Answer:
5/9
Step-by-step explanation:
f(x) = 5 * 3^x
Let x = -2
f(-2) = 5 * 3^-2
We know a^-b = 1/a^b
= 5 * 1/3^2
= 5/9
F(-2) means the value of x is -2
Replace x with -2 and solve:
3^-2 = 1/9
5 x 1/9 = 5/9
Answer: D.5/9
Find the scale factor where the pre-image is the large triangle and the image is the small triangle.
A. 4/5
B. 3/2.4
C. 2.4/3
D. 5/4
Answer:
Option B
Step-by-step explanation:
If the larger triangle (Preimage) is dilated by a scale factor 'k' to form the image triangle (small triangle),
Scale factor = [tex]\frac{\text{Length of one side of the image triangle}}{\text{Length of one side of the preimage}}[/tex]
k = [tex]\frac{3}{2.4}[/tex]
Therefore, Option B will be the correct option.
I RLLY NEED HELP!!!!!!
Answer:
Angle ADB = 60 degrees
Step-by-step explanation:
This is a 60 60 60 triangle, which means all of its angles equal 60 degrees. Therefore angle ADB is 60 degrees.
Which function has a range of y < 3?
y - 3(2)
y = 2(3)
O y=-(2)x+ 3
Oy- (2) * - 3
Given:
The range of a function is [tex]y<3[/tex].
To find:
The function for the given range from the given options.
Solution:
In option A, the given function is:
[tex]y=3(2)^x[/tex]
Here, [tex](2)^x[/tex] is always greater than 0. So, [tex]3(2)^x[/tex] is also greater than 0, i.e., [tex]y>0[/tex].
In option B, the given function is:
[tex]y=2(3)^x[/tex]
Here, [tex](3)^x[/tex] is always greater than 0. So, [tex]2(3)^x[/tex] is also greater than 0, i.e., [tex]y>0[/tex].
In option C, the given function is:
[tex]y=-(2)^x+3[/tex]
Here,
[tex](2)^x>0[/tex]
[tex]-(2)^x<0[/tex]
[tex]-(2)^x+3<0+3[/tex]
[tex]y<3[/tex]
The range of this function is [tex]y<3[/tex]. So, option C is correct.
In option D, the given function is:
[tex]y=(2)^x-3[/tex]
Here,
[tex](2)^x>0[/tex]
[tex](2)^x-3<0-3[/tex]
[tex]y<-3[/tex]
The range of this function is [tex]y<-3[/tex]
Therefore, the correct option is only C.
obtain the value of X for which (X+1),(X-5),(X-2) is a geometric progression.hence find the sum of the first 12 terms of the progression.
If x + 1, x - 5, and x - 2 are in a geometric progression, then there is some constant r for which
x - 5 = r (x + 1)
==> r = (x - 5) / (x + 1)
and
x - 2 = r (x - 5)
==> r = (x - 2) / (x - 5)
Then
(x - 5) / (x + 1) = (x - 2) / (x - 5)
Solve for x :
(x - 5)² = (x - 2) (x + 1)
x ² - 10x + 25 = x ² - x - 2
-9x = -27
x = 3
It follows that the ratio between terms is
r = (3 - 5) / (3 + 1) = -2/4 = -1/2
Now, assuming x + 1 = 4 is the first term of the G.P., the n-th term a(n) is given by
a(n) = 4 (-1/2)ⁿ⁻¹
The sum of the first 12 terms - denoted here by S - is then
S = 4 (-1/2)⁰ + 4 (-1/2)¹ + 4 (-1/2)² + … + 4 (-1/2)¹¹
Solve for S :
S = 4 [(-1/2)⁰ + (-1/2)¹ + (-1/2)² + … + (-1/2)¹¹]
(-1/2) S = 4 [(-1/2)¹ + (-1/2)² + (-1/2)³ + … + (-1/2)¹²]
==> S - (-1/2) S = 4 [(-1/2)⁰ - (-1/2)¹²]
==> 3/2 S = 4 (1 - 1/4096)
==> S = 8/3 (1 - 1/4096)
==> S = 1365/512
Solve equation by using the quadratic formula
Answer:
x = -2
Step-by-step explanation:
x^2 + 4x + 4 = 0
quadratic formula:
-b +or- sqrt(b^2-4ac)/2a
-4 +/- sqrt ((-4)^2-4*1*4)/2*1
-4+/- sqrt(16-16) / 2
-4 +/- 0 / 2
-4/2
-2
Hari earns Rs 4300 per month. He spends 80% from his income. How much does he save in a year? please give answer in step by step explaination
Answer:
4300 x 12= 51600
20/100 x 51600
10,320 Rs (also pay bohat kam hai :D )
Which number can be distributed across two terms
inside parentheses? 3/5 V
X-6
18-4x-1
5
tep 2 Combine like terms that are on the same side of
the equation. Which terms can be combined?
18 and -1
3/5x and 4x
6 and 1
Check
Intro
9514 1404 393
Answer:
3/5 can be distributed (correct answer is shown)18 and -1 can be combinedStep-by-step explanation:
The only factor outside parentheses that contain 2 terms is the factor 3/5. It can be distributed. (The correct response is shown.)
3/5 can be distributed
__
The only like terms that reside on the same side of the equal sign are ...
18 and -1
I am authoring you to offer free insurance for a year the regular price is 6.99 this will save the customer almost_ a year
Please help due tomorrow
Answer: x= 2.5, y = 10
Step-by-step explanation:
I'm going to assume that these photocopies are proportional in relations to each other.
If they're proportional, you can set up two proportions:
[tex]1) \frac{x}{5} =\frac{3}{6} \\\\2) \frac{5}{y} =\frac{3}{6}[/tex]
And cross-multiply:
[tex]1) 6x = 5*3 \\\\2) 3y = 5*6[/tex]
Then solved for x and y:
[tex]1) 6x = 15\\x=\frac{15}{6} =\frac{5}{2} =2.5 \\\\2) 3y = 30\\y=\frac{30}{3} =10[/tex]
Simplify the trigonometric expression cos(2x)+1 using Double-Angle identities
9514 1404 393
Answer:
C. 2cos²(x)
Step-by-step explanation:
The relevant identities are ...
cos(2x) = cos²(x) -sin²(x)
cos²(x) = 1 -sin²(x)
__
Then the expression can be simplified to ...
cos(2x) +1 = (cos²(x) -sin²(x)) +1 = cos²(x) +(1 -sin²(x)) = cos²(x) +cos²(x)
= 2cos²(x)
if( x) means 10 what's (x) divide my 2
Answer:
If you meant that the value of (x) is equal to 10, and you want that value divided by 2, then that would be easy!
10/2 is equal to 5.
If you meant something else, please let me know! :)
A function of the form f(x)=ab^x is modified so that the b value remains the same but the a value is increased by 2. How do the domain and range of a new function compare to the domain and range of the original function?
Answer:
The domain and range remain the same.
Step-by-step explanation:
Hi there!
First, we must determine what increasing a by 2 really does to the exponential function.
In f(x)=ab^x, a represents the initial value (y-intercept) of the function while b represents the common ratio for each consecutive value of f(x).
Increasing a by 2 means moving the y-intercept of the function up by 2. If the original function contained the point (0,x), the new function would contain the point (0,x+2).
The domain remains the same; it is still the set of all real x-values. This is true for any exponential function, regardless of any transformations.
The range remains the same as well; for the original function, it would have been [tex]y\neq 0[/tex]. Because increasing a by 2 does not move the entire function up or down, the range remains the same.
I hope this helps!
Which inequality is shown in the graph?
I need help plz
Answer:
I am pretty sure it is B.
Step-by-step explanation:
This is a line with a positive slope, therefore we can discard c and d.
the sign < will mean that the shaded in area will be on your right side.
Which of the following scatterplots do not show a clear relationship and would not have a trend line?
Answer:
the second one
Step-by-step explanation:
it is not going in any general direction
Answer:
B
Step-by-step explanation:
what is x divided by one
Answer:
[tex] x \div 1[/tex]
[tex] = x[/tex]
Answer:
[tex]x\div 1=x[/tex]
Step-by-step explanation:
When x is divided by one it is called reciprocal.
reciprocal is the inverse of a number or a value.
examples: The reciprocal of 3 is 1/3, and the reciprocal of 5 is 1/3.
OAmalOHopeO
Rewrite the fraction in the sentence below as a percentage. From 125 yards away, a marksman hit 11/20 of the targets last year.
Answer:
Step-by-step explanation:
11/20 = 55/100 = 55%
Think of a two-digit number. What is the probability that it has different digits?
Answer:
9/10
Step-by-step explanation:
The first two digit number is 10 and the last is 99. That's a total of 99-10+1 numbers in all. That simplifies to 90. (Just like if we wanted to see how many numbers was 3,4,5, we would do 5-3+1=3 to get the total number.
Anyways, let's consider first how many 2 digjt numbers whose digits are equal. You have 11 22,33,44 55,66,77,88,99 which is 9 numbers total.
So the amount of 2 digits number whose digits differ is 90-9=81.
The probability that a 2 digit number have different digits is 81/90.
This can reduce. Divide top and bottom by 9 giving 9/10.
A certain prescription drug diminishes in the system at a rate of 25% per hour. If a person was administered 1450mg of the drug, how much will remain in 4 hours? How many hours will it take for the amount of the drug in their system to be less than 5mg?
9514 1404 393
Answer:
459 mgabout 20 hoursStep-by-step explanation:
The decay factor is 1 -25% = 0.75 per hour, so the exponential equation can be written ...
r(t) = 1450·0.75^t . . . . . milligrams remaining after t hours
__
a) After 4 hours, the amount remaining is ...
r(4) = 1450·0.75^4 ≈ 458.79 . . . mg
About 459 mg will remain after 4 hours.
__
b) To find the time it takes before the amount remaining is less than 5 mg, we need to solve ...
r(t) < 5
1450·0.75^t < 5 . . . . use the function definition
0.75^t < 5/1450 . . . . divide by 1450
t·log(0.75) < log(1/290) . . . . . take logarithms (reduce fraction)
t > log(1/290)/log(0.75) . . . . . divide by the (negative) coefficient of t
t > 19.708
It will take about 20 hours for the amount of the drug remaining to be less than 5 mg.
round 3/5 to 3 decimal points
Answer:
3/5=0.600
Step-by-step explanation:
I hope this answer helps
The answer is 0.6.
Upto 3 decimal places it is 0.600.
An item is regularly priced at$15.It is now priced at a discount of55%off the regular price
Answer:
$6.75
Step-by-step explanation:
The regular price is $15 dollars. The discount is 55% off the $15.
15 * 0.55 = 8.25
15 - 8.25 = 6.75
Hope this helps.
Answer:
discount =8.25
New price 6.75
Step-by-step explanation:
15 is the regular price
The discount is 55%
15*.55
8.25
The new price is the regular price minus the discount
15-8.25
6.75
Helpekksdjfkfodldkdkdodidididisj Help
Answer:
The answers to your questions are given below.
Step-by-step explanation:
1. m∠1 and m∠2 are complementary. This statement was given from the question.
2. m∠1 + m∠2 = 90°. Complementary angles add up to give 90°.
3. m∠2 = 74°. This was given in the question.
4. m∠1 + 74 = 90°. Since m∠1 and m∠2 are complementary. Their sum will add up to give 90°
5. m∠1 = 16°
We can prove m∠1 = 16° as shown below:
m∠1 + m∠2 = 90° (complementary angles)
m∠2 = 74°
m∠1 + 74 = 90°
Collect like terms
m∠1 = 90 – 74
m∠1 = 16°
What is the equation of the perpendicular bisector of CB?
A. 4 1
y=-x
3 6
B. 3 1
y = -x +
4 2.
C. -4 31
y=x+
3 6
D. -3
-x+ 4
4
Answer:
equation for perpendicular bisector passing through CB is;
y=⁴/³– 5/30
help please will give brainiest asap
Answer:
C
Step-by-step explanation:
Let me know if you need an explanation
There is a close relationship between the air pressure inside a hurricane and its maximum sustained wind speed: y=−1.22x+1250 where x is the air pressure in millibars (kPa) and y is the wind speed in knots (nautical miles per hour).
What does the slope of the line represent?
A. the change in wind speed for every 1 kPa increase in air pressure
B. the wind speed of a hurricane with an air pressure of 1000 kPa
C. the wind speed of a hurricane with an air pressure of 0 kPa
D. the change in wind speed for every hour
Answer:
A. the change in wind speed for every 1 kPa increase in air pressure
Step-by-step explanation:
The equation of a straight line is given by:
y = mx + b;
where y, x are variables, m is the slope (rate of change) of the line and b is the y intercept (value of y when x = 0)
Given the line y=−1.22x+1250 where x is the air pressure in millibars (kPa) and y is the wind speed in knots.
The slope of the line is -1.22. The slope means that there is a decrease in wind speed by 1.22 miles per hour for every increase of 1 kPa in air pressure.
michael has an average of 68% in his 3 papers but that is below the pass mark of 70%. what must be his least score in the fouth paper to enable him pass?
Answer:
72%
Step-by-step explanation:
68% + x/2 = 70%
68 + x = 140
x = 72
if (a + b) = 73 and a b =65 find value of a²+ b²
Step-by-step explanation:
Here,
by formula a^2+b^2=(a+b)^2-2ab
so,
or,(a+b)^2-2ab
or,(73)^2-2×65
or,5329-126
=5203 is the answer
Find the area of a rectangle that measures 12ft by 3 1/3 ft
Answer:
40 ft^2
Step-by-step explanation:
The area of a rectangle is given by
A = l*w
=12 * 3 1/3
Change to an improper fraction
= 12 ( 3*3+1)/3
= 12 (10/3)
40
Answer:
[tex]40 {ft}^{2} [/tex]
Step-by-step explanation:
[tex]area = l \times b \\ = 12 \times 3 \frac{1}{3} \\ = 12 \times \frac{10}{3} \\ = \frac{120}{3} \\ = 40 {ft}^{2} [/tex]
when solving inequalities,name 2 steps that are the same as solving equations and one difference
9514 1404 393
Explanation:
same:
the addition property of equalitythe multiplication property of equality (for positive multipliers)different:
the multiplication property of equality for negative multipliers_____
Additional comment
Multiplication by a negative number has the effect of re-ordering numbers:
-1 < 2 . . . 1 > -2 (both sides multiplied by -1)
Other functions can have the same effect, so care must be taken when applying functions to both sides of an inequality.
1/2 > 1/3 . . . 2 < 3 (reciprocal function applied to both sides)
30° < 60° . . . cos(30°) > cos(60°) (cosine function applied to both sides)
Given $f(x) = \frac{\sqrt{2x-6}}{x-3}$, what is the smallest possible integer value for $x$ such that $f(x)$ has a real number value? please show steps. Thank you!
Given:
The function is:
[tex]f(x)=\dfrac{\sqrt{2x-6}}{x-3}[/tex]
To find:
The smallest possible integer value for $x$ such that $f(x)$ has a real number value.
Solution:
We have,
[tex]f(x)=\dfrac{\sqrt{2x-6}}{x-3}[/tex]
This function is defined if the radicand is greater than or equal to 0, i.e., [tex]2x-6\geq 0[/tex] and the denominator is non-zero, i.e., [tex]x-3\neq 0[/tex].
[tex]2x-6\geq 0[/tex]
[tex]2x\geq 6[/tex]
[tex]\dfrac{2x}{2}\geq \dfrac{6}{2}[/tex]
[tex]x\geq 3[/tex] ...(i)
And,
[tex]x-3\neq 0[/tex]
Adding 3 on both sides, we get
[tex]x-3+3\neq 0+3[/tex]
[tex]x\neq 3[/tex] ...(ii)
Using (i) and (ii), it is clear that the function is defined for all real values which are greater than 3 but not 3.
Therefore, the smallest possible integer value for x is 4.
The population of a strain of bacteria doubles in a culture. At noon there were 80 bacteria present and by 4:00 PM there were 20 480 bacteria. Determine algebraically the doubling period. Hint: You DO NOT need to use systematic trials.
Answer:
t = 1/2 hour
Step-by-step explanation:
20480 = 80[tex]x^{t }[/tex]
20480 = 80[tex]x^{4 }[/tex]
20480/80 = [tex]x^{4 }[/tex]
256 = [tex]x^{4 }[/tex]
x = 4
doubling period
2 = [tex]4^{t}[/tex]
t = 1/2 hour