Explanation:
W= 1/2k(x^2) = 1/2x725x(0.650)^2 = 153.15625 (J)
Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 21 cm apart. The sound intensity decreases as the distance between the speakers is increased, reaching zero at a separation of 61 cm. a. What is the wavelength of the sound
Answer:
The answer is "80 cm".
Explanation:
The distance of 21 cm between the speaker's effect of high strength but a spacing of 61 cm corresponds to a zero to zero intensity, that also is, the waves are all in phase with others [tex]\Delta \ x_1 = 21 \ cm[/tex] this is out of phase [tex]\Delta\ x_2 = 61\ cm[/tex]
[tex]\therefore\\\\\Delta\ x_2 -\Delta\ x_1 = \frac{\lambda}{2}\\\\\lambda= 2( \Delta\ x_2 -\Delta\ x_1)[/tex]
[tex]= 2 ( 61\ cm - 21\ cm)\\\\ = 2(40\ cm)\\\\= 80\ cm[/tex]
the wave frequency is a measure of
Answer: hertz
Explanation:
Wavelength is also measured in metres ( ) - it is a length after all. The frequency ( ) of a wave is the number of waves passing a point in a certain time. We normally use a time of one second, so this gives frequency the unit hertz ( ), since one hertz is equal to one wave per second.
Answer:
The number of waves that pass a particular point in a unit of time.
Explanation:
The frequency of a wave describes the number of waves that pass a particular point in a unit of time. The frequency is inversely proportional to the period of the wave, which is the time required for one full wave cycle to complete.
PF
a person lifts 60kg on the surface of the earth, how much mass can he lift on the surface of the moon if he applies same magnitude of force
Explanation:
Hey there!
According to the question;
A person can lift mass of 60 kg on earth.
mass(m1) = 60kg
acceleration due to gravity on earth (a) = 9.8m/s²
Now;
force (f) = m.a
= 60*9.8
= 588 N
Since, there is application of same magnitude of force on moon,
mass(m) =?
acceleration due to gravity on moon (a) = 1.67m/s²
Now;
force (f) = m.a
588 = m*1.67
m = 352.09 kg
Therefore, the person who can lift the mass of 60 kg on earth can lift mass of 352 kg on moon.
Hope it helps!
If the mass of an object is 15 kg and the velocity is -4 m/s, what is the momentum?
momentum p= m x v = 15 x -4 = -60 N.s
Suppose a teenager on her bicycle. The rear wheel is spinning at an angular velocity of 281.133 rpm. She stops it in 3.686 s. How many revolution did it take to stop it?
Answer:
Explanation:
The formula for angular velocity is
[tex]\omega=\frac{\theta}{t}[/tex] where omega is the angular velocity, theta is the change in the angular rotation, and t is the time in seconds. First and foremost, we have the angular rotation in minutes and the time in seconds, so that's a problem we have to amend. Let's change the angular rotation to rotations per second:
[tex]281.133\frac{r}{min}*\frac{1min}{60s}=4.68555\frac{r}{s}[/tex]
Now we're ready to set up the problem:
[tex]4.68555=\frac{\theta}{3.686}[/tex] and we multiply both sides by 3.686 to get the rotations per seconds:
θ = 17.27 rotations
a student standing between two walls shouts once.he hears the first echo after 3 seconds and the next after 5 seconds. calculate the distance between the walls.
Explanation:
It took [tex]t_1 =1.5\:\text{s}[/tex] for the sound to reach the 1st wall and at the same time time, the same sound took [tex]t_2 = 2.5\:\text{s}[/tex] to reach the 2nd wall. Assuming that the sound travels at 343 m/s, then let [tex]x_1[/tex] be the distance of the person to the 1st wall and [tex]x_2[/tex] be the distance to the 2nd wall. So the distance between the walls X is
[tex]X = x_1 + x_2 = v_st_1 + v_st_2 = v_s(t_1 + t_2)[/tex]
[tex]\:\:\:\:\:= (343\:\text{m/s})(4.0\:\text{s}) = 1372\:\text{m}[/tex]
Our system is a block attached to a horizontal spring on a frictionless table. The spring has a spring constant of 4.0 N/m and a rest length of 1.0 m, and the block has a mass of 0.25 kg.
Compute the PE when the spring is compressed by 0.50 m.
Answer
E - 1/2 K x^2 potential energy of compressed spring
E = 1/2 * 4 N / m * (.5 m)^2 = 2 * .5^2 N-m = .5 N-m
A linear accelerator can be used to accelerate which of the following?
Question 3 options:
protons and electrons
protons and neutrons
protons only
protons, electrons, and neutrons
Observe: Air pressure is equal to the weight of a column of air on a particular location. Air pressure is measured in hectopascals (hPa). Note how the air pressure changes as you move Station B towards the center of the high-pressure system.
a. What do you notice?
b. Why do you think this is called a high-pressure system?
Answer:
A. When moving towards a high pressure center the pressure values increase in the equipment
B. This area is called high prison since the weight of the atmosphere on top is maximum
Explanation:
A) A high atmospheric pressure system is an area where the pressure is increasing the maximum value is close to 107 Kpa, the other side as low pressure can have small values 85.5 kPa.
When moving towards a high pressure center the pressure values increase in the equipment
B) This area is called high prison since the weight of the atmosphere on top is maximum
in general they are areas of good weather
What is the energy of a photon with a frequency of 3.6 × 1015 Hz? Planck’s constant is 6.63 × 10–34 J•s.
1.8 × 10–49 J
2.4 × 10–19 J
1.8 × 10–18 J
2.4 × 10–18 J
We know
[tex]\boxed{\sf E=hv}[/tex]
[tex]\\ \sf\longmapsto E=6.63\times 10^{-34}J\times 3.6\times 10^{15}s^{-1}[/tex]
[tex]\\ \sf\longmapsto E=23.86\times 10^{-19}J[/tex]
[tex]\\ \sf\longmapsto E=2.38\times 10^{-18}J[/tex]
[tex]\\ \sf\longmapsto E=2.4\times 10^{-18}J[/tex]
Answer:
D!!!!!
Explanation:
During normal beating, the heart creates a maximum 4.10-mV potential across 0.350 m of a person's chest, creating a 1.00-Hz electromagnetic wave. (a) What is the maximum electric field strength created? V/m (b) What is the corresponding maximum magnetic field strength in the electromagnetic wave? T (c) What is the wavelength of the electromagnetic wave?
Explanation:
Given that,
Maximum potential, V = 4. mV
Distance, d = 0.350 m
Frequency of the wave, f = 100 Hz
(a) The maximum electric field strength created is given by:
[tex]E=\dfrac{V}{d}\\\\E=\dfrac{4.1\times 10^{-3}}{0.350 }\\\\E=0.0117\ V/m[/tex]
(b) The corresponding maximum magnetic field strength in the electromagnetic wave is given by :
[tex]B=\dfrac{E}{c}\\\\B=\dfrac{0.0117}{3\times 10^8}\\\\B=3.9\times 10^{-11}\ T[/tex]
(c) The wavelength of the electromagnetic wave can be calculated as :
[tex]\lambda=\dfrac{c}{f}\\\\\lambda=\dfrac{3\times 10^8}{100}\\\\=3\times 10^6\ m[/tex]
So, the wavelength of the electromagnetic wave is [tex]3\times 10^6\ m[/tex].
Which of the following would change mass as it accelerated? a bullet being shot out of a gun a roller skater pushing off a jet plane taking off a bowling ball slowing down
Answer:
Explanation:
A bullet being shot out of a gun tends to leave tiny amounts of the bullet behind due to friction between the bullet and the gun barrel.
A roller skater pushing requires the conversion of food chemical energy to muscle contraction energy. This conversion increases the body temperature and sweat is excreted to counteract the heat increase. The evaporation of the sweat causes a slight decrease in body mass.
A jet plane taking off consumes some of the fuel carried onboard to provide thrust. The products of combustion become part of the exhaust stream leaving the airplane rearward providing forward thrust.
1 of 3 : please help got an extra day for a test and i don’t get this (must show work) points and brainliest!
Answer:
y = 1/2at^2
we could also write it as-
y = (at^2)/2
2y = at^2
2y/a = t^2
√2y/a = t
hope it helps
A transparent. dielectric coating is applied to glass (εr = 4.μr=1, σ= 0) to eliminate the reflection of red light (wavelength in air of 750 nm).
a. What is the required dielectric constant and minimum thickness of the coating?
b. If violet light (wavelength in air of 420 nm) is shone onto this glass coating (6-0). what percentage of the incident power will be reflected?
Answer:
a) Dielectric constant ( λ ) = 750 * 10^-9 m
minimum thickness of coating ( d ) = 187.5 nm
b) 3.6%
Explanation:
Given data:
wavelength of red light in air = 750 nm
εr = 4
μr = 1, σ = 0
a) Determine the required dielectric constant and min thickness of coating used
Refractive index of coating ( n ) = √εr * μr = √4*1 = 2
the refractive index of glass( ng) = 1.5 which is < 2
λ = 750 * 10^-9 m
Dielectric constant ( λ ) = 750 * 10^-9 m
To determine the minimum thickness we will apply the formula below
d = m λ/2n ; where m = 1
∴ d = 750 nm / 2 ( 2 )
= 187.5 nm
minimum thickness of coating ( d ) = 187.5 nm
b) Determine the percentage of the incident power that will be reflected
R = [ ( n-1 / n + 1 ) - ( n - ng / ng + n ) ]^2
= [ ( 2 - 1 / 2 + 1 ) - ( 2 - 1.5 / 1.5 + 2 ) ]^2
= 0.03628 = 3.6%
Which of the following is not true about Triton, the large moon of Neptune? It is more reflective than Earth's Moon. It is larger than Earth's Moon. It is in a retrograde orbit. It has a thin atmosphere. It has nitrogen geysers.
Answer:
Triton is the largest of Neptune's 13 moons. It is unusual because it is the only large moon in our solar system that orbits in the opposite direction of its planet's rotation―a retrograde orbit. ... Like our own moon, Triton is locked in synchronous rotation with Neptune―one side faces the planet at all times.
A 2.0 kg puck is at rest on a level table. It is pushed straight north with a constant force of 5N for 1.50 s and then let go. How far does the puck move from rest in 2.25 s?
Answer:
d = 6.32 m
Explanation:
Given that,
The mass of a puck, m = 2 kg
It is pushed straight north with a constant force of 5N for 1.50 s and then let go.
We need to find the distance covered by the puck when move from rest in 2.25 s.
We know that,
F = ma
[tex]a=\dfrac{F}{m}\\\\a=\dfrac{5}{2}\\\\a=2.5\ m/s^2[/tex]
Let d is the distance moved in 2.25 s. Using second equation of motion,
[tex]d=ut+\dfrac{1}{2}at^2\\\\d=0+\dfrac{1}{2}\times 2.5\times (2.25)^2\\\\d=6.32\ m[/tex]
So, it will move 6.32 m from rest in 2.25 seconds.
In the diagram, disk 1 has a moment of inertia of 3.4 kg · m2 and is rotating in the counterclockwise direction with an angular velocity of 6.1 rad/s about a frictionless rod passing through its center. A second disk rotating clockwise with an angular velocity of 9.3 rad/s falls from above onto disk 1. The two then rotate as one in the clockwise direction with an angular velocity of 1.8 rad/s. Determine the moment of inertia, in kg · m2, of disk 2.
Answer:
I = 3.6 kg•m²
Explanation:
Conservation of angular momentum
Let's assume CW is the positive direction
3.4(-6.1) + I(9.3) = 3.4(1.8) + I(1.8)
I(9.3 - 1.8) = 3.4(1.8 + 6.1)
I(7.5) = 3.4(7.9)
I = 3.4(7.9)/(7.5) = 3.5813333333...
The moment of inertia of the second disk will be [tex]I=3.58\ kg-m^2[/tex]
What is moment of inertia?The moment of inertia is defined as the product of mass of section and the square of the distance between the reference axis and the centroid of the section.
here it is given that
MOI of disk one [tex]I_1=3.4\ kg-m^2[/tex]
Angular velocity [tex]w_1=6.1\ \frac{rad}{s}[/tex]
Angular velocity of disk two [tex]w=1.8\ \frac{rad}{s}[/tex]
MOI of the disk two [tex]I=?[/tex]
The final angular velocity [tex]w_f= 1.8\ \frac{rad}{sec}[/tex]
Now from the conservation of the momentum the angular momentum before collision will be equal to the angular momentum after collision.
[tex]I_1w_1+I_2w_2=(I_1+I_2)w_f[/tex]
Now put the values in the formula
[tex](3.4\times 6.10)+(I_2\times 9.3)=(3.4+I_2)\times 1.8[/tex]
[tex]I_2=3.58\ kg-m^2[/tex]
Thus the moment of inertia of the second disk will be [tex]I=3.58\ kg-m^2[/tex]
To know more about moment of inertia follow
https://brainly.com/question/18721435