Answer:
The cutoff rate that would separate the highest 2.5% of currency A/currency B rates is 1.92.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 1.832
Standard deviation = 0.044
Top 2.5%
95% of the measures are within 2 standard deviation of the mean.
Since the normal distribution is symmetric, this 95% goes from the 50 - 95/2 = 2.5th percentile to the 50 + 95/2 = 97.5th percentile.
The 97.5th percentile is the cutoff for the highest 2.5% of currency A/currency B rates, and it is 2 standard deviations above the mean.
1.832 + 2*0.044 = 1.92
The cutoff rate that would separate the highest 2.5% of currency A/currency B rates is 1.92.
Please help ASAP! I will mark BRAINLIEST!! Please answer correctly! No guessing!
Answer:
exponential decay...................
Answer:
exponential decay
Step-by-step explanation:
If the amount is 1/2 every half hour, it is getting smaller, so it is decreasing, leaving choices a and b
We start with 100 items
100, 50 ,25, 12.5
this is not linear so it must be exponential decay
Some people take the early retirement option at age 62. According to the Social Security Administration, if you retire at age 62, your retirement benefits will be permanently reduced by 25%. If your monthly benefit, at full retirement age (67), would have been $1300 per month, and you retire at age 62, how much would you lose in total annual income over one year?
Answer:
$3900.
Step-by-step explanation:
If retirement is taken at the age of 67 years, income = $1300 per month.
% Loss, if retirement taken at the age of 62 years = 25% per month
Loss in dollars per month if retirement taken at the age of 62 years = 25% of Monthly income if retirement is taken at the age of 67 years
[tex]\Rightarrow \dfrac{25}{100} \times 1300\\\Rightarrow \dfrac{1300}{4}\\\Rightarrow 325 \$[/tex]
We know that there are 12 months in an year.
So, annual loss in total annual income over one year:
Loss in dollars per month [tex]\times[/tex] 12 :
325 [tex]\times[/tex] 12 = 3900$
Answer: $3,900
Step-by-step explanation:
What you usually make:
$1300 * 12 months = $15600
What you make with the cut:
$1300 * 0.75 = $975
* 12 months = $11700
15600-11700 = $3900
Find the area of the quadrilateral SHOW WORK
Answer:
area of parallelogram= length of base × perpendicular height
8.7×4.9
= 42.63mm²
plzz help its timed ill give brainliest
What times what gives you 1,000,000
Every hour the number of users of a new smartphone app increases by 18 percent. At 1:00 p.m., there were 12,322 users. What exponential equation shows the number of users' x hours after 1:00 p.m.?
Answer:
B
Step-by-step explanation:
Y is the starting point so it would be y=12322 and it becomes 1.18 because you add 100 to 18
The exponential equation shows the number of users x hours after 1:00 p.m will be y = 12322 (1.18)ˣ. Option A is correct.
What is the percentage?The quantity of anything is stated as though it were a fraction of a hundred. A fraction of 100 can be used to express the ratio.
The number of users of a new smartphone app increases by % = 18
a is the number of users at 1:00 p.m = 12,322
The exponential equation shows the number of users x hours after 1:00 p.m. is;
y=a(z)ˣ
Where,
a is the initial value
z is the percentage increment
y is the number of users after the given period
If the initial value of the percentage is 100.The value after the given time;
z = 100 + 18
z = 118
The z in the percentage form is 1.18.
The exponential equation shows the number of users x hours after 1:00 p.m will be y = 12322 (1.18)ˣ.
Hence, option A is correct.
To learn more about percentages, refer to:
https://brainly.com/question/13450942#SPJ1
#SPJ2
The article “Heavy Drinking and Polydrug Use Among
College Students” (J. of Drug Issues, 2008: 445–466) stated
that 51 of the 462 college students in a sample had a lifetime
abstinence from alcohol. Does this provide strong evidence
for concluding that more than 10% of the population sam-
pled had completely abstained from alcohol use? Test the
appropriate hypotheses using the P-value method. [Note:
The article used more advanced statistical methods to study
the use of various drugs among students characterized as
light, moderate, and heavy drinkers.]
Answer:
Yes it does provide strong evidence
Step-by-step explanation:
Please help ASAP! Will give BRAINLIEST! Please read the question THEN answer correctly! No guessing.
Answer:
C. (x + 8) (x + 7)
Step-by-step explanation:
To factor this trinomial, you must split the middle term (15x) into two terms that can be added to get 15x, and multiplied to get 56:
[tex]x^2 + 15x + 56[/tex]
[tex]x^2 + 7x + 8x + 56[/tex]
Group:
[tex](x^2 + 7x) (8x + 56)[/tex]
Take out the GCF (Greatest Common Factor):
x(x + 7) 8(x + 7)
(x + 8) (x + 7)
(-2h+9)(9h-2) in standard form
Answer: -18h^2 + 85h - 18
Step-by-step explanation:
(-2h+9)(9h-2)
Open brackets
(-2h x 9h) + (-2h x -2) + (9 x 9h) + (9 x -2)
-18h^2 + 4h + 81h - 18
Add like terms 4h + 81h
-18h^2 + 85h - 18
Using equivalent ratios, which statements are true about the cost per magnet? Check all that apply.
The cost of 2 magnets is $1.
The cost of 9 magnets is $3.
The cost of 10 magnets is $3.
The cost of 4 magnets is S2
The cost of 6 magnets is $2.
The cost of 3 magnets is $1.
Answer:
The true statements are:
The cost of 9 magnets is $3.
The cost of 6 magnets is $2.
The cost of 3 magnets is $1.
Step-by-step explanation:
equivalents ratios are two or more ratios that express the same relationship between the numbers involved. In order to calculate the equivalent ratios that are equal, when the numbers involved are divided, they ought to give the same result. In the answer chosen above the ratios in each case are equivalent because:
if the cost of 9 magnets is $3;
9 magnets = $3
∴ 1 magnet = 3/9 = $ 1/3 = 1:3
if the cost of 6 magnets is $2;
6 magnets = $2
1 magnet = 2/6 = $1/3 = 1:3
if the cost of 3 magnets is $1;
3 magnets = $1
∴ 1 magnet = $ 1/3 = 1:3
From the answers obtained, the equivalent ratio of 1 : 3 is the same in all case.
Two solutions of salt water contain 0.04% and 0.2% salt respectively. A lab technician wants to make 1 liter of solution which contains 0.12% salt. How much of each solution should she use?
x = amount (in L) of 0.04% solution
y = amount (in L) of 0.2% solution
x + y = 1
Each liter of p% salt solution contributes 0.01*p L of salt to the mixture. In the new solution, the lab tech wants to end up with a concentration of 0.12%, which comes out to 0.0012 * (1 L) = 0.0012 L of salt:
0.0004x + 0.002y = 0.0012
Solve for y in the first equation:
y = 1 - x
Substitute this into the other equation and solve for x, then y:
0.0004x + 0.002(1 - x) = 0.0012
0.0008 = 0.0016x
x = 0.5 L
y = 1 - 0.5 = 0.5 L
Which number line correctly shows 0.8 + 0.3?
Answer:
the second answer
Step-by-step explanation:
cause 0+0.8 is 0.8 and 0.8+0.3 is 1.1
Answer:
A
Step-by-step explanation:
You might need:
Calculator
Skill Sum
Aliaa and Zhang Li are tennis-playing robots capable of placing shots with superhuman precision
thagore
Aliaa is about to hit its next shot to the far corner of the court. It (Aliaa) knows that the distance between
itself and Zhang Li is 520 cm, and it knows that the angle between Zhang Li and the far corner is 53°
Similarly, Zhang Li knows that the angle between Aliaa and the far corner is 100°.
ythagore
What distance should Aliaa hit the ball so that it lands perfectly in the far corner of the court?
Do not round during your calculations. Round your final answer to the nearest centimeter.
pecialrig
cm
100% 150
Aliaa
TV53°
520 cm
Introductie
100
Zhang Li
Show Calculator
Do 5 problems OOOOO
Answer:
1128cm
Step-by-step explanation:
The diagram of the problem is annotated and attached.
In the diagram, we are required to find the distance between Aliaa and the far corner, b.
In Triangle ABC
[tex]\angle A+\angle B+\angle C=180^\circ\\53^\circ+100^\circ+\angle C=180^\circ\\\angle C=180^\circ-153^\circ\\\angle C=27^\circ[/tex]
Using Law of Sines
[tex]\dfrac{b}{sin B} =\dfrac{c}{sin C} \\\dfrac{b}{sin 100} =\dfrac{520}{sin 27}\\b=(520 X sin 100)\div sin 27\\b=1127.997\\b\approx 1128$ cm (to the nearest centimeter.)[/tex]
Therefore, Aliaa should hit the ball a distance of 1128cm so that it lands perfectly in the far corner of the court.
Josh types the 5 entries in the works cited page of his term paper in random order, forgetting that they should be in alphabetical order by author. What is the probability that he actually typed them in alphabetical order?
Answer:
0.83% probability that he actually typed them in alphabetical order.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
The number of ways in which n terms can be arranged is given by:
[tex]A_{n} = n![/tex]
Desired outcomes:
Only one outcome in which the five entries are in alphabetical order, so [tex]D = 1[/tex].
Total outcomes:
We want to arrange 5 entries. So
[tex]T = A_{5} = 5! = 120[/tex]
Probability:
[tex]p = \frac{D}{T} = 0.0083[/tex]
0.83% probability that he actually typed them in alphabetical order.
Math question please help
Answer:
square feet
Step-by-step explanation:
1/2 a feet is the full square is half
A hot dog stand sells hot dogs for $3 each, but each hot dog costs $1.50 to make. Each month, the hot dog stand pays $800 in rent and $1,200 in employee wages. If the hot dog stand sells 3,120 hot dogs in a month, how much will the hot dog stand earn in profit?
Answer:
$2680
Step-by-step explanation:
3.00-1.50= 1.50 profit per hotdog
1200+800=2000 expenses
1.50 (3120) = 4680
4680-2000=
2680 in profit
The sum of 5 consecutive integers is 70 what are the numbers
Answer:
12, 13, 14, 15, 16
Step-by-step explanation:
Let the five consecutive integers be (x - 2), (x - 1), x, (x + 1) & (x + 2)
According to the given condition:
[tex](x - 2) + (x - 1) + x + (x + 1) + (x + 2) = 70 \\ 5x = 70 \\ x = \frac{70}{5} \\ x = 14 \\ \implies \\ (x - 2) = (14 - 2) = 12 \\ (x - 1) = (14 - 1) = 13 \\ x = 14 \\ (x + 1) = (14 + 1) = 15 \\ (x + 2) = (14 + 2) = 16\\ [/tex]
(X-3)^3(x+3)(x+5)^2(x+8)
Answer:Simplifying
5(x + 2) = 3(x + 8)
Reorder the terms:
5(2 + x) = 3(x + 8)
(2 * 5 + x * 5) = 3(x + 8)
(10 + 5x) = 3(x + 8)
Reorder the terms:
10 + 5x = 3(8 + x)
10 + 5x = (8 * 3 + x * 3)
10 + 5x = (24 + 3x)
Solving
10 + 5x = 24 + 3x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-3x' to each side of the equation.
10 + 5x + -3x = 24 + 3x + -3x
Combine like terms: 5x + -3x = 2x
10 + 2x = 24 + 3x + -3x
Combine like terms: 3x + -3x = 0
10 + 2x = 24 + 0
10 + 2x = 24
Add '-10' to each side of the equation.
10 + -10 + 2x = 24 + -10
Combine like terms: 10 + -10 = 0
0 + 2x = 24 + -10
2x = 24 + -10
Combine like terms: 24 + -10 = 14
2x = 14
Divide each side by '2'.
x = 7
Simplifying
x = 7
Step-by-step explanation:
Evaluate the related
series of each sequence
19, 28, 37, 46, 55
Answer: You add 9 each time
Step-by-step explanation:
19 + 9 = 28 + 9 = 37 + 9 = 46 + 9 = 55
hope this helps mark me brainliest if it did
Which two whole numbers is √20 between?
Answer:4 and 5
Step-by-step explanation:
√(20) is approximately 4.5 so it is between 4 and 5
Simon is building a ramp in the shape of a triangular prism. He plans to paint each face of the ramp. What is the total surface area of the ramp?
A triangular prism. The base has a length of 8 feet and height of 4 feet. A rectangular side has a base of 8 feet and height of 5 feet. Another rectangular side has a base of 8 feet and height of 3 feet. The triangular sides have a base of 4 feet and height of 3 feet.
68 square feet
96 square feet
108 square feet
114 square feet
Answer:
108 square feet
Step-by-step explanation:
When you say "triangular prism" it means the base is a triangle and the lateral faces are all rectangles. It doesn't matter which side is lying on the ground.
So, we see this is a triangular prism with a 3-4-5 right triangle as a base, and a "height" of 8 feet.
Its total surface area is the area of the two triangle bases plus the area of the three rectangular faces:
A = 2(1/2)(4·3) +8(3 +4 +5) = 12 +96 = 108 . . . . . square feet
Answer:
its C
Step-by-step explanation:
Four people—Rob, Sonja, Jack, and Ang—enter their names into a drawing. The winner receives either a t-shirt or a mug, and which prize they receive is randomly selected.
What is the probability that either Ang wins and is given a mug, or Jack wins (and is given either prize)? Give the answer as a percent.
Answer:
3.125%Step-by-step explanation:
It is assumed the first winner is part of the second drawing as well
There are 4 people and two prizes
The probability of each person to win is 1/4
The first winner has 1/2 probability to get a mug
P(win and a mug) = 1/4*1/2 = 1/8 for AngThe second winner, if it is Jack, gets either prize
P(win and either prize) = 1/4The combined probability is:
1/8*1/4 = 1/32 = 0.03125 = 3.125%Answer:
The probability is 37.5%
Step-by-step explanation:
There are eight total outcomes, but we only need to focus on three. Ang winning a mug and Jack winning either a t-shirt or a mug, that makes three. Write that as a fraction: 3/8, and then divide. 3 divided by 8 gives us 0.375. But we need a percent so multiply that by 100, that now gives us 37.5.
So, the probability that either Ang wins and is given a mug, or Jack wins is 37.5%. If it makes you feel more confident in this, I put the same exact answer for my assessment and I got it correct.
Also, “The monks named me aOng.”
3 2/3+2.3 repeating
Answer:
6.
Step-by-step explanation:
2.3 repeating = 2 1/3
So 3 2/3 + 2 1/3
= 5 + 1
= 6.
Answer: 6
Step-by-step explanation:
[tex]3\frac{2}{3}+2.3^-[/tex]
Let's begin by converting the repeating decimal to a fraction and then to a mixed number.
Take the number:
[tex]2.3^-[/tex]
Let x (our result) be equal to that number.
[tex]x=2.3^-[/tex]
Multiply by 1 followed by as many zeros as repeating decimals; in this case 1. Therefore, 10.
[tex]10x=2.3^-*10[/tex]
This basically moves the decimal point one number to the right and since we have infinite 3's, we simply move 1 three and add another.
[tex]10x=23.3^-[/tex]
Subtract this and the original equation ([tex]x=2.3^-[/tex])
[tex]10x=23.3^-\\-x=2.3^-[/tex]
-----------------
10 - 1 = 9 and we have the same infinite repeating number 3, therefore they cancel out, leaving 23-2 = 21
[tex]9x=21[/tex]
Divide by 9
[tex]x=\frac{21}{9}[/tex]
Simplify by 3.
21/3=7
9/3=3
[tex]x=\frac{7}{3}[/tex]
Now, convert to a mixed number. To do this, divide.
7/3=2
6
-------
1
The 2 is the whole number, 1 is the numerator and 3 the denominator.
[tex]2\frac{1}{3}[/tex]
------------------------------------------------------------------------------------------------
Now we can solve this;
[tex]3\frac{2}{3}+2\frac{1}{3}[/tex]
Add the whole numbers and the fractions separately.
[tex](3+2)+(\frac{2}{3}+\frac{1}{3})[/tex]
[tex]5\frac{3}{3}[/tex]
3 and 3 can be simplied.
3/3=1
3/3=1
[tex]5\frac{1}{1}[/tex]
The result is 1, add this to the 5.
[tex]5+1=6[/tex]
A bag contains 5 quarters 2 dimes and 4 pennies what is probability Of picking a dime
Answer: 5/11
Step-by-step explanation:
The probability of picking a dime is [tex]\frac{2}{11}[/tex].
What is probability?The measure of happening or non-happening of the outcomes of a random experiment is called probability.
Probability formulaP(E) = Number of favorable outcomes/ total number of outcomes
Where,
P(E) is the probability of an event.
According to the given question.
Total number of quarters coins = 5
Total number of dimes coins = 2
Total number of pennies coins = 4
Therefore,
The total number of coins in a bag = 5 + 4 + 2 = 11
⇒ Total number of outcomes = 11
So, the probability of picking a dime coin is given by
P(E) = total number of dime coins/ total number of coins in a bag
⇒[tex]P(E) = \frac{2}{11}[/tex]
Hence, the probability of picking a dime is [tex]\frac{2}{11}[/tex].
Find out more information about probability here:
https://brainly.com/question/11234923
#SPJ3
Solve for e.
9e + 4 = -5e + 14 + 13e
Answer:
e = 10
Step-by-step explanation:
In this problem we are told to solve for e. This means we need to isolate the variable e, leaving it completely by itself on one side of the equation.
9e + 4 = -5e + 14 + 13e
We can do this multiple ways, but I will show you how I would do it.
First I would subtract 4 from both sides.
9e + 4 = -5e + 14 + 13e
9e = -5e + 14 + 13e - 4
We can simplify the right side of the equation down by subtracting four from 14.
9e = -5e + 10 + 13e
Next, let's simplify our algebraic expressions. We can subtract 5e from 13e (or add -5e to 13e whatever tickles your fancy)
-5e + 13e = 8e
9e = 8e + 10
Now we subtract algebraic expression 8e from both sides
9e - 8e = 10
All of our expressions with the variable e are now on one side but we aren't done yet. Compute 9e - 8e.
9e - 8e = 10
1e = 10
or
e = 10
We have isolated e! Our final answer is e = 10
Given tan A = − 12/35 and that angle A is in Quadrant IV, find the exact value of sinA in simplest radical form using a rational denominator.
Answer:
Sin A= − 12/37
Step-by-step explanation:
tan A = − 12/35
Reason for minus sign is because of it's in the fourth quadrant.
12 = opposite
35 = adjacent
? = Hypotenuse
12² + 35² = hypotenuse ²
1369 = hypotenuse ²
hypotenuse = √1369
hypotenuse= 37
Sin = -12/37
Reason for minus sign is because of it's in the fourth quadrant.
Mikayla worked the same number of hours each day for 4 days during one week. She worked less than 20 hours total for that week. Which graph represents the number of hours per day she could have worked? (Assume the number of hours is greater than 0.)
A number line going from 0 to 10. An open circle is at 5. Everything to the left of the circle is shaded.
A number line going from 0 to 10. An open circle is at 5. Everything to the right of the circle is shaded.
A number line going from 11 to 21. An open circle is at 16. Everything to the left of the circle is shaded.
A number line going from 11 to 21. An open circle is at 16. Everything to the right of the circle is shaded.
Answer:
it is d
Step-by-step explanation:
idk just brainlyest
Answer:
D...............
Step-by-step explanation:
The equation of a circle is (x−2) 2 + (y−6) 2 =64 . What is the center and radius of the circle?
Answer:
The center is (2,6) and the radius is 8
Step-by-step explanation:
The answer is center: (2,6); radius: 8
What’s the correct answer for this?
Answer:
D.
Step-by-step explanation:
A horizontal translation will move the first triangle a little to the right and then after the vertical translation the triangle will move downwards and will fit into the other triangle thus we will know that the two triangles are congruent.
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below). = help (formulas) Solve your equation for Y(s). Y(s)=L{y(t)}=
Answer:
The solution
[tex]Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}[/tex]
Step-by-step explanation:
Explanation:-
Consider the initial value problem y′+3 y=9 t,y(0)=7
Step(i):-
Given differential problem
y′+3 y=9 t
Take the Laplace transform of both sides of the differential equation
L( y′+3 y) = L(9 t)
Using Formula Transform of derivatives
L(y¹(t)) = s y⁻(s)-y(0)
By using Laplace transform formula
[tex]L(t) = \frac{1}{S^{2} }[/tex]
Step(ii):-
Given
L( y′(t)) + 3 L (y(t)) = 9 L( t)
[tex]s y^{-} (s) - y(0) + 3y^{-}(s) = \frac{9}{s^{2} }[/tex]
[tex]s y^{-} (s) - 7 + 3y^{-}(s) = \frac{9}{s^{2} }[/tex]
Taking common y⁻(s) and simplification, we get
[tex]( s + 3)y^{-}(s) = \frac{9}{s^{2} }+7[/tex]
[tex]y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}[/tex]
Step(iii):-
By using partial fractions , we get
[tex]\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}[/tex]
[tex]\frac{9}{s^{2} (s+3} = \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}[/tex]
On simplification we get
9 = A s(s+3) +B(s+3) +C(s²) ...(i)
Put s =0 in equation(i)
9 = B(0+3)
B = 9/3 = 3
Put s = -3 in equation(i)
9 = C(-3)²
C = 1
Given Equation 9 = A s(s+3) +B(s+3) +C(s²) ...(i)
Comparing 'S²' coefficient on both sides, we get
9 = A s²+3 A s +B(s)+3 B +C(s²)
0 = A + C
put C=1 , becomes A = -1
[tex]\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}[/tex]
Step(iv):-
[tex]y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}[/tex]
[tex]y^{-}(s) =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}[/tex]
Applying inverse Laplace transform on both sides
[tex]L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})[/tex]
By using inverse Laplace transform
[tex]L^{-1} (\frac{1}{s} ) =1[/tex]
[tex]L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}[/tex]
[tex]L^{-1} (\frac{1}{s+a} ) =e^{-at}[/tex]
Final answer:-
Now the solution , we get
[tex]Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}[/tex]