Answer:
20 cm
Step-by-step explanation:
20 cm
8/2 = 4
6/2 = 3
3 and 4 are the sides of the triangle (four triangles in rhombus)
a²+b²=c²
4³+3²=c²
c = 5
5 x 4 = 20
Hope this helped
Answer:
perimeter = 20 cm
Step-by-step explanation:
consider breaking the rhombus into four equal parts.
and that gives you a triangle.
(refer to image attached for more clarification)
let a = 3, b = 4
to get the side c, use Pythagorean theorem = c² = a² + b²
c = sqrt (3² + 4²)
side c = 5
therefore,
perimeter = 4 x sides (c)
perimeter = 4 x 5
perimeter = 20 cm
Given there are 26 alphabets in the English language, how many possible three-letter words are there?
We have 26 letters and 3 slots to fill. We can reuse a letter if it has been picked, so we have 26^3 = 26*26*26 = 17,576 different three letter "words". I put that in quotes because a lot of the words aren't actual words, but more just a sequence of letters.
What information do you need in order to determine the total distance Sam drives versus the actual displacement between his starting and ending points?
Answer:
his path
Step-by-step explanation:
In order to determine the total distance driven from one place to another, you need to know the path taken.
This??? What is wrong with it?
Answer:
15.8 sq. in. of paper will be required.
Step-by-step explanation:
The problem is that a drinking cup does not have a cover, so only the lateral surface area counts.
I.e. We need only the first term.
A = pi r l = pi * 1.5 * sqrt(3^2+1.5^2)
= 15.81 sq. in.
99 litres of gasoline oil is poured into a cylindrical drum of 60cm in diameter. How deep is the oil in the drum?
Answer:
35 cm
Step-by-step explanation:
The volume of a cylinder is given by ...
V = πr²h
We want to find h for the given volume and diameter. First, we must convert the given values to compatible units.
1 L = 1000 cm³, so 99 L = 99,000 cm³
60 cm diameter = 2 × 30 cm radius
So, we have ...
99,000 cm³ = π(30 cm)²h
99,000/(900π) cm = h ≈ 35.01 cm
The oil is 35 cm deep in the drum.
you pick a card at random from an ordinary deck of 52 cards. If the card is an ace, you get 9 points; if not, you lose a point
Answer: a = 9, b = 48, c = -1
Step-by-step explanation:
"a" represents the points you receive if an Ace is picked. It is given that you get 9 points ----> a = 9
"b" represents the number of cards that are Not an Ace. 4 cards in the deck are Aces so 52 - 4 = 48 cards are Not an Ace -----> b = 48
"c" represents the points you receive if Not an Ace is picked. It is given that you lose 1 point ----> c = -1
Answer:
Here is the rest of the page
Step-by-step explanation:
Why is 12 * 10-8 is NOT a correct representation of scientific notation?
Answer:
see below
Step-by-step explanation:
Scientific notation is a * 10 ^b
a must be a number between 1 ( including 1 ) and less than 10
12 is greater than 10 so it is not scientific notation
Is {(4,2),(4,-2),(9,3),(9,-3)} a function
Answer:
no
Step-by-step explanation:
If any x-value is repeated, the relation is not a function. Both x=4 and x=9 are repeated values, so this relation is not a function.
Triangle+ Triangle + Triangle = 30 Triangle + circle + circle = 20 Circle + Square + Square = 13 Triangle + circle x half square = ?
Answer:
Below
Step-by-step explanation:
Let T be triangle, C the circle and S the square.
● T + T + T = 30
● 3T = 30
Divide both sides by 3
● 3T/3 = 30/3
● T = 10
So the triangle has a value of 10.
●30 T + C + C = 20C + S + S = 13T +C ×S/2
Add like terms together
●30 T + 2C = 20C +2S= 13T + C×S/2
Replace T by its value (T=10)
● 300 + 2C = 20C + 2S = 130 + C×S/2
Take only this part 20C + 2S = 130 + C × S/2
● 20C + 2S = 130 + C×S/2 (1)
Take this part (300+2C = 20C+2S) and express S in function of C
● 20C + 2S = 300 + 2C
Divide everything by 2 to make easier
● 10 C + S = 150+ C
● S = 150+C-10C
● S = 150-9C
Replace S by (5-9C) in (1)
● 20C + 2S = 130 + C×S/2
● 20C + 2(150-9C) = 130 +C× (150-9C)/2
● 20C + 300-18C= 130 + C×(75-4.5C)
● 2C + 300 = 130 + 75 -4.5C^2
● 2C +300-130 = 75C - 4.5C^2
● 2C -75C + 170 = -4.5C^2
● -73C + 170 = -4.5C^2
Multiply all the expression by -1
● -4.5C^2 +73C+ 170= 0
This is a quadratic equation, so we will use the discriminant method.
Let Y be the discriminant
● Y = b^2-4ac
● b = 73
● a = -4.5
● c = 170
● Y = 73^2 - 4×(-4.5)×170= 8389
So the equation has two solutions:
● C = (-b +/- √Y) /2a
√Y is approximatively 92
● C = (-73 + / - 92 )/ -9
● C = 18.34 or C = -2.11
Approximatively
● C = 18 or C = -2
■■■■■■■■■■■■■■■■■■■■■■■■■
● if C = 18
30T + 2C = 300 + 36 = 336
● if C = -2
30T + 2C = 300-4 = 296
If the half-life of cesium-137 is 30 years, find the decay constant, r. (Round your answer to nine decimal places.)
Answer:
r = 0.023104906
Step-by-step explanation:
Given half life = T = 30 yrs.
Decay constant = r.
Using the decay constant formula:
[tex]r=\frac{\ln2}{T}\\r=\frac{\ln2}{30}\\r=0.023104906[/tex]
Learn more: https://brainly.com/question/1594198
a milha eh uma unidade usada para medir distancias. ela equivale a cerca de 1,6 quilometros. se cada carro percorrer 240 quilometros, quantas milhas tera percorrido? urgente
Classica aplicação de regra de 3:
é dito que: 1 milha = 1,6km
Logo, eis a regra de 3:
milha km
1 -------- 1,6
X -------- 240
1,6X = 240.1
X = 240/1,6
X = 150milhasLogo 240km equivalem a 150milhas
For the following graph, state the polar coordinate with a positive r and positive q (in radians). Explain your steps as to how you determined the coordinate (in your own words). I'm looking for answers that involve π, not degrees for your angles. State the polar coordinate with (r, -q). Explain how you found the new angle. State the polar coordinate with (-r, q). Explain how you found the new angle. State the polar coordinate with (-r, -q). Explain how you found the new angle.
the graph has 12 segments so angle enclosed by each segment is [tex] {2\pi\over 12}=\frac{\pi}6[/tex]
anti-clockwise is taken as positive, so if you want positive q, you need to rotate 8 segments [tex] q=8\frac,{\pi}6=\frac{4\pi}3 [/tex] , and and 8 circles or units so r=8
and for a negative angle, you need to rotate clockwise
Which is 4 segments from the horizontal line. so [tex]q=-\frac{2\pi}3[/tex] and r will be same, 8 units.
[not sure about -r so I won't include it in answer]
Answer:
Points : ( 8, - 2π/3 ), ( - 8, π/3 ), ( - 8, - 5π/3 )
Step-by-step explanation:
For the first two cases, ( r, θ ) r would be > 0, where r is the directed distance from the pole, and theta is the directed angle from the positive x - axis.
So when r is positive, we can tell that this point is 8 units from the pole, so r is going to be 8 in either case,
( 8, 240° ) - because r is positive, theta would have to be an angle with which it's terminal side passes through this point. As you can see that would be 2 / 3rd of 90 degrees more than a 180 degree angle,or 60 + 180 = 240 degrees.
( 8, - 120° ) - now theta will be the negative side of 360 - 240, or in other words - 120
Now let's consider the second two cases, where r is < 0. Of course the point will still be 8 units from the pole. Again for r < 0 the point will lay on the ray pointing in the opposite direction of the terminal side of theta.
( - 8, 60° ) - theta will now be 2 / 3rd of 90 degrees, or 60 degrees, for - r. Respectively the remaining degrees will be negative, 360 - 60 = 300, - 300. Thus our second point for - r will be ( - 8, - 300° )
_________________________________
So we have the points ( 8, 240° ), ( 8, - 120° ), ( - 8, 60° ), and ( - 8, - 300° ). However we only want 3 cases, so we have points ( 8, - 120° ), ( - 8, 60° ), and ( - 8, - 300° ). Let's convert the degrees into radians,
Points : ( 8, - 2π/3 ), ( - 8, π/3 ), ( - 8, - 5π/3 )
The given line segment has a midpoint at (−1, −2). On a coordinate plane, a line goes through (negative 5, negative 3), (negative 1, negative 2), and (3, negative 1). What is the equation, in slope-intercept form, of the perpendicular bisector of the given line segment? y = −4x − 4 y = −4x − 6 y = One-fourthx – 4 y = One-fourthx – 6
Answer:
y = -4x - 6.
Step-by-step explanation:
We are given (-5, -3), (-1, -2), and (3, -1) for points of a line. First, we need to find the slope.
(-2 - -3) / (-1 - -5) = (-2 + 3) / (-1 + 5) = 1 / 4.
A perpendicular bisector would have a slope of -4, which is the negative reciprocal of 1/4.
Now that we have the slope, we can say that the equation is y = -4x + b. To find what is b, we can say that y = -2 and x = -1.
-2 = -4(-1) + b
-2 = 4 + b
b + 4 = -2
b = -6
So, the equation of the perpendicular bisector is y = -4x - 6.
Hope this helps!
Answer:
y = -4x - 6.
Step-by-step explanation:
Just took the test and got it right
A man saves 4% of his monthly
income of $19,540, the percentage
Savings is increased in the ratio
3:2 Calculate the savings from
the monthly
income.
Answer:
Although the question is not clear, It most likely looks like you were asking for the calculation of the savings for the month after increase.
savings for the month after increase = $1172.4
Step-by-step explanation:
First, let us calculate how much was saved before the increase in savings:
monthly income = $19,540
Percentage saved = 4% of monthly income
= 4/100 × 19,540 = 0.04 × 19,540 = $781.6
Next, we are given the ratio of increase in savings as 3:2
Let the new savings amount be x
3 : 2 = x : 781.6
[tex]\frac{3}{2} = \frac{x}{781.6} \\781.6\ \times 3\ =2x\\2344.8 = 2x\\x =\frac{2344.8}{2} \\x = \$1172.4[/tex]
therefore savings for the month after increase = $1172.4
Just incase you were looking for the savings before the increase, the answer is $781.6 (as calculated above)
Given the exponential growth function f(x)=87(1.02)^x
What is the initial value of the function? _____
What is the growth factor, or growth rate of the function (as a percent)? _____%
Answer:
87; 2%
Step-by-step explanation:
An exponential growth model is defined as :
F(x) = A( 1 + r)^x
Where;
A = Initial amount,
r = rate of increase
x = time
Comparing the exponential growth function with the exponential growth model given;
f(x)=87(1.02)^x
A = 87 = Initial amount
The growth rate of the model expressed as a percentage :
Taking :
(1 + r) = 1.02
1 + r = 1.02
r = 1.02 - 1
r = 0.02
Expressing r as a percentage :
0.02 * 100% = 2%
what's the equation that represents the new path
Answer:
A: y= 1/4x - 7
if it is perpendicular, then it creates 4 right angles. so that new line would pass through (0,-7) and something else that isnt important. but the slope, or m, would be 1/4, and the y intercept would be -7. so the new equation is y=1/4x-7
HELP ASAP ROCKY!!! will get branliest.
Answer:
work pictured and shown
Answer:
Last one
Step-by-step explanation:
● [ ( 3^2 × 5^0) / 4 ]^2
5^0 is 1 since any number that has a null power is equal to 1.
●[ (3^2 ×1 ) / 4 ]^2
● (9/4)^2
● 81 / 16
What's the solution of the following linear system? 5x + 2y = 9 –5x – 2y = 3
━━━━━━━☆☆━━━━━━━
▹ Answer
(-39/35, 9/7)
▹ Step-by-Step Explanation
5y + 2y = 9
-5x - 2y = 3
Solve the equation:
y = 9/7
-5x - 2y = 3
Substitute the value of y:
-5x - 2 * 9/7 = 3
x = -39/35
(x, y) = (-39/35, 9/7)
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
To solve this system by addition, we start by adding both of our equations together but notice that the x terms and the y terms cancel out.
This leaves us with 0 on the left side and on the right side,
9 + 13 = 12 so we are left with the equation 0 = 12.
Since 0 = 12 is a false statement, this means that
there is no solution to our system of equations.
List the sides of ΔRST in ascending order (shortest to longest). m∠R=2x+11°, m∠S=3x+23°, and m∠T=x+42°
Answer:
ST, RS, RT
Step-by-step explanation:
Angles of a triangle add up to 180°.
2x + 11° + 3x + 23° + x + 42° = 180°
6x + 76° = 180°
x = 17⅓
m∠R = 2x+11° = 45⅔°
m∠S = 3x+23° = 75°
m∠T = x+42° = 59⅓°
The shortest side is opposite the smallest angle, and the longest side is opposite the largest angle.
ST, RS, RT
602/100 into a decimal describe plz
Answer:
6.02
six point zero two
Step-by-step explanation:
Answer:
602 / 100= 6,02
Step-by-step explanation:
602 to divide 100 = 6,02
MY
A circle with radius of 5 cm sits inside a 11 cm x 11 cm rectangle.
Col
What is the area of the shaded region?
Round your final answer to the nearest hundredth.
MY
11 cm
Pro
Pro
Теа
5 cm
11 cm
cm2
2 of 4 OOO
Help
Step-by-step explanation:
Hi, there!!!
According to the question we must find the area of shaded region, but we must find area of circle and rectangle to find area of shaded region,
So, let's simply work with it,
Firstly, finding the area of rectangle,
length = 11cm.
breadth = 11cm.
now, area= length× breadth.
or, a = 11cm× 11cm.
a= 121cm^2
Now, let's work out the area of circle.
radius= 5cm
and pi. = 3.14 {using pi value as 3.14}
now,
area of a circle = pi× r^2
or, a= 3.14×5^2
or, a = 78.5 cm^2.
Therefore, The area of a circle is 78.5cm^2.
Now lastly finding the area of shadedregion,
area of shaded region = area of rectangle - area of circle.
or, area of shaded region = 121cm^2 - 78.5cm^2
Therefore, the area of shaded region is 42.5 cm^2.
Hope it helps...
Consider the differential equation:
2y'' + ty' − 2y = 14, y(0) = y'(0) = 0.
In some instances, the Laplace transform can be used to solve linear differential equations with variable monomial coefficients.
If F(s) = ℒ{f(t)} and n = 1, 2, 3, . . . ,then
ℒ{tnf(t)} = (-1)^n d^n/ds^n F(s)
to reduce the given differential equation to a linear first-order DE in the transformed function Y(s) = ℒ{y(t)}.
Requried:
a. Sovle the first order DE for Y(s).
b. Find find y(t)= ℒ^-1 {Y(s)}
(a) Take the Laplace transform of both sides:
[tex]2y''(t)+ty'(t)-2y(t)=14[/tex]
[tex]\implies 2(s^2Y(s)-sy(0)-y'(0))-(Y(s)+sY'(s))-2Y(s)=\dfrac{14}s[/tex]
where the transform of [tex]ty'(t)[/tex] comes from
[tex]L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)[/tex]
This yields the linear ODE,
[tex]-sY'(s)+(2s^2-3)Y(s)=\dfrac{14}s[/tex]
Divides both sides by [tex]-s[/tex]:
[tex]Y'(s)+\dfrac{3-2s^2}sY(s)=-\dfrac{14}{s^2}[/tex]
Find the integrating factor:
[tex]\displaystyle\int\frac{3-2s^2}s\,\mathrm ds=3\ln|s|-s^2+C[/tex]
Multiply both sides of the ODE by [tex]e^{3\ln|s|-s^2}=s^3e^{-s^2}[/tex]:
[tex]s^3e^{-s^2}Y'(s)+(3s^2-2s^4)e^{-s^2}Y(s)=-14se^{-s^2}[/tex]
The left side condenses into the derivative of a product:
[tex]\left(s^3e^{-s^2}Y(s)\right)'=-14se^{-s^2}[/tex]
Integrate both sides and solve for [tex]Y(s)[/tex]:
[tex]s^3e^{-s^2}Y(s)=7e^{-s^2}+C[/tex]
[tex]Y(s)=\dfrac{7+Ce^{s^2}}{s^3}[/tex]
(b) Taking the inverse transform of both sides gives
[tex]y(t)=\dfrac{7t^2}2+C\,L^{-1}\left[\dfrac{e^{s^2}}{s^3}\right][/tex]
I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that [tex]\frac{7t^2}2[/tex] is one solution to the original ODE.
[tex]y(t)=\dfrac{7t^2}2\implies y'(t)=7t\implies y''(t)=7[/tex]
Substitute these into the ODE to see everything checks out:
[tex]2\cdot7+t\cdot7t-2\cdot\dfrac{7t^2}2=14[/tex]
Write an expression to represent the given statement. Use n for the variable. Three times the absolute value of the sum of a number and 6
Answer:
3 · |x+6|
Step-by-step explanation:
Write out what you see. "Three times" is 3 · something; "the absolute value of the sum of a number and 6" is |number + 6|. We'll use x for our number. Put it all together and you get 3 · |x+6|
The expression of the statement, Three times the absolute value of the sum of a number and 6 is [tex]\[3\left| n+6 \right|\][/tex] .
Representation of statement:Let n be the number.The sum of the numbers n and 6 is n+6.The absolute value of the sum of the numbers n and 6 is [tex]\[\left| n+6 \right|\][/tex].Hence, three times the absolute value of the sum of a number and 6 is [tex]\[3\left| n+6 \right|\][/tex].
Learn more about the representation of an expression:
https://brainly.com/question/10905086?referrer=searchResults
#SPJ2
Simplify the expression. Write the answer using scientific notation.
(5x107)(6x104)
A) 1.1 x 1012
B) 3.0x 1029
C) 3.0 x 1012
D) 1.1 x 1029
Answer:
3* 10 ^12
Step-by-step explanation:
(5x10^7)(6x10^4)
Multiply the numbers together
5*6 =30
Add the exponents
10^7 * 10 ^ 4 = 10 ^(7+4) = 10 ^11
30 * 10 ^11
But this is not scientific notation since 30 >10
Move the decimal one place to the left and add 1 to the exponent
3* 10 ^12
Answer:
3* 10 ^12
Step-by-step explanation:
help pls:Find all the missing elements
Step-by-step explanation:
Using Sine Rule
[tex] \frac{ \sin(a) }{ |a| } = \frac{ \sin(b) }{ |b| } = \frac{ \sin(c) }{ |c| } [/tex]
[tex] \frac{ \sin(42) }{5} = \frac{ \sin(38) }{a} [/tex]
[tex]a = \frac{5( \sin(38))}{ \sin(42) } [/tex]
[tex]a = 4.6[/tex]
[tex] \frac{ \sin(42) }{5} = \frac{ \sin(100) }{b} [/tex]
[tex]b= \frac{5( \sin(100))}{ \sin(42) } [/tex]
[tex]b = 7.4[/tex]
Claire has to go to the movie theater the movie starts at 4:15 pm it is a 25min walk to the theater from her home what time dose the have to leave the house to get there on time
Answer:
claire has to leave at 3:50 from her house.
Answer:
She needs to leave by 3:50 to get there on time.
Step-by-step explanation:
4:15 - 0:25 = 3:50.
10. A sample of 60 mutual funds was taken and the mean return in the sample was 13% with a standard deviation of 6.9%. The return on a particular index of stocks (against which the mutual funds are compared) was 11.5%. Therefore, the test statistic is 1.68. When testing the hypothesis that the average return on actively-managed mutual funds is higher than the return on an index of stocks, if the critical value is 1.96, what is your conclusion concerning the null hypothesis
Answer:
In this question, we shall be accepting the null hypothesis H0 since the critical value is greater than the test statistic value
Step-by-step explanation:
Here in this question, we want to make a conclusion about the null hypothesis H0.
To make or give the correct conclusion about the null hypothesis in this case, we shall need to compare the absolute value of the test statistic used against the value of the critical value.
Hence, we draw a conclusion if the test statistic is larger or smaller than the critical value.
From the value given in the question, we can see that the test statistic given as 1.68 is lesser in value compared to the critical value given as 1.96.
In this kind of case, the conclusion that we shall be drawing is that we will accept the null hypothesis H0 and reject the alternative hypothesis
Relating a Polynomial Identity to Pythagorean Triples
In this activity you'll relate polynomial identities with Pythagorean triples. Answer the following questions
based on this triangle with side lengths x^2 – 1, 2x, and x^2 + 1.
Answer:
Step-by-step explanation:
Hello, please consider the following.
For x > 1, we can apply Pythagoras theorem as below.
[tex]\text{Let's estimate this sum of two squares.} \\\\(2x)^2+(x^2-1)^2=4x^2+x^4-2x^2+1=x^4+2x^2+1\\\\\text{Let's estimate this square, now.} \\\\(x^2+1)^2=x^4+2x^2+1\\\\\text{The two expressions are equal, meaning.} \\\\(2x)^2+(x^2-1)^2=(x^2+1)^2\\\\\text{Using Pythagoras' theorem, we can say that this is a right triangle.}[/tex]
Thank you
BRAINLIST AND A THANK YOU AND 5 stars WILL BE REWARDED PLS ANSER
Answer:
The first picture's answer would be (6, 21)
Step-by-step explanation:
You have to find the points on the 8th and the 9th day, and then you would add them together, and then divide by two finding the average, which would be 24 and 18, so when added, you get 42, divided by 2 you get 21. You look on the graph for the point with 21, and you find it is on 6.
if f(x)=3-2x and g(x)= 1/x+5 what is the value of (f/g) (8)
Answer:
Step-by-step explanation:
(f/g) = (3 - 2x ) / (1/x + 5) You could go to the trouble to simplify all of this, but the easiest way is to just put in the 8 where you see an x
(f/g)8 = (3 - 2*8) / (1/8 + 5)
(f/g)/8 = (3 - 16 / (5 1/8) 1/8 = 0.125
(f/g) 8 = - 13 / ( 5.125)
(f/g)8 = - 2.54
If cot Theta = Two-thirds, what is the value of csc Theta? StartFraction StartRoot 13 EndRoot Over 3 EndFraction Three-halves StartFraction StartRoot 13 EndRoot Over 2 EndFraction Eleven-thirds
Answer:
csctheta= [tex]\frac{\sqrt{13} }{3}[/tex]
Step-by-step explanation:
answer is provided on top
The value of the [tex]\rm cosec \theta = \frac{\sqrt{13} }{3}[/tex]. Cosec is found as the ratio of the hypotenuse and the perpendicular.
What is trigonometry?The field of mathematics is concerned with the relationships between triangles' sides and angles, as well as the related functions of any angle
The given data in the problem is;
[tex]\rm cot \theta = \frac{2}{3}[/tex]
The [tex]cot \theta[/tex] is found as;
[tex]\rm cot \theta = \frac{B}{P} \\\\ \rm cot \theta = \frac{2}{3} \\\\ B=2 \\\\ P=3 \\\\[/tex]
From the phythogorous theorem;
[tex]\rm H=\sqrt{P^2+B^2} \\\\ \rm H=\sqrt{2^2+3^2} \\\\ H=\sqrt{13} \\\\[/tex]
The value of the cosec is found as;
[tex]\rm cosec \theta = \frac{H}{P} \\\ \rm cosec \theta = \frac{\sqrt{13} }{3}[/tex]
Hence the value of the [tex]\rm cosec \theta = \frac{\sqrt{13} }{3}[/tex].
To learn more about the trigonometry refer to the link;
https://brainly.com/question/26719838