Suppose that two.integers from the set of 8 integrs {1,2,3....8} are chosen at random. Find the probability that i. both numbers match. ii. Sun of the two numbers picked is less than 4?

Answers

Answer 1

Answer: a) 0.003

b) 0.125

c) 0.047

Step-by-step explanation:

We have a set of 8 numbers {1,2,...,8}

Let's analyze each case:

a) 5 and 8 are picked. The probability here is:

In the first selection, we have two possible picks (we can pick 5 or 8), so we have two possible outcomes out of 8 total outcomes,  the probability for the first selection is:

P = 2/8 = 1/4.

Now, if one of those numbers was picked in the first selection, only one outcome is possible in this second selection, (if before we picked a 5, here we only can pick an 8, or if in the first selection we picked an 8, here we only can pick a 5.)

the probability is:

P = 1/8

The joint probability is equal to the product of the individual probabilities, so here we have:

P = (1/4)*(1/8) = 1/32 = 0.003

b) The numbers match (we draw two sixes, for example) :

In the first selection, we can have any outcome (the only requirement is that in the second selection we pick the same outcome), so the probability is:

P = 8/8 = 1

in the second selection, we can have only one outcome, so here the probability is:

P = 1/8

The joint probability is p = 1/8  = 0.125

c) The sum is smaller than 4:

The combinations are:

1 - 1  , 1 - 2  and 2 - 1

We have 3 combinations, and the total number of possible combinations is:

8 options for the first number and 8 options for the second selection:

8*8  = 64

The probability is equal to the number of outcomes that satisfy the sentence (3) divided by the total number of outcomes (64):

P = 3/64 = 0.047


Related Questions

Determine the value of x in the figure. Question 1 options: A) x = 90 B) x = 85 C) x = 45 D) x = 135

Answers

Answer:

A.) x=90°

Step-by-step explanation:

Note:

The triangle shown is an isosceles triangle, which means that it has 2 congruent sides (as shown by the small intersecting lines), and this also means that it has two congruent angles.

We are given an angle measure adjacent to one of the missing angles. These two form supplementary angles, which means that they're sum is equal to 180°, or a straight line. So, to find:

[tex]180=135+y[/tex]

y is the unknown angle. Solve for y:

[tex]180-135=y\\\\y=45[/tex]

y is 45°. Since this and the other angle are congruent, add:

[tex]45+45=90[/tex]

Note:

Triangles angles will always add up to a total of 180°.

To find the missing angle x°, use:

[tex]180=a+b+c[/tex]

These are the angles in a triangle. Substitute any known values and solve:

[tex]180=45+45+x\\\\180=90+x\\\\180-90=x\\\\x=90[/tex]

The missing angle x° is 90°.

:Done

The value of y varies directly with x . Find the value of k when y 33.6 and x = 4.2

Answers

Answer:

k=8

Step-by-step explanation:

Since y and x are in direct proportions, the equation is

y= kx, where k is a constant.

when y= 33.6, x=4.2,

33.6= k(4.2)

k= 33.6 ÷4.2

k=8

Answer:

k=8

Step-by-step explanation:

Find a cubic polynomial with integer coefficients that has $\sqrt[3]{2} + \sqrt[3]{4}$ as a root.

Answers

Find the powers [tex]a=\sqrt{2}+\sqrt{3}[/tex]

$a^{2}=5+2 \sqrt{6}$

$a^{3}=11 \sqrt{2}+9 \sqrt{3}$

The cubic term gives us a clue, we can use a linear combination to eliminate the root 3 term $a^{3}-9 a=2 \sqrt{2}$ Square $\left(a^{3}-9 a\right)^{2}=8$ which gives one solution. Expand we have $a^{6}-18 a^{4}-81 a^{2}=8$ Hence the polynomial $x^{6}-18 x^{4}-81 x^{2}-8$ will have a as a solution.

Note this is not the simplest solution as $x^{6}-18 x^{4}-81 x^{2}-8=\left(x^{2}-8\right)\left(x^{4}-10 x^{2}+1\right)$

so fits with the other answers.

Answer:

[tex]y^3 -6y-6[/tex]

Find usubscript10 in the sequence -23, -18, -13, -8, -3, ...

Answers

Step-by-step explanation:

utilise the formula a+(n-1)d

a is the first number while d is common difference

Answer:

22

Step-by-step explanation:

Using the formular, Un = a + (n - 1)d

Where n = 10; a = -23; d = 5

U10 = -23 + (9)* 5

U10 = -23 + 45 = 22

At a local high school, the student population is growing at 12% a year. If the original population was 242 students, how long will it take the population to reach 300 students? Round to the nearest tenth of a year.

Answers

Answer: 2 years

Step-by-step explanation:

The exponential growth function is given by :-

[tex]y=A(1+r)^x[/tex] (i)

, where A = initial value , r = rate of growth and  x= time period.

As per given ,

A= 242

r= 12% = 0.12

To find : t when y= 300.

Put all the values in (i)

[tex]300=242(1+0.12)^x\\\\\Rightarrow\ \dfrac{300}{242}=(1.12)^x\\\\\Rightarrow\ 1.23967=(1.12)^x[/tex]

Taking log on both sides , we get

[tex]\log (1.2396) = t \log (1.12)\\\\\Rightarrow\ 0.09328=t(0.049218)\\\\\Rightarrow t=\dfrac{0.09328}{0.049218}=\approx2[/tex]

hence, it will take 2 years.

Layla is going to drive from her house to City A without stopping. Layla plans to drive
at a speed of 30 miles per hour and her house is 240 miles from City A. Write an
equation for D, in terms of t, representing Layla's distance from City A t hours after
leaving her house.

Answers

Answer:

D = 240 - 30t

Step-by-step explanation:

If the equation represents her distance from City A, we need to include 240 in the equation to represent the distance to the city.

Then, we need to subtract 30t from 240 in the equation because 30t represents how far she will have traveled in t hours.

So, D = 240 - 30t is the equation that will represent Layla's distance from the city.

How do you compress this?

Answers

[tex]\displaystyle\\(a+b)^n\\T_{r+1}=\binom{n}{r}a^{n-r}b^r\\\\\\(x+2)^7\\a=2x\\b=3\\r+1=4\Rightarrow r=3\\n=5\\T_4=\binom{5}{3}\cdot (2x)^{5-3}\cdot3^3\\T_4=\dfrac{5!}{3!2!}\cdot 4x^2\cdot27\\T_4=\dfrac{4\cdot5}{2}\cdot 4x^2\cdot27\\\\T_4=1080x^2[/tex]

logx-log(x-l)^2=2log(x-1)​

Answers

Answer:

  x = 1.00995066776

  x = 2.52925492433

Step-by-step explanation:

This sort of equation is best solved using a graphing calculator. For that purpose, I like to rewrite the equation as a function whose zeros we're seeking. Here, that becomes ...

  [tex]f(x)=\log{(x)}-\log{(x-1)}^2-2\log{(x-1)}[/tex]

The attached graph shows zeros at

  x = 1.00995066776 and 2.52925492433

_____

Comment on the equation

Note that we have taken the middle term to be the square of the log, rather than the log of a square. For the latter interpretation, see mberisso's answer at https://brainly.com/question/17210068

Comment on the answer refinement

We have used Newton's method iteration to refine the solutions to this equation. The solution near 1.00995 requires the initial guess be very close for that method to work properly. Fortunately, the 1.01 value shown on the graph is sufficient for the purpose.

Suppose that a sample mean is .29 with a lower bound of a confidence interval of .24. What is the upper bound of the confidence interval?

Answers

Answer:

The upper bound of the confidence interval is 0.34

Step-by-step explanation:

Here in this question, we want to calculate the upper bound of the confidence interval.

We start by calculating the margin of error.

Mathematically, the margin of error = 0.29 -0.24 = 0.05

So to get the upper bound of the confidence interval, we simply add this margin of error to the mean

That would be 0.05 + 0.29 = 0.34

The age of some lecturers are 42,54,50,54,50,42,46,46,48 and 48 calculate the mean age and standard deviation

Answers

Answer:

Mean age: 48

Standard deviation: 4

Step-by-step explanation:

a) Mean

The formula for Mean = Sum of terms/ Number of terms

Number of terms

= 42 + 54 + 50 + 54 + 50 + 42 + 46 + 46 + 48+ 48/ 10

= 480/10

= 48

The mean age is 48

b) Standard deviation

The formula for Standard deviation =

√(x - Mean)²/n

Where n = number of terms

Standard deviation =

√[(42 - 48)² + (54 - 48)² + (50 - 48)² +(54 - 48)² + (50 - 48)² +(42 - 48)² + (46 - 48)² + (46 - 48)² + (48 - 48)² + (48 - 48)² / 10]

= √-6² + 6² + 2² + 6² + 2² + -6² + -2² + -2² + 0² + 0²/10

=√36 + 36 + 4 + 36 + 4 + 36 + 4 + 4 + 0 + 0/ 10

=√160/10

= √16

= 4

The standard deviation of the ages is 4

Hey market sales six cans of food for every seven boxes of food the market sold a total of 26 cans and boxes today how many of each kind did the market sale

Answers

Answer:

It sold 14 cans boxes of food and 12 cans of food.

Step-by-step explanation:

The factor for the food cans depend upon every seven food boxes .So, the same no. of sets of food cans will be sold.

Let the no. of sets of food boxes be x.

According to the question,

6x+7x=26

13x=26

x=26/13

x=2

No. of food cans =6x=6×2=12 cans

No. of food boxes=7x=7×2=14 boxes

Please mark brainliest ,if it is truly the best ! Thank you!

Which of the following represents "next integer after the integer n"? n + 1 n 2n

Answers

Answer:

n + 1

Step-by-step explanation:

Starting with the integer 'n,' we represent the "next integer" by n + 1.

Find the principal invested if $495 interest was earned in 3 years at an interest rate of 6%.

Answers

Answer: $2750

Step-by-step explanation:

Formula to calculate interest : I = Prt , where P = Principal amount , r = rate of interest ( in decimal) , t= time.

Given:  I= $495

t= 3 years

r= 6% = 0.06

Then, according to the above formula:

[tex]495 = P (0.06\times3)\\\\\Rightarrow\ P=\dfrac{495}{0.18}\\\\\Rightarrow\ P=2750[/tex]

Hence, the principal invested = $2750

Consider the function below. (If an answer does not exist, enter DNE.) f(x) = x3 − 27x + 3 (a) Find the interval of increase. (Enter your answer using interval notation.)

Answers

Answer:

(-∞,-3) and (3,∞)  

Step-by-step explanation:

f(x) = x³ − 27x + 3

1. Find the critical points

(a) Calculate the first derivative of the function.

f'(x) = 3x² -27  

(b) Factor the first derivative

f'(x)= 3(x² - 9) = 3(x + 3) (x - 3)

(c) Find the zeros

3(x + 3) (x - 3) = 0

x + 3 = 0      x - 3 = 0

     x = -3          x = 3

The critical points are at x = -3 and x = 3.

2. Find the local extrema

(a) x = -3

f(x) = x³ − 27x + 3 = (-3)³ - 27(-3) + 3 = -27 +81 + 3 = 57

(b) x = 3

f(x) = x³ − 27x + 3 = 3³ - 27(3) + 3 = 27 - 81 + 3 = -51

The local extrema are at (-3,57) and (3,-51).

3, Identify the local extrema as maxima or minima

Test the first derivative (the slope) over the intervals (-∞, -3), (-3,3), (3,∞)

f'(-4) = 3x² -27 = 3(4)² - 27  = 21

f'(0) = 3(0)² -27 = -27

f'(4) = 3(4)² - 27 = 51

The function is increasing on the intervals (-∞,-3) and (3,∞).

The graph below shows the critical points of your function.

In a binomial distribution, n = 8 and π=0.36. Find the probabilities of the following events. (Round your answers to 4 decimal places.)

a. x=5
b. x <= 5
c. x>=6

Answers

Answer:

[tex]\mathbf{P(X=5) =0.0888}[/tex]    

P(x ≤ 5 ) = 0.9707

P ( x ≥ 6) = 0.0293

Step-by-step explanation:

The probability of a binomial mass distribution can be expressed with the formula:

[tex]\mathtt{P(X=x) =(^{n}_{x} ) \ \pi^x \ (1-\pi)^{n-x}}[/tex]

[tex]\mathtt{P(X=x) =(\dfrac{n!}{x!(n-x)!} ) \ \pi^x \ (1-\pi)^{n-x}}[/tex]

where;

n = 8 and π = 0.36

For x = 5

The probability [tex]\mathtt{P(X=5) =(\dfrac{8!}{5!(8-5)!} ) \ 0.36^5 \ (1-0.36)^{8-5}}[/tex]

[tex]\mathtt{P(X=5) =(\dfrac{8!}{5!(3)!} ) \ 0.36^5 \ (0.64)^{3}}[/tex]

[tex]\mathtt{P(X=5) =(\dfrac{8 \times 7 \times 6 \times 5!}{5!(3)!} ) \times \ 0.0060466 \ \times 0.262144}[/tex]

[tex]\mathtt{P(X=5) =(\dfrac{8 \times 7 \times 6 }{3 \times 2 \times 1} ) \times \ 0.0060466 \ \times 0.262144}[/tex]

[tex]\mathtt{P(X=5) =({8 \times 7 } ) \times \ 0.0060466 \ \times 0.262144}[/tex]

[tex]\mathtt{P(X=5) =0.0887645}[/tex]

[tex]\mathbf{P(X=5) =0.0888}[/tex]     to 4 decimal places

b. x ≤ 5

The probability of P ( x ≤ 5)[tex]\mathtt{P(x \leq 5) = P(x = 0)+ P(x = 1)+ P(x = 2)+ P(x = 3)+ P(x = 4)+ P(x = 5})[/tex]

[tex]{P(x \leq 5) = ( \dfrac{8!}{0!(8!)} \times (0.36)^0 \times (1-0.36)^8 \ ) + \dfrac{8!}{1!(7!)} \times (0.36)^1 \times (1-0.36)^7 \ +[/tex][tex]\dfrac{8!}{2!(6!)} \times (0.36)^2 \times (1-0.36)^6 \ + \dfrac{8!}{3!(5!)} \times (0.36)^3 \times (1-0.36)^5 + \dfrac{8!}{4!(4!)} \times (0.36)^4 \times (1-0.36)^4 \ + \dfrac{8!}{5!(3!)} \times (0.36)^5 \times (1-0.36)^3 \ )[/tex]

P(x ≤ 5 ) = 0.0281+0.1267+0.2494+0.2805+0.1972+0.0888

P(x ≤ 5 ) = 0.9707

c. x ≥ 6

The probability of P ( x ≥ 6) = 1  - P( x  ≤ 5 )

P ( x ≥ 6) = 1  - 0.9707

P ( x ≥ 6) = 0.0293

During two years in college, a student earned $9,500. The second year she earned $500 more than twice the amount she earned the first year. How much did she earn the first year?

Answers

The answer would be $3000

Gail paid a total of $12,000 for stock that was $6 per share. If she sold all her shares for $18,000, how much profit on each share did she make?
A
$9
B
$3
С.
S2000
D
$6.000

Answers

Answer:

$3

Step-by-step explanation:

Given

Total Cost Price: $12,000

Unit Cost Price= $6

Total Selling Price = $18,000

Required

Determine the profit on each share

First, we need to determine the units of share bought;

Units = Total cost price / Unit Cost Price

[tex]Units = \frac{\$12000}{\$6}[/tex]

[tex]Units = 2000[/tex]

Next is to determine the selling price of each share; This is calculated as follows;

Unit Selling Price = Total Selling Price / Units Sold

[tex]Unit\ Selling\ Price = \frac{\$18000}{\$2000}[/tex]

[tex]Unit\ Selling\ Price = \$9[/tex]

The profit is the difference between the unit cost price and unit selling price

[tex]Profit = Unit\ Selling\ Price - Unit\ Cost\ Price[/tex]

[tex]Profit = \$9 - \$6[/tex]

[tex]Profit = \$3[/tex]

which of the following not between -10 and -8

-17/2
-7
-9
-8.5​

Answers

The answer is -7 because -17/2=-8.5 and 9 and 8.5 are both in between -10 and -8

Answer:

-7

Step-by-step explanation:

This is best read on the number line.

Look at the picture.

[tex]-\dfrac{17}{2}=-8\dfrac{1}{2}=-8.5[/tex]



Type the missing number in this sequence:
1,
4,
,64, 256,
1,024

Answers

Answer:

16

Step-by-step explanation:

The sequence is 1, 4,...,64, 256, 1024

Notice that:

● 1 = 2^0

● 4 = 2^2

● 64 = 2^6

● 256 = 2^8

● 1024 = 2^10

Notice that we add 2 each time to the exponent so the missing number is:

● 2^(2+2) = 2^4 = 16

You are ordering two pizzas. A pizza can be small, medium, large, or extra large, with any combination of 8 possible toppings (getting no toppings is allowed, as is getting all 8). How many possibilities are there for your two pizzas

Answers

Answer:

1048576

Step-by-step explanation:

Given the following :

Pizza order :

Size = small, medium, large, or extra large = 4 possible sizes

Toppings = any combination of 8 possible toppings (getting no toppings is allowed, as is getting all 8).

Combination of Toppings = 2^8

Four different sizes of pizza = 4

Number of possibilities in ordering for a single pizza :

(4 * 2^8) = 4 * 256 = 1024

Number of possibilities in ordering two pizzas :

(4 * 2^8)^2

(2^2 * 2^8)^2

From indices :

[2^(2+8)]^2

[2^(10)]^2

2^(10*2)

2^20

= 1048576

solve this equation 4log√x - log 3x =log x^2​

Answers

Answer:

[tex]x = \frac{1}{3} [/tex]

Step-by-step explanation:

*Move terms to the left and set equal to zero:

4㏒(√x) - ㏒(3x) - ㏒(x²) = 0

*simplify each term:

㏒(x²) - ㏒(3x) - ㏒(x²)

㏒(x²÷x²) -㏒(3x)

㏒(x²÷x² / 3x)

*cancel common factor x²:

㏒([tex]\frac{1}{3x}[/tex])

*rewrite to solve for x :

10⁰ = [tex]\frac{1}{3x}[/tex]

1 = [tex]\frac{1}{3x}[/tex]

1 · x = [tex]\frac{1}{3x}[/tex] · x

1x = [tex]\frac{1}{3}[/tex]

*that would be our answer, however, the convention is to exclude the "1" in front of variables so we are left with:

x = [tex]\frac{1}{3}[/tex]

A machine used to fill​ gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of ounces and a standard deviation of ounce. You randomly select cans and carefully measure the contents. The sample mean of the cans is ounces. Does the machine need to be​ reset? Explain your reasoning. ▼ Yes No ​, it is ▼ very unlikely likely that you would have randomly sampled cans with a mean equal to ​ounces, because it ▼ lies does not lie within the range of a usual​ event, namely within ▼ 1 standard deviation 2 standard deviations 3 standard deviations of the mean of the sample means.

Answers

Complete question is;

A machine used to fill gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of 128 ounces and a standard deviation of 0.20 ounce. You randomly select 35 cans and carefully measure the contents. The sample mean of the cans is 127.9 ounces. Does the machine need to be? reset? Explain your reasoning.

(yes/no)?, it is (very unlikely/ likely) that you would have randomly sampled 35 cans with a mean equal to 127.9 ?ounces, because it (lies/ does not lie) within the range of a usual? event, namely within (1 standard deviation, 2 standard deviations 3 standard deviations) of the mean of the sample means.

Answer:

Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Step-by-step explanation:

We are given;

Mean: μ = 128

Standard deviation; σ = 0.2

n = 35

Now, formula for standard error of mean is given as;

se = σ/√n

se = 0.2/√35

se = 0.0338

Normally, the range of values should be within 2 standard deviations of mean. In this case, normal range of values will be;

μ ± 2se = 128 ± 0.0338

This gives; 127.9662, 128.0338

So, Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

one third multiplied by the sum of a and b

Answers

Answer:

1/3(a+b)

hope it helps :>

a+b/3
This is the answer of ur question

Transform the given parametric equations into rectangular form. Then identify the conic.

Answers

Answer:

Solution : Option B

Step-by-Step Explanation:

We have the following system of equations at hand here.

{ x = 5 cot(t), y = - 3csc(t) + 4 }

Now instead of isolating the t from either equation, let's isolate cot(t) and csc(t) --- Step #1,

x = 5 cot(t) ⇒ x - 5 = cot(t),

y = - 3csc(t) + 4 ⇒ y - 4 = - 3csc(t) ⇒ y - 4 / - 3 = csc(t)

Now let's square these two equations. We know that csc²θ - cot²θ = 1, so let's subtract the equations  as well. --- Step #2

 

( y - 4 / - 3 )² = (csc(t))²

- ( x - 5 / 1 )² = (cot(t))²  

___________________

(y - 4)² / 9 - x² / 25 = 1

And as we are subtracting the two expressions, this is an example of a hyperbola. Therefore your solution is option b.

A bag of 100 hard candies included 30 butterscotch, 40 peppermint, 15 strawberry, 10 orange, and 5 banana. The probability that the first candy pulled out of the bag will be butterscotch or strawberry is .45
a) true
b) false

Answers

Answer:

true

Step-by-step explanation:

there is 100 candies. That means we can easily turn the amount of each type of candy into a percent. there was 30 butterscotch which means that is 30 percent. There was 15 strawberry which means that is 15 percent. add that and you get 45. This is a shortcut and i advise you use the way your teacher taught you.

[tex]|\Omega|=100\\|A|=30+15=45\\\\P(A)=\dfrac{45}{100}=0.45[/tex]

So TRUE

cooks are needed to prepare for a large party. Each cook can bake either 5 Large cakes or 14 small cakes per hour . The kitchen is available for 3 hours and 29 large cakes and 260 cakes need to be baked . How many cooks are required to bake the required number of cakes during the time the kitchen is available?​

Answers

it was all about equating some values

to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.

Let's determine the number of cooks required to bake the required number of cakes during the available time.

We have the following information:

- Each cook can bake either 5 large cakes or 14 small cakes per hour.

- The kitchen is available for 3 hours.

- We need to bake 29 large cakes and 260 cakes in total.

First, let's calculate the number of large cakes that can be baked by one cook in 3 hours:

1 cook can bake 5 large cakes/hour × 3 hours = 15 large cakes.

Next, let's calculate the number of small cakes that can be baked by one cook in 3 hours:

1 cook can bake 14 small cakes/hour × 3 hours = 42 small cakes.

Now, let's calculate the number of large cakes that can be baked by all the cooks in 3 hours:

Total number of large cakes = Number of cooks × Large cakes per cook per 3 hours

We need to bake 29 large cakes, so:

29 = Number of cooks × 15

Number of cooks = 29 / 15 ≈ 1.93

Since we can't have a fraction of a cook, we need to round up to the nearest whole number. Therefore, we need at least 2 cooks to bake the required number of large cakes.

Similarly, let's calculate the number of small cakes that can be baked by all the cooks in 3 hours:

Total number of small cakes = Number of cooks × Small cakes per cook per 3 hours

We need to bake 260 small cakes, so:

260 = Number of cooks × 42

Number of cooks = 260 / 42 ≈ 6.19

Again, rounding up to the nearest whole number, we need at least 7 cooks to bake the required number of small cakes.

Since we need to satisfy both requirements for large and small cakes, we choose the larger number of cooks required, which is 7 cooks.

Therefore, to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.

Learn more about work here

https://brainly.com/question/13245573

#SPJ2

Use the two highlighted points to find the
equation of a trend line in slope-intercept
form.

Answers

Answer: y=(4/3)x+2/3

Step-by-step explanation:

Slope-intercept form is expressed as y=mx+b

First, find the slope (m):

m= rise/run or vertical/horizontal or y/x (found between the highlighted points)

m = 4/3

Second, find b:

Use one of the highlighted points for (x, y)

2=4/3(1)+b

6/3=4/3+b

2/3=b

b=2/3

Plug it into the equation:

You get y=(4/3)x+2/3 :)

Identify the decimals labeled with the letters A, B, and C on the scale below. Letter A represents the decimal Letter B represents the decimal Letter C represents the decimal

Answers

[tex]10[/tex] divisions between $389$ and $390$ so each division is $\frac{390-389}{10}=0.1$

A is 8 division from $389$, so, A is $389+8\times 0.1=389.8$

similarly, C is one division behind $389$ so it is $389-1\times 0.1=388.9$

and B is $390.3$

The cost, C, in United States Dollars ($), of cleaning up x percent of an oil spill along the Gulf Coast of the United States increases tremendously as x approaches 100. One equation for determining the cost (in millions $) is:

Answers

Complete Question

On the uploaded image is a similar question that will explain the given question

Answer:

The value of k is  [tex]k = 214285.7[/tex]

The percentage  of the oil that will be cleaned is [tex]x = 80.77\%[/tex]

Step-by-step explanation:

From the question we are told that

   The  cost of cleaning up the spillage is  [tex]C = \frac{ k x }{100 - x }[/tex]  [tex]x \le x \le 100[/tex]

     The  cost of cleaning x =  70% of the oil is  [tex]C = \$500,000[/tex]

   

Now at  [tex]C = \$500,000[/tex] we have  

       [tex]\$ 500000 = \frac{ k * 70 }{100 - 70 }[/tex]

       [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]k = 214285.7[/tex]

Now  When  [tex]C = \$900,000[/tex]

       [tex]x = 80.77\%[/tex]

       

 

At a high school movie night, the refreshments stand sells popcorn and soft drinks. Of the 100 students who came to the movie, 62 bought popcorn and 47 bought a drink. 38 students bought both popcorn and a drink. What is the probability that a student buys a drink, given that he or she buys popcorn? Express your answer as a percent, rounded to the nearest tenth... best answer wins brainliest!!!

Answers

Answer:

47% and 62%

Step-by-step explanation:

1. Drink

The probability that a student buys a drink is 0.47

Step-by-step explanation:

The probability that a student buys a drink will be given by;

( the number of students who bought a drink)/(the total number of students)

We are told that;

Of the 100 students who came to the movie, 62 bought popcorn and 47 bought a drink. Therefore, the required probability is;

47/100= 0.47

0.47 = 47%

2. Popcorn

For popcorn probability, it's basically the same.

The probabilty that a student buys popcorn is 0.62

The probability that a student buys popcorn will be given by;

( the number of students who bought popcorn)/(the total number of students)

So therefore,

62/100 = 0.62

0.62 = 62%

Other Questions
How many triangles exist with the given side lengths? 2mm,6mm,10mm With which set of information can you construct a unique triangle?OA the measurements of all the angles.the lengths of two sidesOC. the measurements of two anglesOD. the lengths of all the sidesOE the measurement of one angle what makes''emerging technologies'' happen and what impact will they have on individuals,society,and environment What is a hyperbole comparing a cloud and pillow? What is the main difference between simplifying and solving? Which one gives you a value for a variable? How do you know the difference? What does food provide to organisms? homeostasis shelter energy air PLZ HELP ME PLZ PLZ PLZ Coronado Industries has outstanding accounts receivable totaling $6.57 million as of December 31 and sales on credit during the year of $22.6 million. There is also a credit balance of $11000 in the allowance for doubtful accounts. If the company estimates that 5% of its outstanding receivables will be uncollectible, what will be the amount of bad debt expense recognized for the year? Translate this sentence into an equation. 43 is the sum of 11 and Carlos age. Use the variable c to represent Carlos age. Which part of an atom is mostly empty space?A. nucleusB. proton cloudC. electron cloudD. neutron Differentiate between team and teamwork What does y equal -3=15+4y Data mining is important because any customer can become a brand advocate or adversary by freely expressing opinions and attitudes that reach millions of other customers on social media.a. Trueb False Can all opportunity costs be evaluated using a cost/benefit analysis? Use an example to explain your answer Rakhee was shopping with her mother in a shopping mall.Suddenly there were tremors and sounds of rattling. Everythingseemed to be shaking. Quickly, Rakhee pulled her mother's armand ran for cover. She remembered what her teacher had toldher to do when there was an earthquake. 'DROPI COVER! HOLD!'She also told other people what they should do. That day shesaved many lives. which value do you imbibe from the above incident? Hint: is the picture Alonso estimated the distance acrossa river as 1232 meters. What is theapproximate distance across the river tothe nearest thousandth of a meter? Null hypothesis: There is no difference in the average start-up costs of the 4 different types of shops. Alternative hypothesis: There is a difference in the average start-up costs of the shops Which of these conditions would likely cause the tectonic plates of Earth to stop moving? Please help for the 4 and 5 question in the picture above.The person answering both part of question 4 and 5 will be marked as brainliest. I promise.The subject is hindi but there is no option so I opted for biology.but pls help. What complications might arise from genetic screens targeting an organ that differentiates late in development? There are approximately 2 1022 molecules and atoms in each breath we take and the concentration of CO in the air is approximately 9 ppm. How many CO molecules are in each breath we take? solution