Answer:
x ≥ 31
Step-by-step explanation:
-5x + 5 ≥ 160 − 10x
Add 10x to each side
-5x+10x + 5 ≥ 160 − 10x+10x
5x+5 ≥ 160
Subtract 5 from each side
5x+5-5 ≥ 160 − 5
5x ≥ 155
Divide by 5
5x/5 ≥ 155/5
x ≥ 31
Fill in the blank with a number to make the expression a perfect square.
u^2- 18u +
Answer:
u^2- 18u +81 = (u-9)^2
Step-by-step explanation:
u^2- 18u +
Take the u coefficient
-18
Divide by 2
-18/2 = -9
Square it
(-9)^2 = 81
u^2- 18u +81 = (u-9)^2
Answer:
The blank should contain 81
Step-by-step explanation:
E = u^2 - 18u + (-18/2)^2
E = (u^2 - 18u + 9^2)
E = (u - 9)^2
To be perfectly correct what you have there is a perfect square, but you need to subtract out (9/2)^2 to make it a valid statement.
E = (u - 9)^2 - 81
A sample of 38 babies in the zinc group had a mean birth weight of 3328 grams. A sample of 31 babies in the placebo group had a mean birth weight of 3406 grams. Assume that the population standard deviation for the zinc group is 640 grams, while the population standard deviation for the placebo group is 851851 grams. Determine the 99% confidence interval for the true difference between the mean birth weights for "zinc" babies versus "placebo" babies.
Required:
Find the point estimate for the true difference between the population means.
Answer:
-78
Step-by-step explanation:
Zinc group :
Mean, x1 = 3328
σ1 = 640
Sample size, n1 = 28
Placebo group :
Mean, x2 = 3406
σ2 = 851
Sample size, n2 = 31
The point estimate for the true difference between the population means is obtained as :
Mean difference between population :
x1 - x2 = 3328 - 3406 = - 78
What is the length of BC in the right triangle below?
B
00
A
15
с
A. 17
B. 60
C. 17
D. 289
Using Pythagorean Theorem
[tex]\\ \sf\longmapsto H^2=P^2+B^2[/tex]
[tex]\\ \sf\longmapsto H^2=8^2+15^2[/tex]
[tex]\\ \sf\longmapsto H^2=64+225[/tex]
[tex]\\ \sf\longmapsto H^2=289[/tex]
[tex]\\ \sf\longmapsto H=\sqrt{289}[/tex]
[tex]\\ \sf\longmapsto H=17[/tex]
BC=17SAT scores are normally distributed with a mean of 1,500 and a standard deviation of 300. An administrator at a college is interested in estimating the average SAT score of first-year students. If the administrator would like to limit the margin of error of the 88% confidence interval to 15 points, how many students should the administrator sample? Make sure to give a whole number answer.
Answer:
The administrator should sample 968 students.
Step-by-step explanation:
We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.88}{2} = 0.06[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a p-value of [tex]1 - 0.06 = 0.94[/tex], so Z = 1.555.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
Standard deviation of 300.
This means that [tex]n = 300[/tex]
If the administrator would like to limit the margin of error of the 88% confidence interval to 15 points, how many students should the administrator sample?
This is n for which M = 15. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]15 = 1.555\frac{300}{\sqrt{n}}[/tex]
[tex]15\sqrt{n} = 300*1.555[/tex]
Dividing both sides by 15
[tex]\sqrt{n} = 20*1.555[/tex]
[tex](\sqrt{n})^2 = (20*1.555)^2[/tex]
[tex]n = 967.2[/tex]
Rounding up:
The administrator should sample 968 students.
A person of height 2m observes the angle of elevations of the top of a Pole 62m height which is in front of him and finds it to be 45. find the distance between the person end the pole .
1. Write the polynomial function that models the given situation.A rectangle has a length of 12 units and a width of 11 units. Squares of x by x units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a polynomial function in terms of x.
2. Write the polynomial function that models the given situation. A square has sides of 24 units. Squares x + 1 by x + 1 units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a function in terms of x.
3. Write the polynomial function that models the given situation. A cylinder has a radius of x + 6 units and a height 3 units more than the radius. Express the volume V of the cylinder as a polynomial function in terms of x.
Answer:
1. (12 - 2x)(11 - 2x)x
2. 4(11 - 2x)²(x + 1)
3. π(x³ + 15x² + 63x + 81)
Step-by-step explanation:
1. Write the polynomial function that models the given situation.
A rectangle has a length of 12 units and a width of 11 units. Squares of x by x units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a polynomial function in terms of x.
Since the length of the rectangle is 12 units and its width 11 units and squares of x by x units are cut from its corners, it implies that a length x is cut from each side. So, the length of the open box is L = 12 - 2x and its width is w = 11 - 2x.
Since the cut corners of the rectangle are folded, the side x which is cut represents the height of the open box, h. so, h = x
So, the volume of the open box V = LWh = (12 - 2x)(11 - 2x)x
2. Write the polynomial function that models the given situation. A square has sides of 24 units. Squares x + 1 by x + 1 units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a function in terms of x.
Since the square has sides of 24 units and squares of x + 1 by x + 1 units are cut from its corners, it implies that a length x + 1 is cut from each corner and the length 2(x + 1) is cut from each side. So, the length of side open box is L = 24 - 2(x + 1) = 24 - 2x - 2 = 24 - 2 - 2x = 22 - 2x = 2(11 - x)
Since the cut corners of the square are folded, the side x + 1 which is cut represents the height of the open box, h. so, h = x + 1
Since the area of the base of the pen box is a square, its area is L² = [2(11 - 2x)]²
So, the volume of the open box V = L²h = [2(11 - 2x)]²(x + 1) = 4(11 - 2x)²(x + 1)
3. Write the polynomial function that models the given situation. A cylinder has a radius of x + 6 units and a height 3 units more than the radius. Express the volume V of the cylinder as a polynomial function in terms of x.
The volume of a cylinder is V = πr²h where r = radius and h = height of cylinder.
Given that r = x + 6 and h is 3 units more than r, h = r + 3 = x + 6 + 3 = x + 9
So, V = πr²h
V = π(x + 3)²(x + 9)
V = π(x² + 6x + 9)(x + 9)
V = π(x³ + 6x² + 9x + 9x² + 54x + 81)
V = π(x³ + 15x² + 63x + 81)
help
What is 5 added to 3 4?
6. 12
Answer:
8.4
Step-by-step explanation:
jjdijendjndoendidnie
The distribution of sample means uses
to measure how much distance
is expected on average between a sample mean and the population mean.
re
o the standard error of M
none of these
the standard deviation of the sample
the standard deviation of the population
< Previous
Next
Answer:
A: the standard error of the mean
Step-by-step explanation:
The most frequently used measure to determine how much difference there is between population mean and sample mean is by calculating the standard deviation of the sampling distribution of the mean. This standard deviation is also referred to as the sew Station.
Please help I’m really stuck!!
Step 1: Solve for one variable
---I will be using the first equation and solving for a.
a + c = 405
a = 405 - c
Step 2: Substitute into the other equation
---Now that we have a value for a, we can substitute that value into the second equation. Then, we can solve for c.
12a + 5c = 3950
12(405 - c) + 5c = 3950
4860 - 12c + 5c = 3950
-12c + 5c = -910
-7c = -910
c = 130
Step 3: Plug back into the first equation
---We now know one variable, which means we can plug back into our first equation and solve for the other.
a = 405 - c
a = 405 - 130
a = 275
Answer: 275 adults, 130 children
Hope this helps!
a. 6
b. 10
c. 7
d. 9
Answer:
6
Step-by-step explanation:
21-20 = 1
20-18 =2
18 -15 = 3
15-11 = 4
We are subtracting 1 more each time
11-5 = 6
Assume a random variable representing the amount of time it takes for a customer service representative to pick up has a uniform distribution between 15 and 20 minutes. What is the probability that a randomly selected application from this distribution took less than 18 minutes
Answer:
0.6 = 60% probability that a randomly selected application from this distribution took less than 18 minutes.
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b.
The probability of finding a value of at lower than x is:
[tex]P(X < x) = \frac{x - a}{b - a}[/tex]
The probability of finding a value between c and d is:
[tex]P(c \leq X \leq d) = \frac{d - c}{b - a}[/tex]
The probability of finding a value above x is:
[tex]P(X > x) = \frac{b - x}{b - a}[/tex]
Uniform distribution between 15 and 20 minutes.
This means that [tex]a = 15, b = 20[/tex]
What is the probability that a randomly selected application from this distribution took less than 18 minutes?
[tex]P(X < 18) = \frac{18 - 15}{20 - 15} = 0.6[/tex]
0.6 = 60% probability that a randomly selected application from this distribution took less than 18 minutes.
50 students in a class were asked at the beginning of the week what they did at the weekend. 18 read their books, while 28 watched films, and 7 neither read their books nor watched films. How many students both read their books and watched films?
Answer:
so 3 people both read their books and watched films.
Step-by-step explanation:
n(U) = 50
n(A) = 18 ( read books)
n(B) = 28 ( watched films)
n(A U B) with a line at the top = 7
so
Finding n(AUB)
n( A U B) with a line at the top = n(A) + n(B) - n( A n B)
7 = 50-n(A U B)
or, n( A U B) = 50 - 7
so, n(A U B) = 43
Then
n( A U B) = n(A)+n(B)-n(A n B)
43 = 18 + 28 - n( A n B)
or, 43 = 46 - n(A n B)
or, n(A n B) = 46 - 43
so, n(A n B) = 3
Destiny just received two separate gifts from her great-great-grandmother.
The first gift is a box of 18 chocolate candy bars, and the second gift is a pack of 12 cookies.
Destiny wants to use all of the chocolate candy bars and cookies to make identical snack bags for her cousins.
What is the greatest number of snack bags that Destiny can make?
Answer:
Destiny will be able to create 12 identical snack bags.
Step-by-step explanation:
Given that a snack bag will be 1 chocolate candy bar, and 1 cookie, we have to subtract 1 chocolate for every cookie she has, and that will leave us with 6 chocolate bars left. The equation for this is 18 - 12 = 6.
how many feet is 2 1/2 miles
Answer:
13200 ft
Step-by-step explanation:
1 mi = 5280 ft
5280 ft x 2.5 = 13200 ft
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
What three consecutive integers equal -87?
Answer:
What three consecutive integers have a sum of 87? Which means that the first number is 28, the second number is 28 + 1 and the third number is 28 + 2. Therefore, three consecutive integers that add up to 87 are 28, 29, and 30. We know our answer is correct because 28 + 29 + 30 equals 87 as displayed above.
Step-by-step explanation:
Consecutive integers are as simple as 1, 2, 3!
Integers are consecutive if one follows another. How do we "jump" from one integer to the next? We add 1, right? 7, 8 and 9 are three consecutive integers. Add one to 7 to get 8 and add one more to get 9.
Now lets think about this in algebraic terms. Lets name these consecutive integers , x, y and z.
The problem tells us that their sum is -87. (Recall, "sum" is just a fancy word for the answer when we add.)
x+y+z = -87
Here is the trick! We need to rewrite this equation so that we have only one variable. Easy!
y is one more that x, so y= x+1
And z is one more than y, so z= y+1. But y is also equal to (x+1)! So z=y+1=(x+1)+1=x+2
Now we have a problem that we can solve! x+(x+1)+(x+2)=-87.
Combining term.: 3x+3=-87
Subtract 3 from both sides of the equation: 3x=84
Divide each side of the equation by 3: x=28
We have solved for x, but we are not done! We need to find y and z. I know you can do this. Remember y is one more than x and z is one more than y.
Check your work! Make sure these three consecutive numbers do in fact add up to -87.
Hallar el noveno término de la progresión aritmética 8, 13, 18,…
Answer:18
Step-by-step explanation:
What is the coordinate of point P?
2.3
2.4
2.375
2.25
A number line is just that – a straight, horizontal line with numbers placed at even increments along the length. The coordinate of point p on the given number line is 2.375. The correct option is C.
What is a number line?A number line is just that – a straight, horizontal line with numbers placed at even increments along the length. It’s not a ruler, so the space between each number doesn’t matter, but the numbers included on the line determine how it’s meant to be used.
Given that there are 8 divisions between two whole numbers, now since the point P is on the third division. Therefore, the coordinate of point p will be,
Coordinate of point P = 2 + 3/8
=2 + 0.375
= 2.375
Hence, the coordinate of point p on the given number line is 2.375.
Learn more about the Number line here:
https://brainly.com/question/557284
#SPJ2
A car is traveling at a constant speed of 60 miles per hour. How many feet does it travel in 10 seconds?
Answer:
880 ft.
Step-by-step explanation:
First! We have to establish how many feet the car travels per hour.
60 (number of miles per hour) x 5280 (number of feet in a mile) = 316,800 (number of feet in an hour)
Next, since we know that there are 60 minutes in an hour we are going to divide our "number of feet in an hour" by 60 to get the "number of feet in a minute"
316,800 ÷ 60 = 5280
Once again, we are going to divide our "number of feet in a minute" by 60 to get the "number of feet per second".
5280 ÷ 60 = 88
Finally! We will multiple our "number of feet per second" by 10 to get how many feet the car can travel in 10 seconds.
88 × 10 = 880
So! Our car can travel 880 feet in 10 seconds.
Hope this Helps! :)
Have any questions? Ask below in the comments and I will try my best to answer.
-SGO
Which number is divisible by 5? 99 45 83 94
Answer:
45
Step-by-step explanation:
because 5•9=45 so yeah that's the answer
Find QR. please help I’m so lost on this I’ve done it i don’t know how many times. And got it wrong.
Answer:
Step-by-step explanation:
Using the theorem of the middle in a triangle:
[tex]2x+22=\dfrac{x+20}{2} \\\\4x+44=x+20\ cross\ products\\\\3x=-24\\\\x=-8\\[/tex]
Map Reading. A map is drawn so that every 3.3 inches on the map corresponds to an actual distance of 120
miles. If the actual distance between the two cities is 440 miles, how far apărt are they on the map?
The two cities are
inches apart on the map.
Can somebody help me solve this ?
Step-by-step explanation:
volume of sphere = 288
based on formula, V = 4/3πr³
288 = 4/3(3.14)r³
288 = 4.187(r³)
r³ = 288/4.187
r =
[tex] \sqrt[3]{68.78} [/tex]
r = 4.09
= 4.1
3(6x+3)=63 How to do it
Adding Fractions: What is 9/8 + 5/6? I would like an explanation for mebecause I am confused about this problem, it will be nice if someone explained it to me. Thanks!
Answer:
4/3
Step-by-step explanation:
just do the lcm of denomination and after that start solving
9514 1404 393
Answer:
1 23/24
Step-by-step explanation:
Fractions can be added when they have the same denominator. Then the addition is performed by adding the numerators, and expressing the sum over the common denominator.
Here, your fractions have denominators of 8 and 6. Usually, we want to find a "least common denominator" to use to express the fractions. There are various ways to find that value. One of the easiest is to consult your memory of multiplication tables to find the smallest number that both a multiple of 8 and a multiple of 6. That number is 24.
An equivalent fraction is one that has the same value, but a different denominator than the one it is being compared to. Equivalent fractions can be made by multiplying by "1" in the form of "a/a" where "a" is any non-zero value. Here, it is useful to multiply 9/8 by 3/3 to make the equivalent fraction 27/24, which has a denominator of 24.
Similarly, we can multiply 5/6 by 4/4 to get the equivalent 20/24, which also has a denominator of 24.
These two fractions can now be added:
[tex]\dfrac{9}{8}+\dfrac{5}{6}=\dfrac{27}{24}+\dfrac{20}{24}=\dfrac{27+20}{24}=\dfrac{47}{24}[/tex]
If you want to turn this into a "mixed number", you need to find how many times 24 goes into 47: 47÷24 = 1 remainder 23. The quotient is the integer part of the mixed number; the remainder is the numerator of the fractional part. Then the mixed number value of the sum is ...
[tex]\dfrac{47}{24}=1\dfrac{23}{24}[/tex]
_____
Additional comments
The product of the denominators can always serve as a common denominator. That may not be the "least" common denominator. If you use that here, you would have ...
[tex]\dfrac{9}{8}+\dfrac{5}{6}=\left(\dfrac{9}{8}\cdot\dfrac{6}{6}\right)+\left(\dfrac{5}{6}\cdot\dfrac{8}{8}\right)=\dfrac{54+40}{48}=\dfrac{94}{48}[/tex]
This result can be reduced by removing a factor of 2 from numerator and denominator to give 47/24, the sum we had above.
The "least common denominator" (LCD) is the Least Common Multiple (LCM) of the denominators. It can be found by forming the product of the unique factors of the denominators. Here, we have 8 = 2·2·2 and 6 = 2·3. The LCD is the product 2·2·2·3. We recognize that 2³ and 3 are unique factors that need to contribute to the LCD. 2 is subsumed by 2³.
As you can see from the factoring, 2 is a common factor of both numbers. Another way to find the LCD (or LCM of the denominators) is to form their product (8×6 = 48) and divide that by the greatest common factor (GCF), which is 2. (48/2 = 24, the LCD) Sometimes it is easier to find the GCF and compute (product/GCF) than to find the LCM using factoring.
__
If you don't mind the possibility of having to reduce the resulting fraction, the sum of fractions can always be computed as ...
[tex]\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{ad+bc}{bd}[/tex]
This formula computes 94/48 as the sum of these fractions, effectively leaving out the middle step (9/8×6/6 +...) shown in the work above. I find this especially useful for adding rational expressions, not just numerical fractions.
PLZ HELPPPPPPPPPPPPPPPPPPP
In a geometric sequence, t4 = 8 and t7 = 216. Find the value of t2
Question 14 plz show ALL STEPS ASAP
Answer:
8/9
Step-by-step explanation:
Let the geometric series have the first term=a and common ratio=r. ATQ, ar^3=8 and ar^6=216. r^3=27. r=3. a=8/3^3=8/27. t2=ar=8/9
write 6x10x10x10x10 with an expont
Answer:
6x10^4
Step-by-step explanation:
divide 111001 by 1101
Based on the fact that you asked this three times and got the same answer three times, I suspect the interpretation made by the users that posted those answers was incorrect, and that you meant to ask about dividing in base 2.
We have
111001₂ = 1×2⁵ + 1×2⁴ + 1×2³ + 1×2⁰ = 57
1101₂ = 1×2³ + 1×2² + 1×2⁰ = 13
and 57/13 = (4×13 + 5)/13 = 4 + 5/13.
4 = 2² is already a power of 2, so we have
111001₂/1101₂ = 1×2² + 5/13
we just need to convert 5/13. To do this, we look for consecutive negative powers of 2 that 5/13 falls between, then expand 5/13 as the sum of the smaller power of 2 and some remainder term. For instance,
• 1/4 < 5/13 < 1/2, and
5/13 - 1/4 = (20 - 13)/52= 7/52
so that
5/13 = 1/4 + 7/52
or
5/13 = 1×2 ⁻² + 7/52
Then a partial conversion into base 2 gives us
111001₂/1101₂ = 1×2² + 1×2 ⁻² + 7/52
111001₂/1101₂ = 100.01₂ + 7/52
Continuing in this fashion, we find
• 1/8 < 7/52 < 1/4, and
7/52 = 1/8 + 1/104
==> 111001₂/1101₂ = 100.011₂ + 1/104
• 1/128 < 1/104 < 1/64, and
1/104 = 1/128 + 3/1664
==> 111001₂/1101₂ = 100.0110001₂ + 3/1664
• 1/1024 < 3/1664 < 1/512, and
3/1664 = 1/1024 + 11/13312
==> 111001₂/1101₂ = 100.0110001001₂ + 11/13312
• 1/2048 < 11/13312 < 1/1024, and
11/13312 = 1/2048 + 9/26624
==> 111001₂/1101₂ = 100.01100010011₂ + 9/26624
• 1/4096 < 9/26624 < 1/2048, and
9/26624 = 1/4096 + 5/53248
==> 111001₂/1101₂ = 100.011000100111₂ + 5/53248
and so on.
It turns out that this pattern repeats, so that
[tex]\displaystyle \frac{111001_2}{1101_2} = 100.\overline{011000100111}_2[/tex]
Solve for Y equals -2 over 3x minus 1
Answer:
y=-\frac{2}{3}\approx -0.666666667
(1+y²)dx + (1+x²)dy = 0
This differential equation is separable:
(1 + y²) dx + (1 + x²) dy = 0
(1 + y²) dx = - (1 + x²) dy
dy/(1 + y²) = -dx/(1 + x²)
Integrating both sides gives
arctan(y) = -arctan(x) + C
and solving for y gives (over an appropriate domain)
y = tan(C - arctan(x))
(the domain being -1 ≤ y ≤ 1).