Answer:
24
Step-by-step explanation:
18 times 5 is 90 so that means that the given numbers have to add up to 90 (including x)
so,
6+10+20+30=66
90-66=24
I hope this helps!
Answer:
[tex]x = 24[/tex]
Step-by-step explanation:
[tex]6 + 10 + x + 20 + 30 = 18[/tex]
There are 5 numbers that we must add to average out to get 18 so let set this equation up
[tex] \frac{6 + 10 + x + 20 + 30}{5} = 18[/tex]
[tex]6 + 10 + x + 20 + 30 = 90[/tex]
[tex]x = 24[/tex]
Use formula autocomplete to enter a sum function in cell B7 to calculate the total of cells in B2:B6
Excel enables the users to perform mathematics basic and advanced function with just one formula.
The formula for sum of entire row or column can be done with just entering a single formula and results are shown in seconds.
The formula for sum of few column cells is,
=SUM(B2:B6)
The spreadsheet allows the user to enter various formula and results are displayed withing seconds.
There are formulas for basic math functions and there are also formulas for advance mathematics calculations. For addition of values of many cells sum formula is used and range is assigned for reference.
The formula adds all the values of selected cells and displays the results in different cell.
Learn more at https://brainly.com/question/24365931
integration of 3^x (1-3^(x+1)^9)dx
Step-by-step explanation:
the answer is in picture
The sum of two positive integers is 19 and the product is 48
Answer:
16 and 3
Step-by-step explanation:
Let x and y represent the positive integers. We know that
[tex]x + y = 19[/tex]
[tex]xy = 48[/tex]
Isolate the top equation for the x variable.
[tex]x = 19 - y[/tex]
Substitute into the second equation.
[tex](19 - y)y = 48[/tex]
[tex]19y - {y}^{2} = 48[/tex]
[tex] - {y}^{2} + 19y = 48[/tex]
[tex] - {y}^{2} + 19y - 48[/tex]
[tex](y - 16)(y - 3)[/tex]
So our values are
16 and 3.
Mark bought seeds, 5 packets of carrot seeds, 2 packets of
bean seeds, and 3 packets of pea seeds. If he randomly
selects 4 packets to plant, what is the probability that he
selects 2 packets of carrots, 1 packet of beans, and 1 packet
of peas?
Answer:
4/10=2/5 therefore the answer to 2/5
A slide is also called a translation.
ird
True
O False
Answer:
trueeeee
Step-by-step explanation:
Slide (translation) -- a transformation that slides a figure a given distance in a given direction. A slide is also called a translation. Flip (reflection) -- a transformation creating a mirror image of a figure on the opposite side of a line. A flip is also called a reflecti
[tex]\int\limits^a_b {(1-x^{2} )^{3/2} } \, dx[/tex]
First integrate the indefinite integral,
[tex]\int(1-x^2)^{3/2}dx[/tex]
Let [tex]x=\sin(u)[/tex] which will make [tex]dx=\cos(u)du[/tex].
Then
[tex](1-x^2)^{3/2}=(1-\sin^2(u))^{3/2}=\cos^3(u)[/tex] which makes [tex]u=\arcsin(x)[/tex] and our integral is reshaped,
[tex]\int\cos^4(u)du[/tex]
Use reduction formula,
[tex]\int\cos^m(u)du=\frac{1}{m}\sin(u)\cos^{m-1}(u)+\frac{m-1}{m}\int\cos^{m-2}(u)du[/tex]
to get,
[tex]\int\cos^4(u)du=\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{4}\int\cos^2(u)du[/tex]
Notice that,
[tex]\cos^2(u)=\frac{1}{2}(\cos(2u)+1)[/tex]
Then integrate the obtained sum,
[tex]\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int\cos(2u)du+\frac{3}{8}\int1du[/tex]
Now introduce [tex]s=2u\implies ds=2du[/tex] and substitute and integrate to get,
[tex]\frac{3\sin(s)}{16}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int1du[/tex]
[tex]\frac{3\sin(s)}{16}+\frac{3u}{4}+\frac{1}{4}\sin(u)\cos^3(u)+C[/tex]
Substitute 2u back for s,
[tex]\frac{3u}{8}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\sin(u)\cos(u)+C[/tex]
Substitute [tex]\sin^{-1}[/tex] for u and simplify with [tex]\cos(\arcsin(x))=\sqrt{1-x^2}[/tex] to get the result,
[tex]\boxed{\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C}[/tex]
Let [tex]F(x)=\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C[/tex]
Apply definite integral evaluation from b to a, [tex]F(x)\Big|_b^a[/tex],
[tex]F(x)\Big|_b^a=F(a)-F(b)=\boxed{\frac{1}{8}(a\sqrt{1-a^2}(5-2a^2)+3\arcsin(a))-\frac{1}{8}(b\sqrt{1-b^2}(5-2b^2)+3\arcsin(b))}[/tex]
Hope this helps :)
Answer:[tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}[/tex]General Formulas and Concepts:
Pre-Calculus
Trigonometric IdentitiesCalculus
Differentiation
DerivativesDerivative NotationIntegration
IntegralsDefinite/Indefinite IntegralsIntegration Constant CIntegration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
U-Substitution
Trigonometric SubstitutionReduction Formula: [tex]\displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution (trigonometric substitution).
Set u: [tex]\displaystyle x = sin(u)[/tex][u] Differentiate [Trigonometric Differentiation]: [tex]\displaystyle dx = cos(u) \ du[/tex]Rewrite u: [tex]\displaystyle u = arcsin(x)[/tex]Step 3: Integrate Pt. 2
[Integral] Trigonometric Substitution: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du[/tex][Integrand] Rewrite: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du[/tex][Integrand] Simplify: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du[/tex][Integral] Reduction Formula: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b[/tex][Integral] Simplify: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du[/tex][Integral] Reduction Formula: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex][Integral] Simplify: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex][Integral] Reverse Power Rule: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex]Simplify: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b[/tex]Back-Substitute: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b[/tex]Simplify: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b[/tex]Rewrite: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b[/tex]Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
Show that Cov(X, Y 1 Z) 5 Cov(X, Y) 1 Cov(X, Z). b. Let X1 and X2 be quantitative and verbal scores on one aptitude exam, and let Y1 and Y2 be corresponding scores on another exam. If Cov(X1, Y1) 5 5, Cov(X1, Y2) 5 1, Cov(X2, Y1) 5 2, and Cov(X2, Y2) 5 8, what is the covariance between the two total scores X1 1 X2 and Y1 1 Y2
Answer:
x11and x2. arevvvscores
On Monday, Main Street station sells 40 tickets.
There are four types of ticket; infant, child, adult and senior.
The bar chart shows the number of infant, child and adult tickets sold.
How many Senior tickets sold ?
Find how many adult tickets were sold than child tickets ?
BOTH QUESTIONS ANSWER NEEDED PLES HELP
Answer:
0 senior tickets were sold
5 more adult tickets were sold than chil tickets
Step-by-step explanation:
You need to see the frequency of each bar
Answer by Gauthmath
Find the lengths of AD, EF, and BC in the trapezoid below.
Answer:
Step-by-step explanation:
Segment EF is mid-segment of ABCD ⇒ ( 2x - 4 ) + ( x - 5 ) = 2x
x - 9 = 0
x = 9
AD = 4
EF = 9
BC = 14
The length of segments AD, EF, and BC in the trapezoid are 4, 9 and 14 respectively
What is Coordinate Geometry?A coordinate geometry is a branch of geometry where the position of the points on the plane is defined with the help of an ordered pair of numbers also known as coordinates.
We have to find the lengths of AD, EF, and BC in the trapezoid
Segment EF is mid-segment of ABCD
So ( 2x - 4 ) + ( x - 5 ) = 2x
Now let us solve for x
2x-4+x-5=2x
Combine the like terms
x-9=0
x=9
So AD =x-5
=9-5= 4
EF = 9
BC = 2x-4
=18-4
=14
Hence, the length of segments AD, EF, and BC in the trapezoid are 4, 9 and 14 respectively
To learn more on Coordinate Geometry click:
brainly.com/question/27326241
#SPJ2
Li wants to buy as many bags of mulch as possible with his
$305, and he would like them to be delivered to his house. The
cost is $7.50 per bag and there is a $35.75 delivery charge. The
mulch is only sold in full bags. How many bags can Li buy?
Answer:
35 full bags
Step-by-step explanation:
$305-$35.75=$269.25
$269.25 divided by $7.50=35.9 bags (round off to lowest for number of full bags)
What is the reference angle for 293°?
Simplify, write without exponents.
[tex]2*4^{2} *(128\frac{1}{4})[/tex]
[tex]_\sqrt[_]{_}[/tex]
a.) 8
b.) 20
c.) 2
d.) 64
e.) 4
f.) 16
it is helpful to you
What is the conjugate of
square root 8 - square root 9
Answer:
[tex]\sqrt{8}+\sqrt{9}[/tex]
Step-by-step explanation:
By definition, the conjugate of a binomial is when you switch the operator (either + or -) in between the terms. For example, the conjugate of [tex]a+b\sqrt{c}=a-b\sqrt{c}[/tex] as we are just changing the addition symbol (+) to a subtraction symbol (-).
Therefore, the conjugate of [tex]\sqrt{8}-\sqrt{9}[/tex] occurs when we change the subtraction symbol to an additional symbol, hence the answer is [tex]\boxed{\sqrt{8}+\sqrt{9}}[/tex]
The width of a rectangle is
3
inches less than the length. The perimeter is
54
inches. Find the length and the width.
please help asap!!!
Answer:
let length be x
b = x - 3
perimeter = 2( l + b)
54 = 2(x+x-3)
27 = 2x - 3
30 = 2x
x = 15
l = 15
b = 15 - 3
b = 12
Please help im begging you
Find the domain of the function expressed by the formula:
y = 1/x - 7
Answer:
the domain is ALL reals numbers except ZERO
- ∞ < x < 0 ∪ 0 < x < ∞
Step-by-step explanation:
Answer:
(-∞,0) ∪ (0,∞), {x|x≠0}
Step-by-step explanation:
I think this is it. Im not completely sure though
Which statements describe the data in the bar graph? Check all that apply.
People prefer rock music to any other type of music.
People prefer pop music to any other type of music.
The least favorite genre of music is blues.
The least frequent favorite genre is country.
Four times as many people prefer pop music to blues.
Answer:
People prefer pop music to any other type of music.
The least favorite genre of music is blues.
Four times as many people prefer pop music to blues.
Answer:
People prefer pop music to any other type of music.
The least favorite genre of music is blues.
Four times as many people prefer pop music to blues.
Answer:
B) People prefer pop music to any other type of music.
C) The least favorite genre of music is blues.
E) Four times as many people prefer pop music to blues.
Step-by-step explanation:
edge 2023
Solve the equation Axb by using the LU factorization given for A. Also solve Axb by ordinary row reduction. A , b Let Lyb and Uxy. Solve for x and y. nothing nothing Row reduce the augmented matrix and use it to find x. The reduced echelon form of is nothing, yielding x nothing.
Answer: Hello your question is poorly written attached below is the complete question
answer:
[tex]y = \left[\begin{array}{ccc}-4\\-11\\5\end{array}\right][/tex]
[tex]x = \left[\begin{array}{ccc}16\\12\\-40\end{array}\right][/tex]
Step-by-step explanation:
[tex]y = \left[\begin{array}{ccc}-4\\-11\\5\end{array}\right][/tex]
[tex]x = \left[\begin{array}{ccc}16\\12\\-40\end{array}\right][/tex]
attached below is the detailed solution using LU factorization
Help me solve please
(3a^4b/2b^3)^3
cube all the terms:
3^3 = 27
b^3
(a^4)^3 = a^(4*3) = a^12
2^3 = 8
(b^3)^3 = b^3*3 = b^9
27a^12b^3 / 8b^9
Divide the b terms to get the final answer:
27a^12 / 8b^6
b Draw a picture to show 3:5= 6:10. Explain how your picture show equivalerit ratios.
Answer:
3:5 = 6:10
3x2 : 5x2
= 6:10
Answer:
Step-by-step explanation:
Draw 3:5 balls shaded, and draw 6:10 balls shaded. Then, divide the 10 balls into two, with three shaded balls and 5 total balls on one side.
PLEASE HELP
4/9w = -8
Show your work in details if you can, I have a hard time understanding this.
[tex] \begin{cases}\large\bf{\blue{ \implies}} \tt \: \frac{4}{9} \sf \: w \: = \: - 8 \\ \\ \large\bf{\blue{ \implies}} \tt \: \frac{4 \sf \: w}{9} \: = \: 8 \\ \\ \large\bf{\blue{ \implies}} \tt 4 \sf \: w \: = \: 9 \: \times \: 8 \\ \\ \large\bf{\blue{ \implies}} \tt 4 \sf \: w \: = \: 72 \\ \\ \large\bf{\blue{ \implies}} \tt \sf \: w \: = \: \cancel\frac{72}{4} \\ \\ \large\bf{\blue{ \implies}} \tt \sf \: w \: = \: 18 \end{cases}[/tex]
With one alarm clock, we have a 0.875 probability of being awakened. What is the probability of being awakened if we are using two alarm clocks?(
The probability will be the same for both clocks.
What is probability?Probability is defined as the ratio of the number of favourable outcomes to the total number of outcomes in other words the probability is the number that shows the happening of the event.
With one alarm clock, we have a 0.875 probability of being awakened.
The probability for the two clocks will be the same because both the clocks will ring at the same time.
To know more about probability follow
https://brainly.com/question/24756209
#SPJ2
The difference of two numbers is 9. The sum of the two numbers is 15. What are the two numbers?
Let numbers be a and b
a+b=15--(1)a-b=9---(2)Adding both
[tex]\\ \qquad\quad\sf\longmapsto 2a=24[/tex]
[tex]\\ \qquad\quad\sf\longmapsto a=\dfrac{24}{2}[/tex]
[tex]\\ \qquad\quad\sf\longmapsto a=12[/tex]
Put value in eq(2)[tex]\\ \qquad\quad\sf\longmapsto 12-b=9[/tex]
[tex]\\ \qquad\quad\sf\longmapsto b=12-9[/tex]
[tex]\\ \qquad\quad\sf\longmapsto b=3[/tex]
Part of the population of 6,750 elk at a wildlife preserve is infected with a parasite. A random sample of 50 elk shows that 3 of them are infected. How many elk are likely to be infected?
Answer:
405
Step-by-step explanation:
We can use a ratio to solve
3 infected x infected
------------------ = ----------------
50 sampled 6750 population
Using cross products
3*6750 = 50x
Divide each side by 50
3*6750/50 = x
405
Answer:
Around 405 elk should be infected with the parasite.
Step-by-step explanation:
6,750/50=135
135 * 3 = 405
hope this helps :)
According to government data, the probability than an adult never had the flu is 19%. You randomly select 70 adults and ask if he or she ever had the flu. Decide whether you can use the normal distribution to approximate the binomial distribution, If so, find the mean and standard deviation, If not, explain why. Round to the nearest hundredth when necessary.
Answer:
Since [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal distribution can be used to approximate the binomial distribution.
The mean is 13.3 and the standard deviation is 3.28.
Step-by-step explanation:
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex], if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex].
The probability than an adult never had the flu is 19%.
This means that [tex]p = 0.19[/tex]
You randomly select 70 adults and ask if he or she ever had the flu.
This means that [tex]n = 70[/tex]
Decide whether you can use the normal distribution to approximate the binomial distribution
[tex]np = 70*0.19 = 13.3 \geq 10[/tex]
[tex]n(1-p) = 70*0.81 = 56.7 \geq 10[/tex]
Since [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal distribution can be used to approximate the binomial distribution.
Mean:
[tex]\mu = E(X) = np = 70*0.19 = 13.3[/tex]
Standard deviation:
[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{70*0.19*0.81} = 3.28[/tex]
The mean is 13.3 and the standard deviation is 3.28.
3,
If an angle measures 29°, find its supplement.
7
4
Kelsey is drawing a triangle with angle measures of 128° and 10°. What is the measure of
the missing angle?
A
1280
10°
В
not to scale
7.6.2 DOK
9514 1404 393
Answer:
3. 151°
4. 42°
Step-by-step explanation:
3. The measure of the supplement is found by subtracting the angle from 180°.
supplement of 29° = 180° -29° = 151°
__
4. The total of angles in a triangle is 180°, so the third one can be found by subtracting the other two from 180°.
third angle = 180° -128° -10° = 42°
Please help me on this
Answer:
gshwhsye
Step-by-step explanation:
gshshhshshshjsjsjsj
Which choice correctly shows the solution(s) of the equation x2 = 1442
A)
x= √144
B)
x=V12
X=-
-V144
D)
x = 1V144
Answer:
Step-by-step explanation:
If the 2s are exponents, you need to indicate this with "^":
x^2 = 144^2 means x² = 144²
x = ±√144² = ±144
Answer:
Step-by-step explanation:
f the 2s are exponents, you need to indicate this with "^":
x^2 = 144^2 means x² = 144²
x = ±√144² = ±144
The table below shows the educational attainment of a country's population, aged 25 and over. Use the data in the table, expressed in millions to find the probability that a randomly selected citizenaged 25 or over , was a man with 4 years of college (or more)
Answer:
The answer is "[tex]\bold{\frac{22}{171}}[/tex]"
Step-by-step explanation:
There are 22 million males that have completed four years of undergraduate, according to the data below: (or more). This is predicated on a population of 171 million.
The chances we're searching about [tex]\frac{(22\ million)}{(171\ million)} = \frac{22}{171}[/tex]
however
This proportion could be further reduced because 22 and 171 have no common features (other than 1).
x(x+3)(x+3)=0
solve the equation only one answer
Answer:
0
Step-by-step explanation:
it says the answer is zero
Shortern this expression pls
Answer:
[tex]c =\frac{8}{3}[/tex]
Step-by-step explanation:
Given
[tex]c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7}} + \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}}[/tex]
Required
Shorten
We have:
[tex]c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7}} + \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}}[/tex]
Rationalize
[tex]c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7} * \frac{4 + \sqrt 7}{4 + \sqrt 7}} + \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}*\frac{4 - \sqrt 7}{4 - \sqrt 7}}[/tex]
Expand
[tex]c = \sqrt{\frac{(4 + \sqrt 7)^2}{4^2 - (\sqrt 7)^2}} + \sqrt{\frac{(4 - \sqrt 7)^2}{4^2 - (\sqrt 7)^2}[/tex]
[tex]c = \sqrt{\frac{(4 + \sqrt 7)^2}{16 - 7}} + \sqrt{\frac{(4 - \sqrt 7)^2}{16 - 7}[/tex]
[tex]c = \sqrt{\frac{(4 + \sqrt 7)^2}{9}} + \sqrt{\frac{(4 - \sqrt 7)^2}{9}[/tex]
Take positive square roots
[tex]c =\frac{4 + \sqrt 7}{3} + \frac{4 - \sqrt 7}{3}[/tex]
Take LCM
[tex]c =\frac{4 + \sqrt 7 + 4 - \sqrt 7}{3}[/tex]
Collect like terms
[tex]c =\frac{4 + 4+ \sqrt 7 - \sqrt 7}{3}[/tex]
[tex]c =\frac{8}{3}[/tex]