Answer:
0.3085 = 30.85% probability that an individual man’s step length is less than 2.5 feet.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 2.7 feet and a standard deviation of 0.4 feet.
This means that [tex]\mu = 2.7, \sigma = 0.4[/tex]
Find the probability that an individual man’s step length is less than 2.5 feet.
This is the p-value of Z when X = 2.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{2.5 - 2.7}{0.4}[/tex]
[tex]Z = -0.5[/tex]
[tex]Z = -0.5[/tex] has a p-value of 0.3085
0.3085 = 30.85% probability that an individual man’s step length is less than 2.5 feet.
A data related to air pollution in 10 U.S. cities. The dependent variable Y is the annual mean concentration of sulfur dioxide, in micrograms per cubic meter. The explanatory variable X records the number of manufacturing enterprises employing 20 or more workers. Below is Routput of the relationship between X and Y.
Coefficients: Estimate Std. Error t value Pro> tl) (Intercept) 9.4764 9.6266 0.98 0.354 2.0315 0.0070 4.51 0.CO2 ** X Signif. codes: 9 ****' 0.001 ***' 0.01 **' 0.05, 0.1' '1 Residual standard error: 17.9 on 8 degrees of freedom Multiple R-squared: 0.717, Adjusted R-squared: 0.682 F-statistic: 20.3 on 1 and 8 DF, p-value: 0.00198
a) Write the regression equation with parameters from the R output.b) Suppose that the number of manufacturing enterprises employing 20 or more workers in Irvine is 250, could you predict that the annual mean concentration of sulfur dioxide in Irvine?c) What is the residual if in Irvine the annual mean concentration of sulfur dioxide is 15 micrograms per cubic meter.d) What is the value of the correlation coefficient?e) Calculate a 95% confidence interval for the slope of the model.f) Based on the confidence interval, is there a linear relationship between X and Y?
Answer:
Y = 0.0315x + 9.4764
Residual = 2.35
Correlation Coefficient = 0.847
Step-by-step explanation:
From the R output given :
Intercept = 9.4764
Slope = 0.0315
x = number of manufacturing enterprise employing 20 or more workers
y = annual mean concentration of Sulphur dioxide
The regression equation :
y = bx + c
b = slope ; c = intercept
y = 0.0315x + 9.4764
Prediction using the regression equation :
The predicted y value, when x = 250
y = 0.0315(250) + 9.4764
y = 17.3514
The residual, if actual annual concentration = 15
Y residual = 17.35 - 15 = 2.35
The correlation Coefficient value, R
R = √R²
R = √0.717
R = 0.847
Linda is doing car wash with her teammates to collect money for their trip. They can
get $12 for the car that they wash. In order to start their work, they spent $155 to buy
supplies needed for the work.
Part A:
Create a function f(c) to represent the profit that they make for washing c cars.
f(c) =
(b)
Part B:
Use the function rule that you created on Part A to find the value of f '(145)
f-? (145)
9514 1404 393
Answer:
(a) f(c) = 12c -155
(b) f⁻¹(145) = 25
Step-by-step explanation:
(a) Profit is the difference between revenue (12c) and cost (155). The profit function is ...
f(c) = 12c -155
__
(b) The number of cars Linda's team must wash to achieve a profit of $145 is found from ...
145 = 12c -155
300 = 12c . . . . . . add 155
25 = c . . . . . . . . . divide by 12
f⁻¹(145) = 25 . . . . the team must wash 25 cars for a profit of $145
Consider the following sets of sample data:
A: 20,347, 20,327, 22,117, 21,762, 20,864, 20,102, 21,684, 20,063, 21,728, 21,580, 21,720, 20,920, 21,442, 20,766
B: 3.38, 4.64, 4.09, 3.93, 4.25, 4.63, 4.78, 4.25, 4.46, 2.93, 3.64
Required:
For each of the above sets of sample data, calculate the coefficient of variation, CV.
Answer:
3.319%
14.13%
Step-by-step explanation:
A: 20347, 20327, 22117, 21762, 20864, 20102, 21684, 20063, 21728, 21580, 21720, 20920, 21442, 20766
B: 3.38, 4.64, 4.09, 3.93, 4.25, 4.63, 4.78, 4.25, 4.46, 2.93, 3.64
Given the data:
The mean, m = Σx / n
The standard deviation, s = √Σ(x - m)²/ (n-1))
The coefficient of variation is, CV = s / mean
Using calculator to save computation time :
A: 20,347, 20,327, 22,117, 21,762, 20,864, 20,102, 21,684, 20,063, 21,728, 21,580, 21,720, 20,920, 21,442, 20,766
Data A :
Mean, m = 21101.5714
Standard deviation, s = 700.28925
CV = s / m * 100% = 700.28925 / 21101.5714 * 100% = 3.319%
Data B:
Mean = 4.089
Standard deviation, s = 0.5776
CV = 0.5776 / 4.089 * 100% = 14.13%
The graph of the function f(x) = 4 over 5 square root x is shown. What is the domain of the function?
Answer:
all real numbers greater than or equal to 0
Step-by-step explanation:
The domain of the function is whatever the input (in this case, x) can be. As you cannot take the square root of a negative number, x cannot be negative. Because you can take the square root of 0 (which is 0), x can be anything postive or 0, meaning anything greather than or equal to 0. The domain is all real numbers greater than or equal to 0.
Find the value of
[tex]3 \frac{1}{5} \div \frac{8}{20} [/tex]
Answer:
[tex]{ \bf{3 \frac{1}{5} \div \frac{8}{20} }} \\ = \frac{16}{5} \div \frac{8}{20} \\ { \boxed{ \tt{reciprocal \: of \: \frac{8}{20} = \frac{20}{8} }}} \\ \therefore \: = \frac{16}{5} \times \frac{20}{8} \\ = \frac{320}{40} \\ { \bf{ answer : 8}} \\ \\ {\underline{\tt {\blue{becker \: jnr}}}}
[/tex]
GIVING OUT BRAINLIEST HELP PLEASE ❤️
Answer:
C
Step-by-step explanation:
Which angels are corresponding angles? Check all that apply
Answer:
Only A and B.
Step-by-step explanation:
Corresponding angles are angles in the same position and are the same size. The others are wrong as they are not the same sizes or are not the same
∑_(n=1)^∞▒〖( 1/2 )〗^2n
Answer:
The series converges to [tex]\dfrac{1}{3}[/tex]
Step-by-step explanation:
It seems to be this series:
[tex]$ \sum_{n=1}^{\infty} \left(\dfrac{1}{2} \right)^{2n}$[/tex]
We have
[tex]$ \sum_{n=1}^{\infty} \left(\dfrac{1}{2} \right)^{2n} = \sum_{n=1}^{\infty} \left(\dfrac{1}{4} \right)^{n}$[/tex]
Using the Root test we can see that this series converges once
[tex]$ \lim_{n \to \infty} \sqrt[n]{|a_n|} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ is convergent}$[/tex]
Then, [tex]$\lim_{n \to \infty} \sqrt[n]{\left(\dfrac{1}{4} \right)^{n}} = \lim_{n \to \infty} \dfrac{1}{4} = \dfrac{1}{4} < 1$[/tex]
The series is convergent.
Once the series is geometric, the first term is [tex]\dfrac{1}{4}[/tex] and the ratio is also [tex]\dfrac{1}{4}[/tex] in this case.
The sum of infinite geometric series is [tex]S = \dfrac{a_1}{1-r}[/tex] such that [tex]r < 1[/tex]
[tex]\therefore S = \dfrac{\frac{1}{4} }{1-\frac{1}{4}} = \dfrac{1}{3}[/tex]
HELP QUICK! WILL GIVE BRAINLIEST ANSWER!!
Answer:
x = 22 degree
Step-by-step explanation:
40 + 5x + 30 = 180 degree (being linear pair)
5x + 70 = 180
5x = 180 - 70
x = 110/5
x = 22 degree
A student uses the ratio of 4 oranges to 6 fluid ounces to
find the number of oranges needed to make 24 fluid
ounces of juice. The student writes this proportion:
4 24
616
Explain the error in the student's work.
A student uses the ratio of 4 oranges to 6 fluid ounces to find the number of oranges needed to make 24 fluid ounces of juice. The student writes the proportion:4/6=24/16
Divide 259875 by the smallest number so that the quotient is a perfect cube. Also find the cube root of the quotient
Answer: The smallest number by which 259875 should be divided to make it a perfect cube is 77.
Step-by-step explanation:
Let's expand the number 259875 into prime factors:
259875 = 3³ ∙ 5³ ∙ 7 ∙ 11
Since in the factorization, 7 and 11 appears only one time, we must divide the number 259875 by 7 · 11 = 77, then the quotient is a perfect cube.
259875 ÷ 77 = 3375
[tex]\sqrt[3]{3375} =\sqrt[3]{3^{3} \cdot 5^{3} } =3 \cdot 5 = 15[/tex]
PLS HELP ASAP.!
THANK YOU, WILL MARK BRAINLIEST
Answer:
Explanation:
The volume of the triangular prism:
The base area of the prism = 1/2 x 4 x 6 = 12 ft2
Height = 6 ft
The volume of the triangular prism = 12 x 6 = 72 ft3
The volume of the rectangular prism:
The base area of the prism = 4 x 6 = 24 ft2
Height = 12 ft
The volume of the triangular prism = 12 x 24 = 288 ft3
Volume of the composite figure = (288 + 72)ft3 = 360 ft3
Step-by-step explanation:
at sunrise, the outside temperature was 3 below zero by lunchtime the temperature rose by 27 and fell by 10 by night what was the temperature at the end of the day?
Answer:11 degrees at sunrisde the temp was -1 degree
Step-by-step explanation:
1.What are the coordinates of the vertices of ABC? Use the coordinates to find the lengths of AC and AB .
2.Use the distance formula to find BC. Show your work.
Answer/Step-by-step explanation:
1.
✔️Coordinates of vertices ABC:
A(2, 2)
B(6, 2)
C(2, -1)
✔️AC = |2 - (-1)| = 3 units
AB = |2 - 6| = 4 units
2. Distance formula => [tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Distance between B(6, 2) and C(2, -1):
[tex] BC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Where,
[tex] B(6, 2) = (x_1, y_1) [/tex]
[tex] C(2, -1) = (x_2, y_2) [/tex]
[tex] BC = \sqrt{(2 - 6)^2 + (-1 - 2)^2} [/tex]
[tex] BC = \sqrt{(-4)^2 + (-3)^2} [/tex]
[tex] BC = \sqrt{16 + 9} = \sqrt{25} [/tex]
[tex] BC = 5 units [/tex]
Answer:
The person above me has the correct answer and solves it in the correct way.
Step-by-step explanation:
This is what I used as my answer though.
Distance Formula: d = √(x2-x1)^2 + (y2-y1)^2
BC = √(x2-x1)^2 + (y2-y1)^2
B = (6,2)
C = (2,-1)
BC = √(2-6)^2 + (-1-2)^2
BC = √(-4)^2 + (-3)^2
BC = √16+9
BC = √25
BC = 5
pls help me i will mark brainliest if you are right !
Answer:
second option
Step-by-step explanation:
diameter= 22 cm
radius = diameter/2
=22/2
11 cm
volume of a sphere = [tex]\frac{4}{3}*pie* r^3[/tex]
=[tex]\frac{4}{3} * 3.14 *11^3[/tex]
=4.186666 * 1331
=5572 . 5 cubic centimeters (cm^3)
The volume of a right cylinder is 277 cubic centimeters, and the
height is 3 centimeters (cm). What is the radius of the cylinder?
Answer:
3cm
use the formula for the volume of a cylinder
and substitute
−12 as a ratio of two integers.
Answer:
-12 can be written as the ratio of -24 and 2, for example.
Step-by-step explanation:
Ratio of a to b:
The ratio of a to b is given by the division of a by b, that is:
[tex]r = \frac{a}{b}[/tex]
−12 as a ratio of two integers.
Here, we want any division in which the result is -12. One example is:
[tex]-12 = \frac{-24}{2}[/tex]
-12 can be written as the ratio of -24 and 2, for example.
You are ordering a new home theater system that consists of a TV, surround sound system, and DVD player. You can choose from 66 different TVs, 1212 types of surround sound systems, and 1818 types of DVD players. How many different home theater systems can you build
Answer:
You can build 1296 different home theater systems.
Step-by-step explanation:
Fundamental counting principle:
States that if there are p ways to do a thing, and q ways to do another thing, and these two things are independent, there are p*q ways to do both things.
There are:
6 different TVs
12 types of surround sound systems.
18 types of DVD players.
How many different home theater systems can you build?
The components are independent, so, by the fundamental counting principle:
6*12*18 = 1296
You can build 1296 different home theater systems.
Exhibit 11-10 n = 81 s2 = 625 H0: σ2 = 500 Ha: σ2 ≠ 500 At 95% confidence, the null hypothesis _____. a. should not be rejected b. should be revised c. should be rejected d. None of these answers are correct
Answer:
Option C
Step-by-step explanation:
n = 81
s2 = 625
H0: σ2 = 500
Ha: σ2 ≠ 500
Test Statistics X^2 = (n-1)s^2/ σ2 = (81-1)*625/500
X^2 = 100
P value = 0.0646 for degree of freedom = 81-1 = 80
And X^2 = 100
At 95% confidence interval
Alpha = 0.05 , p value = 0.0646
p < alpha, we will reject the null hypothesis
At 95% confidence, the null hypothesis
Fill in the y values of the t–table for the function y = RootIndex 3 StartRoot x EndRoot
x y
−8
−1
0
1
8
Answer:
the answer will - 16
Step-by-step explanation:
because 8 minus 1 is 7 and plus 0 is also 7 then you have add 1 means you have to plus 1 and then their will be 8 and then plus another 8 and the answer will be minus 16
The y values of the table for the function will be -2, -1, 0, 1, and 2.
How to depict the values?The given function is y = 3✓x. Therefore, for x = -8, y = 3✓-8 = -2. For x = -2, y will be = 3✓-1 = -1.
For x = 0, y = 3✓0 = 0. When x = 1, y = 3✓1 = 1 and lastly when x = 8, y = 3✓8 = 2.
In conclusion, the y values of the table for the function will be -2, -1, 0, 1, and 2.
Learn more about t tables on:
https://brainly.com/question/12488423
Kenneth did of 1/3 of his laundry on Sunday and 7/15 of his laundry on monday. what fraction of laundry did kenneth do in total?
What is the quotient of the fractions below? 2/3÷5/4
answer:
2/3÷5/4 is equal to 8/15
Help me please with this math problem
Answer:
[tex]x=14[/tex]
Step-by-step explanation:
[tex](5x-14)+(8x+12)=180[/tex]
These two angles on the line is 180°
Solve the equation:
[tex]5x-14+8x+12=180[/tex]
[tex]5x+-14+8x+12=180[/tex]
[tex](5x+8x)+(-14+12)=180[/tex] {combine the like terms}
[tex]13x-2=180[/tex]
[tex]13x=180+2[/tex]
[tex]13x=182[/tex]
[tex]x=182/13[/tex]
[tex]x=14[/tex]
PROOF:
{substitute 14 in the place of x}
[tex](5(14)-14)+(8(14)+12)=180[/tex]
[tex]56+124=180[/tex]
[tex]180=180[/tex]
hope this helps....
What is the solution to the equation 1/h-5+2/h+5=16/h^2-25
9514 1404 393
Answer:
h = 7
Step-by-step explanation:
Perhaps you want the solution to ...
1/(h -5) +2/(h +5) = 16/(h^2 -25)
Parentheses are required around denominators that have math operations.
Multiply by (h^2-25) and solve the linear equation.
[tex]\displaystyle\frac{1}{h-5}+\frac{2}{h+5}=\frac{16}{h^2-25}\qquad\text{given}\\\\(h+5)+2(h-5)=16\qquad\text{multiply by $h^2-25$}\\\\3h-5=16\qquad\text{simplify}\\\\3h=21\qquad\text{add 5}\\\\\boxed{h=7}\qquad\text{divide by 3}[/tex]
Can someone answer with steps and explanation? Thanks.
Answer:
[tex]BC=9\sqrt{3}\approx15.59\text{ units}[/tex]
Step-by-step explanation:
Since Segment BOA is a diameter:
[tex]m\angle ACB=90[/tex]
Arc Ac and Arc CB are in a ratio of two to four. Since Segment BOA is a diameter, Arc ACB measures 180°. Letting the unknown value be x, we can write that:
[tex]2x+4x=180[/tex]
Hence:
[tex]x=30[/tex]
Thus, Arc CB = 120°. By the Inscribed Angle Theorem:
[tex]\displaystyle m\angle A=\frac{1}{2}\left(\stackrel{\frown}{CB}\right)=\frac{1}{2}\left(120)=60[/tex]
Therefore, ΔABC is a 30-60-90 triangle. Its sides are in the ratios shown in the image below.
Since AC is opposite from the 30° triangle, let AC = a.
We are given that AC = 9. Hence, a = 9.
BC is opposite from the 60° angle and it is given by a√3. Therefore:
[tex]BC=9\sqrt{3}\approx15.59\text{ units}[/tex]
What is sin(C)? Please explain.
Answer:
sin(C) = opposite side / hypotenuse
= 15/17
Answer:
[tex] \small \sf \: Sin ( C ) = \blue{ \frac{15}{17}} \\ [/tex]
Step-by-step explanation:
[tex] \small \sf \: Sin ( C ) = \frac {Opposite \: side }{Hypotenuse} \\ [/tex]
Where we have given :-
Opposite side = 15Hypotenuse = 17substitute the values, we get
[tex] \small \sf \: Sin ( C ) = \blue{ \frac{15}{17}} \\ [/tex]
Can someone please help me?
Answer:
The Answer for your question is B
Answer:
78%
Step-by-step explanation:
They are asking for spotted animals and dogs so
Spotted animals=40%
Dogs=38%
So just add them to get 78%
(Don’t get confused by the 12% spotted dogs those are from the 38%)
if 4,1,2 in middle is 21
if 2,1,4 in middle is 16
then 1,4,2 what is number in middle?
Answer:
5
Step-by-step explanation:
21-16=5
hope it helps!!
is this an Olympiad qn?
Miguel borrowed $1,800 for 2 years and ended up paying $180 in simple interest what was the interest rate
Answer: 103.534%
I used a calculator and everything
HELP I NEED TO PASS!!!!!
A. g(x) = 2x-1
B. g(x) = 2x + 1
C. g(x) = 2x –1
D. g(x) = 2x+1