Sonar is used to determine the speed of an object. A 38.0-kHz signal is sent out, and a 40.0-kHz signal is returned. If the speed of sound is 341 m/s, how fast is the object moving?

Answers

Answer 1

Answer:

The velocity is  [tex]v = 8.743 \ m/s[/tex]

Explanation:

From the question we are told that

    The frequency of the signal sent out  is  [tex]f_s = 38.0 \ kHz = 38.0 *10^{3} \ Hz[/tex]

    The frequency of the signal received is  [tex]f_r = 40.0 \ kHz = 40.0 *10^{3} \ Hz[/tex]

     The  speed of sound is  [tex]v_s = 341 \ m/s[/tex]

Generally the frequency of the sound received is  mathematically represented as

         [tex]f_r = f_s [\frac{v_s + v}{v_s - v} ][/tex]

where v is the velocity of the object

       =>      [tex]40 *10^{3} = 38 *10^{3} * [\frac{341 + v}{341 - v} ][/tex]

       =>      [tex]1.05263 = \frac{341+v }{341-v}[/tex]

       =>   [tex]358.94 - 1.05263v = 341 + v[/tex]

      =>    [tex]17.947 = 2.05263 v[/tex]

      =>    [tex]v = 8.743 \ m/s[/tex]


Related Questions

How much time will elapse if a radioisotope with a half-life of 88 seconds decays to one-sixteenth of its original mass?

Answers

Answer:

352 seconds are needed for the radioisotope to decay to one-sixteenth of its original mass.

Explanation:

The decay of radioisotopes are represented by the following ordinary differential equation:

[tex]\frac{dm}{dt} = -\frac{t}{\tau}[/tex]

Where:

[tex]t[/tex] - Time, measured in seconds.

[tex]\tau[/tex] - Time constant, measured in seconds.

[tex]m[/tex] - Mass of the radioisotope, measured in grams.

The solution of this expression is:

[tex]m(t) = m_{o}\cdot e^{-\frac{t}{\tau} }[/tex]

Where [tex]m_{o}[/tex] is the initial mass of the radioisotope, measured in kilograms.

The ratio of current mass to initial mass is:

[tex]\frac{m(t)}{m_{o}} = e^{-\frac{t}{\tau} }[/tex]

The time constant is now calculated in terms of half-life:

[tex]\tau = \frac{t_{1/2}}{\ln2}[/tex]

Where [tex]t_{1/2}[/tex] is the half-life of the radioisotope, measured in seconds.

Given that [tex]t_{1/2} = 88\,s[/tex], the time constant of the radioisotope is:

[tex]\tau = \frac{88\,s}{\ln 2}[/tex]

[tex]\tau \approx 126.957\,s[/tex]

Now, if [tex]\frac{m(t)}{m_{o}(t)} = \frac{1}{16}[/tex] and [tex]\tau \approx 126.957\,s[/tex], the time is:

[tex]t = -\tau \cdot \ln\frac{m(t)}{m_{o}}[/tex]

[tex]t = -(126.957\,s)\cdot \ln \frac{1}{16}[/tex]

[tex]t \approx 352\,s[/tex]

352 seconds are needed for the radioisotope to decay to one-sixteenth of its original mass.

If a convex lens were made out of very thin clear plastic filled with air, and were then placed underwater where n = 1.33 and where the lens would have an effective index of refraction n = 1, the lens would act in the same way
a. as a flat refracting surface between water and air as seen from the water side.
b. as a concave mirror in air.
c. as a concave lens in air.
d. as the glasses worn by a farsighted person.
e. as a convex lens in air.

Answers

Answer:

D. A convex lens in air

Explanation:

This is because the air tight plastic under water will reflect light rays in the same manner as a convex lens

Light of wavelength 550 nm is incident on a slit having a width of 0.200 mm. The viewing screen is 1.90 m from the slit. Find the width of the central bright fringe

Answers

Answer:

The width of Center bright fringe is 10.2mm

Explanation:

Given that if

Y/ L << 1 then

Sin theta will be approx Y/L

So sin theta approx Y/L = lamda/a

Y= a x lambda/a

By substituting

1.9x 10^ -3m x 550*10^-9/ 0.2 x 10^-3m

= 5.2mm

But

Change in y = 2y = 10.4mm

Astronomers think planets formed from interstellar dust and gases that clumped together in a process called? A. stellar evolution B. nebular aggregation C. planetary accretion D. nuclear fusion

Answers

Answer:

C. planetary accretion

Explanation:

Astronomers think planets formed from interstellar dust gases that clumped together in a process called planetary accretion.

Answer:

[tex]\boxed{\sf C. \ planetary \ accretion }[/tex]

Explanation:

Astronomers think planets formed from interstellar dust and gases that clumped together in a process called planetary accretion.

Planetary accretion is a process in which huge masses of solid rock or metal clump together to produce planets.

A wire carries current in the plane of this paper toward the top of the page. The wire experiences a ma netic force toward the right edge of the page. The direction of the magnetic field causing this force is:
A. in the plane of the page and toward the left edge
B. in the plane of the page and toward the bottom edge
C. upward out of the page
D. downward into the page

Answers

Answer:

D) True. In this case the thumb goes up the page, the fingers are extended out of the page and the palm points to the left

Explanation:

The magnetic force on a conductor is given by

        F = i L x B

bold letters indicate vectors. We can write this expression in the form of magnitudes

         F = i L B sin θ

The direction of the force can be found by the rule of the right hand, the thumb points in the direction of the current, the fingers extended in the direction of the magnetic field and the palm gives the direction of the force

Let's apply this expression to the case presented.

A) False. In this case the force is out of the page and is in contradiction with the real force

B) False. In this case the force is zero since the displacement of the current and the field would be parallel

C) False. In this case the force is to the left

D) True. In this case the thumb goes up the page, the fingers are extended out of the page and the palm points to the left

You have a lightweight spring whose unstretched length is 4.0 cm. First, you attach one end of the spring to the ceiling and hang a 1.8 g mass from it. This stretches the spring to a length of 5.1 cm . You then attach two small plastic beads to the opposite ends of the spring, lay the spring on a frictionless table, and give each plastic bead the same charge. This stretches the spring to a length of 4.3 cm .

Requried:
What is the magnitude of the charge (in nC) on each bead?

Answers

Answer:

2.2nC

Explanation:

Call the amount by which the spring’s unstretched length L,

the amount it stretches while hanging x1

and the amount it stretches while on the table x2.

Combining Hooke’s law with Newton’s second law, given that the stretched spring is not accelerating,

we have mg−kx1 =0, or k = mg /x1 , where k is the spring constant. On the other hand,

applying Coulomb’s law to the second part tells us ke q2/ (L+x2)2 − kx2 = 0 or q2 = kx2(L+x2)2/ke,

where ke is the Coulomb constant. Combining these,

we get q = √(mgx2(L+x2)²/x1ke =2.2nC

6. You push an object, initially at rest, across a frictionless floor with a constant force for a time interval t, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v?

Answers

Answer:

   t = t₀ / 2

Explanation:

In this exercise we must use Newton's second law

          F = m a

          a = F / m

now we can use kinematics

  as in object part of rest (v₀ = 0)

        v =a t₀

        t₀ = v / a

these results are with the first experiment

now repeat the experiment, but F = 2F₀

           a = 2F₀ / m = 2 a₀

          v = 2 a₀ t

          t = v / 2a₀

          t = t₀ / 2

The time interval that is required to reach the same final speed (V) is equal to [tex]t=\frac{\Delta t}{2}[/tex].

Given the following data:

Initial speed = 0 m/s (since the object is at rest)Final speed = VTime = [tex]\Delta t[/tex]Speed = V

To find the time interval that is now required to reach the same final speed (V), we would apply Newton's Second Law of Motion:

Mathematically, Newton's Second Law of Motion is given by this formula;

[tex]F = \frac{M(V-U)}{t}[/tex]

Where:

F is the force.V is the final velocity.U is the initial velocity.t is the time.

Substituting the given parameters into the formula, we have;

[tex]F = \frac{M(V-0)}{\Delta t}\\\\F = \frac{MV}{\Delta t}[/tex]

When the experiment is repeated, the magnitude of the force is doubled:

[tex]F = 2F[/tex]

Now, we can find the time interval that is required to reach the same final speed (V):

[tex]F = \frac{M(V-0)}{t}\\\\t=\frac{MV}{F}[/tex]

Substituting the value of F, we have:

[tex]t=\frac{MV}{2F} \\\\t=\frac{MV}{\frac{2MV}{\Delta t}} \\\\t=MV \times \frac{\Delta t}{2MV} \\\\t=\frac{\Delta t}{2}[/tex]

Read more here: https://brainly.com/question/24029674

An L-R-C series circuit has L = 0.450 H, C=2.50×10^−5F, and resistance R.

Required:
a. What is the angular frequency of the circuit when R = 0?
b. What value must R have to give a decrease in angular frequency of 10.0 % compared to the value calculated in Part a.

Answers

Answer:

298rad/s and 116.96 ohms

Explanation:

Given an L-R-C series circuit where

L = 0.450 H,

C=2.50×10^−5F, and resistance R= 0

In this situation we have a simple LC circuit with angular frequency

Wo = 1√LC

= 1/√(0.450)(2.50×10^-5)

= 1/√0.00001125

= 1/0.003354

= 298rad/s

B) Now we need to find the value of R such that it gives a 10% decrease in angular frequency.

Wi/W° = (100-10)/100

Wi/W° = 90/100

Wi/W° = 0.90 ............... 1

Angular frequency of oscillation

The complete aspect of the solution is attached, please check.

a. The angular frequency of the circuit when R = 0 Ohms is 294.12 rad/s.

b. The value R must have to give a decrease in angular frequency of 10.0 % compared to the initial value is equal to 116.96 Ohms.

Given the following data:

Inductance, L = 0.450 HenryCapacitance, C = [tex]2.50\times 10^{-5}[/tex] Farads

a. To determine the angular frequency of the circuit when R = 0 Ohms:

Mathematically, the angular frequency of a LC circuit is given by the formula:

[tex]\omega = \frac{1}{\sqrt{LC} } \\\\\omega =\frac{1}{\sqrt{0.450 \times 2.50\times 10^{-5}}} \\\\\omega =\frac{1}{\sqrt{1.125 \times 10^{-5}}} \\\\\omega = \frac{1}{0.0034} \\\\\omega = 294.12\;rad/s[/tex]

b. To find the value R must have to give a decrease in angular frequency of 10.0 % compared to the value calculated above:

The mathematical expression is given as follows:

[tex]\frac{\omega_f}{\omega_i} = \frac{100-10}{100} \\\\\frac{\omega_f}{\omega_i} =\frac{90}{100} \\\\\frac{\omega_f}{\omega_i} =0.9[/tex]

[tex](\frac{\omega_f}{\omega_i})^2 = 1 - \frac{R^2C}{4L} \\\\0.90^2=1 - \frac{R^2C}{4L}\\\\R=\sqrt{\frac{4L(1-0.81)}{C}} \\\\R=\sqrt{\frac{4\times 0.450 \times (0.19)}{2.50\times 10^{-5}}}\\\\R = \sqrt{\frac{0.342}{2.50\times 10^{-5}} }\\\\R =\sqrt{13680}[/tex]

R = 116.96 Ohms.

Read more: https://brainly.com/question/23754122

Are Quantum Physics, Quantum mechanics,Quantum Engagement same?
or, Do they branch of each others ​

Answers

Answer:

The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics lacking in classical mechanics. ... In the case of entangled particles, such a measurement will affect the entangled system as a whole

Explanation:

Answer:

quantum entanglement is thought to be one of the trickiest concepts in science, but the core issues are simple. And once understood, entanglement opens up a richer understanding of concepts such as the “many worlds” of quantum theory.

Explanation:

A hot cup of coffee is placed on a table. Which will happen because of conduction? Answer options with 4 options A. The temperature of the coffee will decrease while the temperature of the table decreases. B. The temperature of the coffee will increase while the temperature of the table increases. C. The temperature of the coffee will decrease while the temperature of the table increases. D. The temperature of the coffee will increase while the temperature of the table decreases.

Answers

Answer:

C.

Explanation:

C. The temperature of the coffee will decrease while the temperature of the table increases.

A woman was told in 2020 that she had exactly 15 years to live. If she travels away from the Earth at 0.8 c and then returns at the same speed, the last New Year's Day the doctors expect her to celebrate is:

Answers

Answer:

2035

Explanation:

The doctor does not travel with the woman, and therefore, he won't experience any relativistic effect on his time. The doctor will judge time by the time here on earth. Technically, the last new year's day the doctor, who is here on earth, would expect the woman to celebrate will be in 2020 + 15 years = 2035

To celebrate a victory, a pitcher throws her glove straight upward with an initial speed of 5.0 m/s. How much time does it take for the glove to return to the pitcher

Answers

Answer:

The glove takes 1.02s to return to the pitchers hand.

Explanation:

Given;

initial velocity the pitcher's glove, u = 5 m/s

Apply kinematic equation

s = ut - ¹/₂gt²

where;

g is acceleration due to gravity = 9.8 m/s²

t is the time takes the glove to return to the pitchers hand

s is the displacement of the glove, which will be equal to zero when the glove returns to the pitchers hand. (s = 0)

0 = ut - ¹/₂gt²

ut = ¹/₂gt²

u = ¹/₂gt

gt = 2u

t = (2u) / g

t = (2 x 5) / 9.8

t = 1.02 s

Therefore, the glove takes 1.02s to return to the pitchers hand.

Find the minimum thickness (in nm) of a soap bubble that appears green when illuminated by white light perpendicular to its surface. Take the wavelength to be 549 nm, and assume the same index of refraction as water (nw

Answers

Answer:

103nm

Explanation:

Pls see attached file

A stationary coil is in a magnetic field that is changing with time. Does the emf induced in the coil depend

Answers

Answer:

Explanation:

The e.m.f induced in the coil depend on the following :

(a) No. of turns in the coil

(b) Cross-sectional Area of the coil

(c) Magnitude of Magnetic field

(d) Angular velocity of the coil

You are performing an experiment that requires the highest-possible magnetic energy density in the interior of a very long current-carrying solenoid. Which of the following adjustments increases the energy density?a. Increasing only the length of the solenold while keeping the turns per unit lengh flxed. b. Increasing the number of turns per unit length on the solenold. c. Increasing the cross-sectional area of the solenoid. d. None of these. e. Increasing the current in the solenoid.

Answers

Answer:

The correct choice is B & E.  

Explanation:

A solenoid is a coil of wire (usually copper) which is used as an electromagnet. Solenoids are used to convert electrical energy to mechanical energy. When this type of device is created it is also called a solenoid. One can increase the energy density within the solenoid or the coil by upping the electric current in the coil.

Cheers!

A stone is dropped from the upper observation deck of a tower, 50 m above the ground. (Assume g = 9.8 m/s2.) (a) Find the distance (in meters) of the stone above ground level at time t. h(t) = (b) How long does it take the stone to reach the ground? (Round your answer to two decimal places.) s (c) With what velocity does it strike the ground? (Round your answer to one decimal place.) m/s (d) If the stone is thrown downward with a speed of 9 m/s, how long does it take to reach the ground? (Round your answer to two decimal places.)

Answers

Answer:

A. Using displacement =Ut + 1/2gt²

=> 0 + 1/2 (-9.8)t²

= -4.9t²

So

h(t) = 50+ displacement

= 50 - 4.9t²

B. To reach the ground

h(t) = 0

So

50-4.9t²= 0

t = √ (50/4.9)

= 3.2s

C. Using

V = u+ gt

U= 0

V= - 9.8(3.2)

= 31.4m/s

D. If u = -9m/s

Then s = ut + 1/2gt²

5t- 1/2gt²

But distance from the ground is

=.> 50-5t- 4.8t²= 0

So t solving the quadratic equation

t= 3.58s

(a) The distance of the stone above the ground level at time t is [tex]h(t) = 50 - 4.9t^2[/tex]

(b) The time taken for the stone to strike the ground is 3.19 s.

(c) The velocity of the stone when it strikes the ground is 31.4 m/s.

(d) The time taken for the stone to reach the ground when thrown at the given speed is 2.41 s.

The given parameters;

height above the ground, h₀ = 50 m

The distance of the stone above the ground level at time t is calculated as;

[tex]h(t) = h_0 - ut - \frac{1}{2} gt^2\\\\h(t) = 50 - 0 -0.5\times 9.8t^2\\\\h(t) = 50 - 4.9t^2[/tex]

The time taken for the stone to strike the ground is calculated as;

[tex]t = \sqrt{\frac{2h}{g} } \\\\t = \sqrt{\frac{2\times 50}{9.8} } \\\\t = 3.19 \ s[/tex]

The velocity of the stone when it strikes the ground is calculated as;

[tex]v =u + gt\\\\v = 0 + 3.2 \times 9.8\\\\v = 31.4 \ m/s[/tex]

The time taken for the stone to reach the ground when thrown at speed of 9 m/s is calculated as;

[tex]50 = 9t + \frac{1}{2} (9.8)t^2\\\\50 = 9t + 4.9t^2\\\\4.9t^2 + 9t - 50 = 0\\\\a = 4.9 \, \ b = 9, \ \ c = -50\\\\solve \ the \ quadratic \ equation\ using \ formula \ method\\\\t = \frac{-b \ \ + /- \ \ \sqrt{b^2 - 4ac} }{2a} \\\\t = \frac{-9 \ \ + /- \ \ \sqrt{(9)^2 - 4(4.9 \times -50)} }{2(4.9)} \\\\t = 2.41 \ s \ \ or \ \ - 4.24 \ s[/tex]

Thus, the time taken for the stone to reach the ground when thrown at the given speed is 2.41 s.

Learn more here:https://brainly.com/question/9527588

As a skydiver falls, his potential energy ___ and his kinetic energy __​
increases,increases
increases,decreases
decreases,increases
decreases, decreases

Answers

Answer:

Hey there!

PE=mgh, so as height decreases, so does the potential energy.

KE=mv^2, so as velocity increases, kinetic energy increases.

Thus, the correct answer would be Decreases, Increases.

Let me know if this helps :)

Calcular la resistencia de una varilla de grafito de 170 cm de longitud y 60 mm2. Resistividad grafito 3,5 10-5 Ωm

Answers

Answer:

R = 0.992 Ω

Explanation:

En esta pregunta, dada la información que contiene, debemos calcular la resistencia de la varilla de grafito.

Matemáticamente,

Resistencia = (resistividad * longitud) / Área De la pregunta;

Resistividad = 3,5 * 10 ^ -5 Ωm

longitud = 170 cm = 1,7 m

Área = 60 mm ^ 2 = 60/1000000 = 6 * 10 ^ -5 m ^ 2

Conectando estos valores a la ecuación anterior, tenemos;

Resistencia = (3.5 * 10 ^ -5 * 1.7) / (6 * 10 ^ -5) =

(3.5 * 1.7) / 6 = 0.992 Ω

Radar is used to determine distances to various objects by measuring the round-trip time for an echo from the object. (a) How far away (in m) is the planet Venus if the echo time is 900 s? m (b) What is the echo time (in µs) for a car 80.0 m from a Highway Patrol radar unit? µs (c) How accurately (in nanoseconds) must you be able to measure the echo time to an airplane 12.0 km away to determine its distance within 11.5 m? ns

Answers

Answer:

a) 1.35 x 10^11 m

b) 0.53 µs

c) 8 ns

Explanation:

Radar involves the use of radio wave which has speed c = 3 x 10^8 m/s

a) for 900 s,

The distance for a round trip = v x t

==>  (3 x 10^8) x 900 =  2.7 x 10^11 m

The distance of Venus is half this round trip distance = (2.7 x 10^11)/2 = 1.35 x 10^11 m

b) for a 80.0 m distance of the car from the radar source, the radar will travel a total distance of

d = 2 x 80 = 160 m

the time taken = d/c = 160/(3 x 10^8) = 5.3 x 10^-7 s = 0.53 µs

c) accuracy in distance Δd = 11.5 m

Δt = accuracy in time = Δd/c = 11.5/(3 x 10^8) = 3.8 x 10^-8 = 38 ns

Tech A says parallel circuits are like links in a chain. Tech B says total current in a parallel circuit equals the sum of the current flowing in each branch of the circuit. Who is correct?

Answers

Answer: Only Tech B is correct.

Explanation:

First, tech A is wrong.

The circuits that can be compared with links in a chain are the series circuit, and it can be related to the links in a chain because if one of the elements breaks, the current can not flow furthermore (because the elements in the circuit are connected in series) while in a parallel circuit if one of the branches breaks, the current still can flow by other branches.

Also in a parallel circuit, the sum of the currents of each path is equal to the current that comes from the source, so Tech B is correct, the total current is equal to the sum of the currents flowing in each branch of the circuit.

Select the situation for which the torque is the smallest.

a. A 200 kg piece of silver is placed at the end of a 2.5 m tree branch.
b. A 20 kg piece of marble is placed at the end of a 25 m construction crane arm.
c. A 8 kg quartz rock is placed at the end of a 62.5 m thin titanium rod.
d. The torque is the same for two cases.
e. The torque is the same for all cases.

Answers

Answer:

e. The torque is the same for all cases.

Explanation:

The formula for torque is:

τ = Fr

where,

τ = Torque

F = Force = Weight (in this case) = mg

r = perpendicular distance between force an axis of rotation

Therefore,

τ = mgr

a)

Here,

m = 200 kg

r = 2.5 m

Therefore,

τ = (200 kg)(9.8 m/s²)(2.5 m)

τ = 4900 N.m

b)

Here,

m = 20 kg

r = 25 m

Therefore,

τ = (20 kg)(9.8 m/s²)(25 m)

τ = 4900 N.m

c)

Here,

m = 8 kg

r = 62.5 m

Therefore,

τ = (8 kg)(9.8 m/s²)(62.5 m)

τ = 4900 N.m

Hence, the correct answer will be:

e. The torque is the same for all cases.

A uniform meter stick is hung at its center from a thin wire. It is twisted and oscillates with a period of 5 s. The meter stick is then sawed off to a length of 0.76 m, rebalanced at its center, and set into oscillation. With what period does it now oscillate?

Answers

Answer:

The new time period is  [tex]T_2 = 3.8 \ s[/tex]

Explanation:

From the question we are told that

  The period of oscillation is  [tex]T = 5 \ s[/tex]

   The  new  length is  [tex]l_2 = 0.76 \ m[/tex]

Let assume the original length was [tex]l_1 = 1 m[/tex]

Generally the time period is mathematically represented as

         [tex]T = 2 \pi \sqrt{ \frac{ I }{ mgh } }[/tex]

Now  I is the moment of inertia of the stick which is mathematically represented as

           [tex]I = \frac{m * l^2 }{12 }[/tex]

So

        [tex]T = 2 \pi \sqrt{ \frac{ m * l^2 }{12 * mgh } }[/tex]

Looking at the above equation we see that

        [tex]T \ \ \ \alpha \ \ \ l[/tex]

=>    [tex]\frac{ T_2 }{T_1} = \frac{l_2}{l_1}[/tex]

=>    [tex]\frac{ T_2}{5} = \frac{0.76}{1}[/tex]

=>     [tex]T_2 = 3.8 \ s[/tex]

A weightlifter works out at the gym each day. Part of her routine is to lie on her back and lift a 43 kg barbell straight up from chest height to full arm extension, a distance of 0.53 m .
Part A: How much work does the weightlifter do to lift the barbell one time?
Part B: If the weightlifter does 23 repetitions a day, what total energy does she expend on lifting, assuming a typical efficiency for energy use by the body?
Part C: How many 500 Calorie donuts can she eat a day to supply that energy?

Answers

Answer:

A) Workdone = 223.57 N-m

B) 22357 J of energy

C) Number of donuts = 10.7 donuts

Explanation:

A) The work done is calculated from the formula;. Work done = Force × Distance

We are given;

Mass; m = 43 kg

Distance = 0.53 m

Force(weight) = mg = 43 × 9.81

Thus;

Work done = 43 × 9.81 × 0.53

Workdone = 223.57 N-m

B) We are told she does 23 repetitions a day.

Thus, we assume 23% efficiency.

So, Work = Energy

Thus;

At 100% efficiency;

Energy = (223.57/100%) × 23 repetitions = 5142.11 J

Now, since she is only 23% efficient, she will expend; 5142.11/0.23 J = 22357 J of energy to do 5390 J of work.

C) from conversions; 4.18 J = 1 calorie

Thus;

22357 J ÷ 4.18 J/cal = 5348.565 calories

We how many 500 calorie donuts she can eat in a day to supply that energy.

Thus;

Number of donuts = 5348.565 cal ÷ 500 cal /donut

Number of donuts = 10.7 donuts

A hammer is used to hit a nail into a board. Which statement is correct about the forces at play between the nail and the hammer?
O The nail exerts a much smaller force on the hammer in the opposite direction
O The nail exerts a much smaller force on the hammer in the same direction.
The nail exerts an equal force on the hammer in the same direction.
O The nail exerts an equal force on the hammer in the opposite direction.

Answers

Answer:

reviewing the final statements, the correct one is the quarter

The nail exerts an equal force on the hammer in the opposite direction.

Explanation:

This is an action-reaction problem or Newton's third law, which states that forces in naturals occur in pairs.

This is the foregoing, the hammer exerts a force on the nail of magnitude F and it will direct downwards, if we call this action and the nail exerts a force on the hammer of equal magnitude but opposite direction bone directed upwards, each force is applied in one of the bodies.

The difference in result that each force is that the force between the nail exerts a very high pressure (relation between the force between the nail area), instead the area of ​​the hammer is much greater, therefore the pressure is small.

When reviewing the final statements, the correct one is the quarter

The nail exerts an equal force on the hammer in the opposite direction.

What is the separation in meters between two slits for which 594 nm orange light has its first maximum at an angle of 32.8°?

Answers

Answer:

1.1micro meter

Explanation:

Given that

Constructive interference is

ma = alpha x sin theta

Alpha = 1 x 594 x10^ -9/ sin 32.8°

= 1.1 x 10^ -6m

Explanation:

The magnitude of the magnetic field at point P for a certain electromagnetic wave is 2.12 μT. What is the magnitude of the electric field for that wave at P? (c = 3.0 × 108 m/s)

Answers

Answer:

The electric field is  [tex]E = 636 \ V/m[/tex]

Explanation:

From the question we are told that

     The magnitude of magnetic field is [tex]B = 2.12 \mu T = 2.12*10^{-6} \ T[/tex]

      The value for speed of light is  [tex]c = 3.0 *10^8 \ m/s[/tex]

Generally the magnitude of the electric field at point P is

        [tex]E = B * c[/tex]

substituting values

         [tex]E = 2.12 *10^{-6} * 3.0 *10^{8}[/tex]

         [tex]E = 636 \ V/m[/tex]

The magnitude of electric field for the wave at point P is 636 V/m.

Given data:

The strength of magnetic field at point P is, [tex]B = 2.12 \;\rm \mu T=2.12 \times 10^{-6} \;\rm T[/tex].

The speed of light is, [tex]c = 3.0 \times 10^{8} \;\rm m/s[/tex].

The given problem is based on the concept of electric field and magnetic field. The electromagnetic wave works on the principle of oscillating magnetic field and electric field at the same region. We can find any of the two using the expression,

[tex]E = B \times c[/tex]

here,

E is the strength of electric field.

Solving as,

[tex]E = (2.12 \times 10^{-6}) \times (3 \times 10^{8})\\\\E = 636 \;\rm V/m[/tex]

Thus, we can conclude that the magnitude of electric field for the wave at point P is 636 V/m.

Learn more about the electric field here:

https://brainly.com/question/15800304

A velocity selector can be used to measure the speed of a charged particle. A beam of particles is directed along the axis of the instrument. A parallel plate capacitor sets up an electric field E which is oriented perpendicular to a uniform magnetic field B. If the plates are separated by 3 mm and the value of the magnetic field is 0.3 T, what voltage between the plates will allow particles of speed 5 x 105 m/s to pass straight through without deflection? A. 70 V B. 140 V C. 450 V D. 1,400 V E. 2,800 V

Answers

Answer:

C. 450v

Explanation:

Using

Voltage= B*distance of separation*velocity

3mm x 0.3T x 5E5m/s

= 450v

A locomotive is pulling three train cars along a level track with a force of 100,000N. The car next to the locomotive has a mass of 80,000kg, next one, 50,000kg, and the last one, 70,000 kg. you can neglect the friction on the cars being pulled.
A) what if the magnitude of the force between that the 80,000-kg car exerts on the 50,000-kg car?
B) what is the magnitude of the force that the 50,000-kg car exerts on the 70,000-kg car?

Answers

Answer:

a) 60000 N

b) 35000 N

Explanation:

Force from locomotive = 100000 N

mass of first car = 80000 kg

mass of second car = 50000 kg

mass of third car = 70000 kg

friction is neglected in this system

Total mass of the cars = 80000 + 50000 + 70000  = 200000 kg

All the car in the system will accelerate at the same rate since they are pulled by the same force

We know that force F = ma

where

a is the acceleration of the cars

m is the total mass in the system

from this we can say that

a = F/m

a = 100000/200000 = 0.5 m/s^2

a) The total mass involved in this case = mass of the last two cars after the 80000 kg car =  50000 + 70000 = 120000 kg

therefore force exerted F = ma

F = 0.5 x 120000 = 60000 N

b) The total mass in this case = mass of the third car only = 70000 kg

F = ma

F = 70000 x 0.5 = 35000 N

An optical disk drive in your computer can spin a disk up to 10,000 rpm (about 1045 rad/s ). If a particular disk is spun at 998.0 rad/s while it is being read, and then is allowed to come to rest over 0.502 seconds , what is the magnitude of the average angular acceleration of the disk?

Answers

Answer:

1988.05 rad/s^2

Explanation:

The angular speed of the optical disk ω = 998.0 rad/s

the time taken to come to rest t = 0.502 s

The magnitude of the average angular acceleration ∝ = ω/t

∝ = 998.0/0.502 = 1988.05 rad/s^2

Which one of the following lists gives the correct order of the electromagnetic spectrum from low to high frequencies?
A) radio waves, infrared, microwaves, ultraviolet, visible, x-rays, gamma rays
B) radio waves, ultraviolet, x-rays, microwaves, infrared, visible, gamma rays
C) radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays
D) radio waves, microwaves, visible, x-rays, infrared, ultraviolet, gamma rays
E) radio waves, infrared, x-rays, microwaves, ultraviolet, visible, gamma rays

Answers

Answer:

C) radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays

Explanation:

radio waves have lowest  energy , lowest  frequency and highest  wavelength

gamma rays  have highest  energy , highest  frequency and least  wavelength

Answer: C

Explanation:

Other Questions
Washington Gladdens ideas would most closely be tied to which period in US history? Bar-code readers are typically used to track large numbers of inventory items, as in grocery store inventory and checkout, package tracking, warehouse inventory control, and zip code routing for postal mail.A. TrueB. False 14. Twice the sum of a number and eight what happened to the sailor trapped in the squid's tentacle in 20000 leagues under the seaa. He was blinded by the squid b. He was dragged into the seac. He was covered in black liquidd. He was saved by captain Nemo Please help!Without the discovery of magnetic reversals recorded on the ocean floor, scientistsA. could not confirm the usefulness of sonarB. could destroy the hypothesis of continental driftC. could not provide a mechanism for moving continentsD. could explain how the seafloor was being destroyed When using science to investigate physical phenomena, which characteristic of the event must exist?predictablemeasurableprovablereadableREAD NEXT SECTIONASK FOR HELP An elements _____ shows the number of protons in its atom. Cecil says 'shut up and pay up. The highest compliment you can pay someone is to be jealous of them'. Give two meanings that could be implied from this quotation. 12. 12 ounces is roughly the same asO A. 340 grams.B. 356 grams.O C. 400 grams.O D. 120 grams.Mark for review (Will be highlighted on the movin SOMEONE PLS HELP ME WITH THIS SPANIDH QUESTION ASAPPPP!!! T-T *Completa el espacio en blanco con la mejor respuesta. El inocente siempre _________ en la crcel demandar sufrir sufre sufriendo Drag each tile to the correct box. Place the items in order from lowest to highest degree of internal organization. Please answer 1st at the top and last at the botttom Which of the following statements is true of the new product development process? Question 8 options: 1) Commercialization is the process of inviting broad communities of people such as customers, employees, and scientists into the new product innovation process. 2) The purpose of the idea screening stage is to create a large number of ideas. 3) The concept testing stage is the stage at which the product and its proposed marketing program are introduced into realistic market settings. 4) Under the business analysis stage, if the new product satisfies the company's objectives, the product then moves to the product development stage. 5) A product concept is the way consumers perceive an actual or potential product. HELP :Write the expression as thesine or cosine of an angle. * Graph these numbers on a number line.-5,3, -2,1-5 a) Simplify the expression and explain each step. (2 points)4(3x+2) -2= ? If a person invests $250 at 9% annual interest, find the approximate value of the investment at the end of 15 years 08.01) Which of the following statements shows a characteristic of a statistical question? (4 points) Select one: a. The question is focused. b. The distribution can be broken into categories. c. The question asks for a quantitative response. d. The question allows for surveys to be conducted Design a voltage divider to provide the following approximate voltages with respect to ground using a 30 V source: 8.18 V, 14.7 V, and 24.6 V. The current drain on the source must be limited to no more than 1 mA. The number of resistors, their values, and their wattage ratings must be specified. A schematic showing the circuit arrangement and resistor placement must be provided of a portfolio. The beta of four stocksG, H, I, and Jare , , , and , respectively. What is the beta of a portfolio with the following weights in each asset: LOADING...? What is the beta of portfolio 1? NEDD HELP ASAP DRIVERS EDUCATION give at least three precautions the driver should take when driving in fog and the reasons for taking these precautions