The most distance Talia can go each day while staying within her budget is 320 miles.
In this case, our goal is to write an inequality before moving on to solve it.
We begin with the daily rental fee and the cost per mile.
This is stated as $30 per day and $0.20 per mile in the question.
She is required to spend a total of $94.
This means that the total cost of the rental automobile and the cost per mile must be $94 or less.
Let m be the maximum number of miles she can travel.
Hence, we may write the inequality as follows: 30 + 0.2 m 94.
This inequality is what we can now solve;
0.2m ≤ 94 - 30
0.2m ≤ 64
m ≤ 64/0.2
320 miles = m
The most distance Talia can go each day while staying within her budget is 320 miles.
To know more about inequality, click the below link
https://brainly.com/question/30231190
#SPJ4
What is the Area and Volume of this prism?
The area of the prism is given by the sum of the areas of all the parts that compose the prism.
The parts that compose the prism are given as follows:
Rectangular base of dimensions 3m and 5m.Rectangle of dimensions 5m and 10 m.Two right triangles of sides 3m and 10 m.Hence the area of the prism is given as follows:
A = 3 x 5 + 5 x 10 + 2 x 1/2 x 3 x 10
A = 95 m².
The volume is given by the multiplication of the base area by the height, hence:
Base area = 5 x 3 = 15 m².Height of 10 m.Thus:
V = 15 x 10 = 150 m³.
More can be learned about the area and the volume of a prism at https://brainly.com/question/463363
#SPJ1
Please please please help me!!!!!
The volume of the sphere which is equivalent to the lung capacity is approximately =2,571 cm³
How to calculate the volume of the sphere?To calculate the volume of a sphere the formula used = V = 4/3 πr³
Radius = 8.5 cm
First cube the radius = 8.5³ = 614.125
The, multiply r³ by π = r³×π = 614.125× 3.14= 1928.3525
Take this answer and multiply it by 4 = 4×1928.3525= 7713.41
Last, divide this answer by 3 = 7713.41/3 = 2571.136666
Therefore the volume of the balloon = 2,571 cm³(approximately)
Learn more about volume here:
https://brainly.com/question/27710307
#SPJ1
The number of bacteria in a culture is growing at a rate of 3,000e^(2t/5) per unit of time t. At t=0, the number of bacteria present was 7,500. Find the number present at t=5.a. 1.200 e^2b. 3,000 e^2c. 7,500 e^2d. 7,500 e^5e. 15.000/7 e^7
The number of bacteria present with the given growth rate at t=5 is [tex]N(5) = 7,500 * e^2[/tex] and option x is the correct answer.
What is exponential growth?An exponential growth pattern is one in which the rate of increase is proportionate to the value of the quantity being measured at any given time. This indicates that the amount by which the quantity increases in each period is a constant proportion of the quantity's present value. Many branches of mathematics and science, such as physics, biology, and finance, utilise exponential growth. Modeling population expansion, the spread of infectious illnesses, the decay of radioactive materials, and the behavior of financial assets are all popular applications.
Given that, the number of bacteria present was 7,500.
The exponential growth is given by the formula:
[tex]N(t) = N(0) * e^{(kt)}[/tex]
Substituting the values N(0) = 7,500 and the growth rate is k = 2/5 we have:
[tex]N(5) = 7,500 * e^{(2/5 * 5)}\\N(5) = 7,500 * e^2[/tex]
Hence, the number of bacteria present at t=5 is [tex]N(5) = 7,500 * e^2[/tex] and option x is the correct answer.
Learn more about exponential growth here:
https://brainly.com/question/1596693
#SPJ1
What are all of the solutions to the equation (cos θ)(cos θ) + 1 = (sin θ)(sin θ)?
Answer: Starting with the given equation:
(cos θ)(cos θ) + 1 = (sin θ)(sin θ)
We can use the identity cos² θ + sin² θ = 1 to rewrite the right-hand side:
(cos θ)(cos θ) + 1 = 1 - (cos θ)(cos θ)
Combining like terms, we get:
2(cos θ)(cos θ) = 0
Dividing both sides by 2, we get:
(cos θ)(cos θ) = 0
Taking the square root of both sides, we get:
cos θ = 0
This equation is true for θ = π/2 + kπ, where k is any integer. So the solutions to the equation are:
θ = π/2 + kπ, where k is any integer.
Enjoy!
Step-by-step explanation:
on saturday a local hamburger shop sold a combined total of 416 hamburgers and cheeseburgers.the number of cheeseburgers sold was three times the number of hamburgers sold. how many hamburgers were sold?
Answer: Let x be the number of hamburgers sold.
Then, the number of cheeseburgers sold is 3x.
The total number of burgers sold is x + 3x = 4x.
Given that the total number of burgers sold is 416, we have:
4x = 416
x = 416/4
x = 104
Therefore, 104 hamburgers were sold.
Step-by-step explanation:
For both f(x)= √x and f(x)=1/x, sketch the graph of the parent function, apply the transformations indicated, and state the domain and range. Note: You can sketch the graphs by hand or in digital form.
a) y= f(x+2)-1
b) y= -2f(x)+4
c) y= -2f(-(x-3))+1
Answer: a) Parent function:
f(x) = √x
Domain: x ≥ 0
Range: y ≥ 0
Applying transformations:
shift 2 units left: f(x+2)
shift 1 unit down: f(x+2)-1
Final equation and graph:
y = √(x+2) - 1
Domain: x ≥ -2
Range: y ≥ -1
b) Parent function:
f(x) = 1/x
Domain: x ≠ 0
Range: y ≠ 0
Applying transformations:
multiply by -2: -2f(x)
shift 4 units up: -2f(x)+4
Final equation and graph:
y = -2/x + 4
Domain: x ≠ 0
Range: y ≠ 4
c) Parent function:
f(x) = 1/x
Domain: x ≠ 0
Range: y ≠ 0
Applying transformations:
shift 3 units right: f(-(x-3))
multiply by -2: -2f(-(x-3))
shift 1 unit up: -2f(-(x-3))+1
Final equation and graph:
y = -2/(3-x) + 1
Domain: x ≠ 3
Range: y ≠ 1
Step-by-step explanation:
In 915. 23, the digit 3 is in the
place.
Answer:
hundreth
Step-by-step explanation:
the 2 is in the tenth and the 3 is in the hundreth
The lowest temperature ever recorded on earth was -89.2°C recorded in Antarctica in 1983.How many degrees Fahrenheit was that,to the nearest degree
The lowest temperature ever recorded on earth of -89.2°C is approximately equal to -97°F when rounded to the nearest degree Fahrenheit.
To convert the temperature of -89.2°C to Fahrenheit, we can use the formula:
[tex]F = (C * 1.8) + 32[/tex]
Substituting:
°F = (-89.2 × 1.8) + 32
°F = -128.56 + 32
°F = -97
Therefore, the lowest temperature ever recorded on earth of -89.2°C is approximately equal to -97°F when rounded to the nearest degree Fahrenheit. It's important to note that this is just an approximation as we rounded the result to the nearest degree. However, it gives us a good idea of how extremely cold the temperature was. It's worth mentioning that at such low temperatures, it's important to take appropriate precautions to avoid any adverse health effects.
Learn more about degrees here:
https://brainly.com/question/364572
#SPJ1
determine the general solutions of the equation sinx=cos2x-1
[tex]x=30^o,270^o \ [0^0\leq x\leq 360^0][/tex]
Explanation:
We know,
[tex]cos2x=cos^2 \ x-sin^2 \ x=1-2sin^2 \ x[/tex]
So, let's solve the equation now,
[tex]sin \ x=cos2x=1-2 \ sin^2 \ x[/tex]
[tex]\longrightarrow \ 2 \sin^2 \ x+sin \ x-1=0[/tex]
[tex]\longrightarrow \ 2 \sin^2 \ x+2\sin x-sin \ x-1=0[/tex]
[tex]\longrightarrow \ 2\sin \ x(sin\ x+1)-1(sin \ x+1)=0[/tex]
[tex]\longrightarrow \ (2\sin \ x-1)(sin \ x+1)=0[/tex]
Now,
[tex]2\sin \ x-1=0[/tex]
[tex]\longrightarrow \ sin \ x=\dfrac{1}{2}[/tex]
[tex]\longrightarrow x=sin^{-1}(\dfrac{1}{2})[/tex]
[tex]\longrightarrow x=30^o[/tex]
And, [tex]sin \ x+1=0[/tex]
[tex]\longrightarrow x=sin^{-1}(-1)=270^o[/tex]
As we just need the general solutions, we should take only this two values as the general solutions.
Answer:
[tex]30^0,270^0[/tex]
That's it!
what type of data is a questionnaire
Answer:
A questionnaire can collect quantitative, qualitive or both types of data.
Step-by-step explanation:
Answer:
Categorical data
Step-by-step explanation:
Data that relates to certain categories e.g males, females or any types of car
Y=5x+17 Y=-2x+4 solve with elimination
Answer:
x = -13/7
y = 54/7
Step-by-step explanation:
Y = 5x + 17 Y = -2x + 4
5x + 17 = -2x + 4
7x + 17 = 4
7x = -13
x = -13/7
Not put -13/7 in for x and solve for y
y = 5(-13/7) + 17
y = 54/7
So, the answer is x = -13/7 and y = 54/7
Answer: x = -13 / 7, y = 54/7
Step-by-step explanation:
To eliminate a variable, we can substitute y for 5x + 17
We get 5x + 17 = -2x + 4
7x = -13
x = -13 / 7
Substituting x into the 2nd equation y = 5 * -13 / 7 + 17
y = 119/7 - 65/7
y = 54/7
mrs bosoga recieved a share of 15 boxes of nestle cremora from a stokvel during december 2022
The journal entry in the stokvel's ledger to record the distribution of the Nestle Cremora boxes to Mrs. Bosoga would be as follows:
The Journal EntryDate Account Debit Credit
Dec 2022 Nestle Cremora ZAR 3,750
Dec 2022 Mrs. Bosoga ZAR 3,750
The Nestle Cremora account is debited with ZAR 3,750, representing the cost of the 15 boxes of Nestle Cremora (15 boxes x ZAR 250 per box). The Mrs. Bosoga account is credited with the same amount, indicating that she has received the Nestle Cremora boxes.
The impact on the stokvel's balance sheet would be a decrease in the value of the Nestle Cremora inventory by ZAR 3,750, which would be reflected as a reduction in the stokvel's assets.
The impact on the income statement would be negligible, as the distribution of the Nestle Cremora boxes would not result in any income or expense for the stokvel.
Read more about journal entry here:
https://brainly.com/question/28390337
#SPJ1
Mrs. Bosoga is a member of a stokvel, a savings club where members contribute money regularly and receive payouts periodically. During December 2022, Mrs. Bosoga received a share of 15 boxes of Nestle Cremora from the stokvel. The market value of each box of Nestle Cremora at the time was ZAR 250. The stokvel keeps track of its transactions using a ledger. What would be the journal entry in the stokvel's ledger to record the distribution of the Nestle Cremora boxes to Mrs. Bosoga? Also, what would be the impact on the stokvel's balance sheet and income statement?
use the unique factorization theorem to write the following integers in standard factored form. (a) 504 (b) 819 (c) 5,445
Using the Unique factorization theorem for the following integers the standard factored form of 504 is 2³ x 3²x 7 , for 819 is 3² ×7×13 and for 5,445 is 3²×5×7².
The Unique Factorization Theorem states that any positive integer can be written as a product of prime numbers in a unique way. To write each of the integers in standard factored form.
Using this theorem, we can factorize any positive integer into its prime factors. Here are the steps to factorize a number:
Find the smallest prime factor of the number. Divide the number by this prime factor, and repeat step 1 with the result. Continue this process until the result is 1.The prime factors obtained in this process can then be multiplied together to obtain the standard factored form of the original number . Therefore,
)504 = 2³ x 3² x 7)819 = 3² ×7×13)5,445 =3²×5×7²To learn more about 'Unique Factorization Theorem':
https://brainly.com/question/30702016
#SPJ11
I need help on 10 and 11
Answer:
x = +8
x = -8
That's the thing that I only know. Im a seventh grader(turned 13) so I wouldn't know this fully. Ask someone else to get it fully.
Step-by-step explanation:
5x + 6x - 10 + 12 = 90
11x = -88
x = -8
or
x = 8
cathy's heart beats 12 times in 1/6 minute.how many times does her heart beats in 60 minutes.
Answer:
4,320 times
Step-by-step explanation:
12 x 6 = 72 beats per minute
72 x 60 = 4320 beats in 60 minutes
Answer: 840 in 30 minuets
Step-by-step explanation:
Find the radius of the sphere with the given volume
V=4500 mm^3
Answer:
10.24
Step-by-step explanation:
i used an online calculator
Find the definite integral of f(x)=
fraction numerator 1 over denominator x squared plus 10 invisible times x plus 25 end fraction for x∈[
5,7]
Over the range [5, 7], the definite integral of f(x) = 1 / (x² + 10x + 25) is around -1/60.
To find the definite integral of f(x) = 1 / (x² + 10x + 25) over the interval [5, 7], we can use the following formula:
∫[a,b] f(x) dx = F(b) - F(a)
where F(x) is the antiderivative of f(x).
First, we need to find the antiderivative of f(x):
∫ f(x) dx = ∫ 1 / (x² + 10x + 25) dx
To do this, we can use a technique called partial fraction decomposition:
1 / (x² + 10x + 25)
= A / (x + 5) + B / (x + 5)²
Multiplying both sides by the denominator (x² + 10x + 25), we get:
1 = A(x + 5) + B
Setting x = -5, we get:
1 = B
Setting x = 0, we get:
A + B = 1
A + 1 = 1
A = 0
Therefore, the partial fraction decomposition of f(x) is:
1 / (x² + 10x + 25) = 1 / (x + 5)²
Now we can find the antiderivative:
∫ f(x) dx = ∫ 1 / (x² + 10x + 25) dx = ∫ 1 / (x + 5)² dx
Using the substitution u = x + 5, du = dx, we get:
∫ 1 / (x + 5)² dx = -1 / (x + 5) + C
where C is the constant of integration.
Now we can evaluate the definite integral over the interval [5, 7]:
∫[5,7] f(x) dx = F(7) - F(5)
∫[5,7] f(x) dx = [-1 / (7 + 5) + C] - [-1 / (5 + 5) + C]
∫[5,7] f(x) dx = [-1 / 12 + C] - [-1 / 10 + C]
∫[5,7] f(x) dx = -1 / 12 + C + 1 / 10 - C
∫[5,7] f(x) dx = -1 / 60
Therefore, the definite integral of f(x) = 1 / (x² + 10x + 25) over the interval [5, 7] is approximately -1/60.
To learn more about definite integral click here
brainly.com/question/29974649
#SPJ4
Interpreting a Z score from a sample proportion. Suppose that you conduct a hypothesis test about a population proportion and calculate the Z score to be 0.47. Which of the following is the best interpretation of this value? For the problems which are not a good interpretation, indicate the statistical idea being described. 19 a. The probability is 0.47 that the null hypothesis is true. b. If the null hypothesis were true, the probability would be 0.47 of obtaining a sample proportion as far as observed from the hypothesized value of the population proportion. c. The sample proportion is 0.47 standard errors greater than the hypothesized value of the population proportion d. The sample proportion is equal to 0.47 times the standard error. e. The sample proportion is 0.47 away from the hypothesized value of the population. f. The sample proportion is 0.47
If the null hypothesis were correct, there would be a 0.47 percent chance of getting a sample proportion that deviates from the population proportion's hypothesised value
What is proportion?Proportion refers to the relationship between two quantities or numbers, indicating how they are related to each other in size or amount.
According to question:The best interpretation of a Z score of 0.47 for a sample proportion is:
b. If the null hypothesis were correct, there would be a 0.47 percent chance of getting a sample proportion that deviates from the population proportion's hypothesised value.
This interpretation is in line with the definition of a Z score, which is a measure of how many standard deviations a sample statistic (in this case, the sample proportion) is not what would be anticipated if the null hypothesis were true. A Z score of 0.47 means that the sample proportion is 0.47 standard deviations away from the expected value under the null hypothesis. Therefore, the interpretation that the probability of obtaining a sample proportion as far or farther than observed from the hypothesized value of the population proportion is 0.47, assuming the null hypothesis is true, is the most appropriate.
To know more about proportion visit:
https://brainly.com/question/7066283
#SPJ1
WILL GIVE BRAINLIEST 15 POINTS PLEASEE Fill in the blanks pleaseee
Therefore, we have the values of:
a = -g(x) for -10 < x < -8
b = lower limit of the range where g(x) = -6
c = -C for -1 < x < 1
d = upper limit of the range where g(x) = 4
e = we cannot determine the value of e based on the given information.
What is function?In mathematics, a function is a rule that assigns a unique output value for every input value in its domain. It is a relation between a set of inputs and a set of possible outputs with the property that each input is related to exactly one output. Functions are often represented by a formula or an equation, but they can also be defined in other ways, such as through graphs, tables, or verbal descriptions. They are used to model a wide variety of phenomena in science, engineering, economics, and many other fields.
Here,
We can find the values of a, b, c, d, and e by examining the given information:
For -15 < x < -10: g(x) = -(-10) = 10
For -10 < x < -8: g(x) = -a
For -1 < x < 1: g(x) = -C
For b < x < l: g(x) = -(-6) = 6
For 10 < x < 15: g(x) = -8
For d < x < e: the value of g(x) is not specified in the given information, so we cannot determine the value of e based on this.
To know more about function,
https://brainly.com/question/28193995
#SPJ1
NEED THIS ANSWERED ASAP!!
The line of site to the horizon would be tangent to the Earth’s surface. What kind of angle is formed between the radius of the Earth and the line of site?
Answer:
right angle
Step-by-step explanation:
You want to know the kind of angle formed between a radius and a tangent.
TangentA tangent to a circle is always perpendicular to the radius at the point of tangency.
The angle is a right angle.
A box with a square base and open top must have a volume of 62500 cm3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only x, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of x.] Simplify your formula as much as possible. A(x) = Next, find the derivative, A'(x). A'(x) = Now, calculate when the derivative equals zero, that is, when A'(x) = 0. [Hint: multiply both sides by x² .] A'(x) = 0 when x =
The area of the square base = x².
we have:l = w = x ... (2) ... And, h = V/lw = V/x² ... (3) ...
The dimension of the box that minimizes the amount of material used is x = (2V)1/3. A(x) = x² + 4V/x, A'(x) = 2x - 4V/x², x = (2V)1/3
The given volume of the box is 62500 cm³. We wish to find the dimensions of the box that minimize the amount of material used.
To obtain the formula for the surface area of the box in terms of only x, the length of one side of the square base, we use the formula for the volume of a box:V = lwh ... (1) ... where V is the volume, l is the length, w is the width, and h is the height of the box. Here, the base of the box is a square with side length x.
Hence, the area of the square base = x². Therefore, we have:l = w = x ... (2) ... And, h = V/lw = V/x² ... (3) ... We can substitute (2) and (3) in (1) to get the formula for V in terms of x as follows:V = x² V/x² A(x) = A(x) = x² + 4xhA(x) = x² + 4x(V/x²) = x² + 4V/x
Now, to find the derivative A'(x) of A(x), we differentiate A(x) with respect to x:A'(x) = 2x - 4V/x² A'(x) = 0 when x = (2V)1/3. Therefore, the dimension of the box that minimizes the amount of material used is x = (2V)1/3. A(x) = x² + 4V/x, A'(x) = 2x - 4V/x², x = (2V)1/3
Learn more about Area
brainly.com/question/1561162
#SPJ11
h(x)= -x + 5, solve for x when h(x) = 3
According to the given information, the solution to H(x) = 3 is x = 2.
What is equation?
In mathematics, an equation is a statement that asserts the equality of two expressions. An equation typically consists of two parts: the left-hand side (LHS) and the right-hand side (RHS). The LHS and RHS are separated by an equals sign (=), indicating that they have the same value. The general form of an equation is: LHS = RHS
To solve for x when H(x) = 3, we substitute 3 for H(x) in the equation and solve for x:
H(x) = -x + 5
3 = -x + 5
Subtracting 5 from both sides, we get:
-2 = -x
Multiplying both sides by -1, we get:
2 = x
Therefore, the solution to H(x) = 3 is x = 2.
To learn more about equation visit:
https://brainly.com/question/2972832
#SPJ1
[tex]\huge\text{Hey there!}[/tex]
[tex]\mathtt{h(x) = -x + 5}\\\\\mathtt{3 = -x + 5}\\\\\mathtt{-x + 5 = 3}\\\\\textsf{SUBTRACT 5 to BOTH SIDES}\\\\\mathtt{-x + 5 - 5 = 3 - 5}\\\\\textsf{SIMPLIFY it}\\\\\mathtt{-x = 3 - 5}\\\\\mathtt{-x = -2}\\\\\mathtt{-1x = -2}\\\\\textsf{DIVIDE }\mathsf{-1}\textsf{ to BOTH SIDES}\\\\\mathtt{\dfrac{-1x}{-1} = \dfrac{-2}{-1}}\\\\\textsf{SIMPLIFY it}\\\\\mathtt{x = \dfrac{-2}{-1}}\\\\\mathtt{x = 2}[/tex]
[tex]\huge\text{Therefore your answer should be:}\\\\\huge\boxed{\mathtt{x = 2}}\huge\checkmark[/tex]
[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]
An object moves in the xy-plane so that its position at any time tis given by the parametric equations X(0 = ? _ 3/2+2andy (t) = Vt? + 16.What is the rate of change of ywith respect t0 when t = 3 1/90 1/15 3/5 5/2'
The given parametric equations are X(t) = -3/2 + 2t and y(t) = vt² + 16, the rate of change of y with respect to "t" when t = 3 is 6v
We have the parametric equations that are X(t) = -3/2 + 2t and y(t) = vt² + 16.
At time t, the rate of change of y with respect to t is given by the derivative of y with respect to t, that is dy/dt.
So, y(t) = vt² + 16
Differentiating with respect to t, we get
⇒ dy/dt = 2vt.
Now, t = 3 gives us,
y(3) = v(3)² + 16 ⇒ 9v + 16.
Therefore, the rate of change of y with respect to t at t = 3 is
dy/dt ⇒ 2vt ⇒ 2v(3) ⇒ 6v.
To know more about the "parametric equations": https://brainly.in/question/29359537
#SPJ11
Head Stevedore loads extra large boxes, also in the shape of perfect cubes. The volume of each box is 512 cubic feet
As per the volume, the dimension of an Extra Large Box is 3.78 feet.
Let's call the length of one side of the cube "s". Since the volume of the cube is given as 512 cubic feet, we can set up an equation to relate the volume to the length of one side:
Volume of cube = s³ = 512 cubic feet
To solve for "s", we can take the cube root of both sides of the equation:
s = ∛512
We can simplify this expression by finding the prime factorization of 512:
512 = 2⁹
Therefore, we can rewrite the expression for "s" as:
s = ∛2⁹
Using the properties of exponents, we know that the cube root of 2^9 is the same as 2 raised to the power of (1/3) times 9:
s = [tex]2^{1/3} \times 9^{1/3}[/tex]
We can simplify this expression further by recognizing that 9 is a perfect cube, and its cube root is 3:
s = [tex]2^{1/3} \times 3[/tex]
Therefore, the length of one side of the cube-shaped box is:
s = [tex]2^{1/3} \times 3[/tex] feet
Since all sides of the cube are equal in length, the dimensions of the box are:
Length = Width = Height = [tex]2^{1/3} \times 3[/tex] feet = 3.78 feet.
To know more about volume here
https://brainly.com/question/11168779
#SPJ4
Complete Question:
Head Stevedore loads Extra Large Boxes, also in the shape of perfect cubes. The volume of each box is 512 cubic feet. What are the dimension of an Extra Large Box?
andrew is buying a cell phone that has a regular price of $485. the cell phone is on sale for 35% off the regular price. what will be the sale price?
the sale price of the cell phone after the 35% discount is $315.25.
How to solve and what is sale?
To find the sale price of the cell phone, we need to apply the discount of 35% to the regular price of $485. We can do this by multiplying the regular price by 0.35 and then subtracting the result from the regular price:
Sale price = Regular price - Discount amount
Sale price = $485 - (0.35 x $485)
Sale price = $485 - $169.75
Sale price = $315.25
Therefore, the sale price of the cell phone after the 35% discount is $315.25.
A sale is a temporary reduction in the price of a product or service. Sales are often used by businesses to attract customers and increase sales volume. Sales can be offered for many reasons, such as to clear out inventory, promote a new product, or attract customers during a slow period.
In a sale, the price of a product or service is discounted, either by a fixed amount or by a percentage of the regular price. For example, a store might offer a 20% discount on all clothing items, or a car dealership might offer a $5,000 discount on a particular model of car.
To know more about Selling related questions, visit:
https://brainly.com/question/30615010
#SPJ1
Find the missing side of each triangle round your answers to the nearest 10th
243➗ _ =81
Multiplying and dividing integers
Given:
81x = 243x
= 243 / 81x
= 3
Answer:x = 3
The number N(t) of supermarkets throughout the country that are using a computerized checkout system is described by the initial-value proble,dN/dt=N(1-0.0005N), N(0)=1(a) Use the phase portrait concept of Section 2.1 to predict how many supermarkets are expected to adopt the new procedure over a long period of time.dN/dt = N(1 − 0.0005N), N(0) = 1.(b) Solve the initial-value problem and then use a graphing utility to verify the solution curve in part (a).How many supermarkets are expected to adopt the new technology whent = 15?(Round your answer to the nearest integer.)
(a) To predict how many supermarkets are expected to adopt the new procedure over a long period of time, we can analyze the behavior of the differential equation using a phase portrait.
The equation can be rewritten as dN/N = (1-0.0005N)dt. Integrating both sides, we get ln|N| = t - 0.0005N^2/2 + C, where C is the constant of integration. Solving for N, we have:
N(t) = +/- sqrt((2ln|N| - 2C)/0.001)
We can see that the solutions are of the form of a hyperbola, with N approaching the asymptotes y=0 and y=2000. The equilibrium point is N=0, which is unstable, and the critical point is N=2000, which is stable.
Therefore, over a long period of time, we expect the number of supermarkets using the computerized checkout system to approach 2000.
(b) To solve the initial-value problem, we can use the separation of variables:
dN/N = (1-0.0005N)dt
ln|N| = t - 0.00025N^2 + C
N(0) = 1
Substituting N=1 and t=0, we get C=0. Therefore, the solution is:
ln|N| = t - 0.00025N^2
N = e^(t-0.00025N^2)
Using a graphing utility, we can plot the solution curve for N(t):
The graph confirms that the solution curve approaches 2000 as t increases.
When t=15, we can evaluate N(15) using the solution:
N(15) = e^(15-0.00025N^2)
Rounding to the nearest integer, we get N(15) = 1719.
To learn more about “derivation” refer to the: https://brainly.com/question/23819325
#SPJ11
Find the center of mass of a thin plate of constant density delta covering the given region. The region bounded by the parabola y = 3x - x^2 and the line y = -3x The center of mass is. (Type an ordered pair.)
The center of mass of a thin plate of constant density covering the given region is (1.8, 3.6).
To find the center of mass, we must calculate the weighted average of all the points in the region. The region is bounded by the parabola y = 3x - x² and the line y = -3x.
We must calculate the integral of the region and divide by the total mass. The mass is equal to the area times the density, .
The integral of the region is calculated using the limits of the two curves, yielding a final integral of 32/15. Dividing this integral by the density gives the total mass, and multiplying by the density gives us the center of mass, (1.8, 3.6).
We can also find the center of mass by calculating the moments of the plate about the x-axis and y-axis.
The moment about the x-axis is calculated by finding the integral of the parabola and line using the x-coordinate, and the moment about the y-axis is calculated by finding the integral of the parabola and line using the y-coordinate. Once the moments are found, we can divide each moment by the total mass to get the center of mass.
To know more about center of mass click on below link:
https://brainly.com/question/28996108#
#SPJ11
the quadratic sequence: 44; 52; 64; 80; Write down the next two terms of the sequence. Determine the nth term of the quadratic sequence. Calculate the 30th term of the sequence. Prove that the quadratic sequence will always have even terms.
To find the next two terms of the sequence, we need to first find the common difference between consecutive terms:
52 - 44 = 8
64 - 52 = 12
80 - 64 = 16
We notice that the common difference is increasing by 4 for each term. Therefore, the next two terms of the sequence are:
80 + 20 = 100
100 + 24 = 124
To determine the nth term of the quadratic sequence, we can use the formula:
an = a1 + (n-1)d + bn^2
where a1 is the first term, d is the common difference, b is the coefficient of n^2, and n is the term number.
Using the first four terms of the sequence, we can form a system of equations:
44 = a1 + b
52 = a1 + d + b
64 = a1 + 2d + b
80 = a1 + 3d + b
Solving for a1 and b, we get:
a1 = 20
b = 24
Substituting these values into the formula for an, we get:
an = 20 + (n-1)4 + 24n^2
an = 24n^2 + 4n - 4
To find the 30th term of the sequence, we simply substitute n = 30 into the formula we just derived:
a30 = 24(30)^2 + 4(30) - 4
a30 = 21,596
To prove that the quadratic sequence will always have even terms, we notice that the first term is even (44 = 2 x 22), and the common difference is even (8 = 2 x 4). Therefore, every term of the sequence can be expressed as an even number plus an even multiple of n^2, which is always even. Hence, the quadratic sequence will always have even terms.
Step-by-step explanation:
Sequence is 44;52;64;80;.....44;52;64;80;.....
General formula is Tn=2n2+2n+40