9514 1404 393
Answer:
B. 4
Step-by-step explanation:
The product of segment lengths to the near and far circle intercepts is the same for both secants.
5(5 +(x-1)) = 4(4 +(x+2))
5(x +4) = 4(x +6) . . . . . simplify inside parentheses
5x +20 = 4x +24 . . . eliminate parentheses
x = 4 . . . . . . . . . . . . subtract 20+4x
What is AE?
Enter your answer in the box.
units
Answer:
AE = 18
Step-by-step explanation:
The triangles must be similar so we can use ratios
2x+4 12
-------- = ---------
x+8 10
Using cross products
(2x+4)10 = 12 (x+8)
20x +40 = 12x+96
Subtract 12x from each side
20x-12x +40 = 12x-12x +96
8x +40 = 96
Subtract 40 from each side
8x = 96-40
8x = 56
Divide by 8
x = 56/8
x = 7
AE = 2x+4 = 2(7) +4 = 14+4 = 18
Can I please get help it’s urgent . Find the lateral surface area and volume of the solid object.
A random number is selected from the interval [6.35, 10]. Find the probability that the number is within a distance of 0.25 from an even integer. (Answer as a decimal number, and round to 4 decimal places).
Let X be a random number selected from the interval. Then the probability density for the random variable X is
[tex]f_X(x)=\begin{cases}\dfrac1{10-6.35}=\dfrac1{3.65}\approx0.2740&\text{if }6.35\le x\le 10\\0&\text{otherwise}\end{cases}[/tex]
8 and 10 are the only even integers that fit the given criterion (6 is more than 0.25 away from 6.35), so that we're looking to compute
P(|X - 8| < 0.25) + P(|X - 10| < 0.25)
… = P(7.75 < X < 8.25) + P(9.75 < X < 10.25)
… = P(7.75 < X < 8.25) + P(9.75 < X < 10)
(since P(X > 10) = 0)
… = 0.2740 (8.25 - 7.75) + 0.2740 (10 - 9.75)
… = 0.2055
:
The width of a rectangle is 5 cm more than triple its length. The perimeter of the
rectangle is 240 cm. What is the length and width of the rectangle?
9514 1404 393
Answer:
length: 28.75 cmwidth: 91.25 cmStep-by-step explanation:
Let L represent the length of the rectangle. Then the width is W=5+3L, and the perimeter is ...
P = 2(L+W)
240 = 2(L +(5 +3L))
120 = 5 +4L
115 = 4L
115/4 = L = 28.75 . . . . cm
W = 5+3L = 5 +3(28.75) = 91.25 . . . . cm
The length and width of the rectangle are 28.75 cm and 91.25 cm.
PAIesung
0 Weber
chool Careers
Reading list
- Blake bought a motorcycle for $550 last year and sold it for $330 this year. What is his sale
price as a percentage of his purchase price?
Answer:
The sale price was 60% of the purchase price.
Step-by-step explanation:
Given that Blake bought a motorcycle for $ 550 last year and sold it for $ 330 this year, to determine what is his sale price as a percentage of his purchase price, the following calculation must be performed:
550 = 100
330 = X
330 x 100/550 = X
33000/550 = X
60 = X
Therefore, the sale price was 60% of the purchase price.
Distance between two points
What is the length of the line?
Answer:
c
Step-by-step explanation:
that is the procedure above
A quality-conscious disk manufacturer wishes to know the fraction of disks his company makes which are defective.
a. Suppose a sample of 865 floppy disks is drawn. Of these disks, 112 were defective. Using the data, estimate the proportion of disks which are defective.
b. Suppose a sample of 865 floppy disks is drawn. Of these disks, 112 were defective. Using the data, construct the 95% confidence interval for the population proportion of disks which are defective.
Answer:
a) 0.1295
b) The 95% confidence interval for the population proportion of disks which are defective is (0.1071, 0.1519).
Step-by-step explanation:
Question a:
112 out of 865, so:
[tex]\pi = \frac{112}{865} = 0.1295[/tex]
Question b:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 865, \pi = 0.1295[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.1295 - 1.96\sqrt{\frac{0.1295*0.8705}{865}} = 0.1071[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.1295 + 1.96\sqrt{\frac{0.1295*0.8705}{865}} = 0.1519[/tex]
The 95% confidence interval for the population proportion of disks which are defective is (0.1071, 0.1519).
write your answer in simplest radical form
Answer:
[tex]5 \sqrt{2 } [/tex]
Step-by-step explanation:
In a 45 45 90 triangle, the hypotenuse is equal to
[tex]x \sqrt{2} [/tex]
where x is the length of a leg of the triangle
simplify 2√3 x 3√8
i’ll give u brainiest pls
Answer:
[tex]12 \sqrt{6} [/tex]
Step-by-step explanation:
[tex]2 \sqrt{3} \times 3 \sqrt{8} \\ (2 \times 3) \sqrt{(3 \times 8)} \\ 6 \sqrt{24} \\( 6 \times 2) \sqrt{6 } \\ 12 \sqrt{6} [/tex]
simplify
log(125) + log(625) / log(25) - log(5)
Answer:
3.39794000867
Step-by-step explanation:
first add log 125 and 625 and divide the answer by log 25 and minus the answer by 5
Answer:
The answer is 7.
what shape is the 1st one? I already know the second one
the first one is a quadrilateral
Step-by-step explanation:
a quadrilateral have four side
The room numbers of two adjacent classrooms are two consecutive odd numbers. If their sum is 860, find the classroom numbers
Answer:
429 & 431
Step-by-step explanation:
Consecutive numbers are numbers that come right after the other.
Let x = first room number
[tex]x+x+2=860\\2x+2=860\\2x=858\\x=429\\\\(429) + 2 = 431[/tex]
Therefore, the two room numbers are 429 and 431.
©/17
Correct
Question 1 of 17, Step 1 of 1
Write a mixed number to describe the length of the ribbon shown in the figure below.
Please enter your answer in the box below.
Inches
Answer
How to enter your answer
If your answer is a whole number, enter it in the left most box and leave the numerator and denominator boxes blank.
9514 1404 393
Answer:
3 3/8 inches
Step-by-step explanation:
If you spend a little time looking at the marks on the ruler, you see that the smallest marks divide each inch into 8 parts. The ribbon comes to the 3rd small mark* after the 3-inch mark, so the length of the ribbon is 3 3/8 inches.
_____
* Technically, it is the second small mark, as the marks are small, medium, small. It marks the end of the third space, where each space is 1/8 inch.
Can’t find answers online to check mine.
Answer:
3. 100% = 1
3/4 = 0.75
Now, 0.75 is halfway between 0.5 and 1, so Chris is correct.
4. 10% = 10/100 = 0.1
3/5 = 0.6
Now, 0.2 is not halfway between 0.1 and 0.6, so Emily is wrong.
Answer:
3 đúng 4 wrong
Step-by-step explanation:
100%=1
giữa 0, 5 và 1 =(0,5+1)/2=3/4
10%= 0,1
giữa 0,1 và 3/5 =(0,1+3/5)/2= 0,35 #0,2
how old is sherif now ? ahmed is eight years younger than sherif in seven years, the sum of their ages will be 7/10 th of 100
Answer:
32year
Step-by-step explanation:
let Ahmed be x years then sheriff will be x+8
in 7years time
sheriff will be x+8+7=x+15
Then Ahmed will be x+7
sum of their ages will be 7\10×100=70years
x+15+x+7=70
collect like terms
2x+22=70
2x=70-22
2x/2=48/2
x=24years
Sheriff=24+8
32years
Plz show steps for this
Answer: Choice D. 3 : r=3
Step-by-step explanation:
Easiest method and probably only method given the graph without knowing exact points besides an asymptote at x=-3.
Since we know there is an asymptote at x=-3, we just solve for the denominator and find r, when x=-3.
We are setting equation equal to 0, because when the denominator is 0, the graph has an asymptote at that point.
x+r=0
-3+r=0
r=3
Answer:
r=3
Step-by-step explanation:
please help me with this on the image
Answer:
6ab
Step-by-step explanation:
Mr. Thomas invested an amount of ₱13,900 divided in two different schemes A and B at the simple interest rate of 14% p.a. and 11% p.a. respectively. If the total amount of simple interest earned in 2 years be ₱3508, what was the amount invested in Scheme B?
9514 1404 393
Answer:
₱6400
Step-by-step explanation:
Let 'b' represent the amount invested in scheme B. Then 13900-b is the amount invested in scheme A. The total interest for 2 years is then ...
14%(13900-b)(2) +11%(b)(2) = 3508
1946 -0.03b = 1754 . . . . . . divide by 2, simplify
-0.03b = -192 . . . . . . . . . subtract 1946
b = 6400 . . . . . . . . . . . divide by -0.03
The amount invested in scheme B was ₱6400.
PLEASE HELP ASAP !!!! THANKS
Answer:
Its the first one
Help with question b please
9514 1404 393
Answer:
(a) 5.82 cm (correctly shown)
(b) 10.53 cm
Step-by-step explanation:
a) The length BC can be found from the law of sines:
BD/sin(C) = BC/sin(D)
BC = BC·sin(C)/sin(D) = (6 cm)sin(48°)/sin(50°) ≈ 5.82 cm
__
b) The angle ABD is the sum of the angles shown:
angle ABD = 50° +48° = 98°
We know the lengths BA and BD and the included angle ABD, so we can use the law of cosines to find AD.
AD² = BA² +BD² -2·BA·BD·cos(98°)
AD² ≈ 8² +5.82² -2(8)(5.82)(-0.139173) ≈ 110.8411
AD ≈ √110.8411 ≈ 10.53 . . . . cm
Simplify: (-2)^-3
a) 8
b) 1/8
c) -8
d) -1/8
Answer:
-1/8
Step-by-step explanation:
(-2)^-3
We know that a^-b = 1/a^b
1/(-2)^3
We know (-2)^3 = -8
1/(-8)
-1/8
The measurement of the radius of the end of a log is found to be 9 inches, with a possible error of 1/2 inch. Use differentials to approximate the possible propagated error in computing the area of the end of the log.
Answer:
[tex]\pm 9in^2[/tex]
Step-by-step explanation:
We are given that
Radius of end of a log, r= 9 in
Error, [tex]\Delta r=\pm 1/2[/tex]in
We have to find the error in computing the area of the end of the log by using differential.
Area of end of the log, A=[tex]pi r^2[/tex]
[tex]\frac{dA}{dr}=2\pi r[/tex]
[tex]\frac{dA}{dr}=2\pi (9)=18\pi in^2[/tex]
Now,
Approximate error in area
[tex]dA=\frac{dA}{dr}(\Delta r)[/tex]
Using the values
[tex]dA=18\pi (\pm 1/2)[/tex]
[tex]\Delta A\approx dA=\pm 9in^2[/tex]
Hence, the possible propagated error in computing the area of the end of the log[tex]=\pm 9in^2[/tex]
Answer:
[tex]A = (254.34 \pm 28.26) in^2[/tex]
Step-by-step explanation:
radius, r = 9 inches
error = 0.5 inch
The area of the end is
A = 3.14 x r x r = 3.14 x 9 x 9 = 254.34 in^2
[tex]A = \pi r^2\\\\\frac{dA}{dr}=2\pi r\\dA = 2 pi r dr \\\\dA = 2 \times 3.14\times 9\times 0.5 = 28.26[/tex]
So, the area is given by
[tex]A = (254.34 \pm 28.26) in^2[/tex]
Solve the following quadratic function
by utilizing the square root method.
y = 16 – x2
Answer:
The solutions are x = -4 and x = 4.
Step-by-step explanation:
Solving a quadratic equation:
We have to find x for which [tex]y = 0[/tex].
In this question:
[tex]y = 16 - x^2[/tex]
So
[tex]16 - x^2 = 0[/tex]
[tex]x^2 = 16[/tex]
[tex]x = \pm \sqrt{16}[/tex]
[tex]x = \pm 4[/tex]
The solutions are x = -4 and x = 4.
5404 buttons are produced by a factory in Jebel Ali in a week. If the factory produced same number of buttons every day of the week, buttons produced in a day is _________________
We need to find the number of buttons the company produced per day
The company produced 772 buttons per day
Total bottons produced in a week = 5404
There are 7 days in a week
If the factory produced same number of buttons every day of the week
Then,
Buttons produced per day = Total bottons produced in a week / Total number of days in a week
= 5404 / 7
= 772 buttons
The company produced 772 buttons per day
Read more: https://brainly.com/question/24368335
$17,818 is invested, part at 11% and the rest at 6%. If the interest earned from the amount invested at 11% exceeds the interest earned from the amount invested at 6% by $490.33, how much is invested at each rate? (Round to two decimal places if necessary.)
Answer:We know the total amount of money invested. $17818
x+y=17818,
We know that the difference in interest earned by the two accounts is $490.33
0.11*x-0.06*y=490.33
x=17818-y
We substitute for x
0.11*(17818-y)-0.06*y=490.33
We multiply out
1959.98-0.11y-0.06*y=490.33
We combine like terms.
1469.65=0.17*y
Isolate y
y=1469.65/0.17
y=8645 at 6%
Calculate x
x=17818-8645
x=9173 at 11%
Check
0.11*9173-0.06*8645=490.33
interest earned at 11%=1009.03
interest earned at 6%=518.70
1009.03-518.7=490.33
490.33=490.33
Since this statement is TRUE and neither amount is negative then all is well.We know the total amount of money invested. $17818
x+y=17818,
We know that the difference in interest earned by the two accounts is $490.33
0.11*x-0.06*y=490.33
x=17818-y
We substitute for x
0.11*(17818-y)-0.06*y=490.33
We multiply out
1959.98-0.11y-0.06*y=490.33
We combine like terms.
1469.65=0.17*y
Isolate y
y=1469.65/0.17
y=8645 at 6%
Calculate x
x=17818-8645
x=9173 at 11%
Check
0.11*9173-0.06*8645=490.33
interest earned at 11%=1009.03
interest earned at 6%=518.70
1009.03-518.7=490.33
490.33=490.33
Since this statement is TRUE and neither amount is negative then all is well.
What is 9,000,000 + 8,000 + 90,000,000 + 100 + 2 + 90,000 + 90 in standard form?
Answer:
i thank its 4000
Step-by-step explanation:
please mark this answer as brainlist
What is the domain of the function shown on the graph?
9514 1404 393
Answer:
all real numbers
Step-by-step explanation:
The arrows on the ends of the curve indicate that the graph extends to infinity horizontally. The domain is the horizontal extent, so is all real numbers.
__
Additional comment
Apparently, y=-7 is a horizontal asymptote, so the range is y > -7.
Hi- how do we calculate the distance from C to D? Thanks so much!
Answer:
CD=20
Step-by-step explanation:
Use the pythagorean theorem: a²+b²=c²
(20√2)²-20²=a²
400(2)-400
800-400=400
√400=20
A runner increases his velocity from 0 m/s to 20 m/s in 2.0 s. What was his average acceleration?
Answer:
[tex]a = \frac{dv}{dt } = \frac{20 - 0}{2} = 10[/tex]
Find m/c.
A
18 in
12 in
C
B
28 in