Select from the following for the next two questions:
A virtual, inverted and smaller than the object
B real, inverted and smaller than the object
C virtual, upright and smaller than the object
D real, upright and larger than the object
E virtual, upright and larger than the object
F real, inverted and larger than the object
G virtual, inverted and larger than the object
H real, upright and smaller than the object
An object is placed 46.9 cm away from a converging lens. The lens has a focal length of 10.0 cm. Select the statement from the list above which best describes the image an objesthse place 46.9 cm away from a spherical convex mirror. The radius of curvature of the mirror is 20.0 cm. Select the statement from the An object is placed 46.9 cm away from a spherical convex mirror. The radius of curvature of the mirror is 20.0 cm. Select the statement from the list above which best describes the image.

Answers

Answer 1

Answer:

Explanation:

1 )

An object is placed 46.9 cm away from a converging lens. The lens has a focal length of 10.0 cm.

Since the object is placed at a distance more than twice the focal length , its image will be inverted , real  and will be of the size less than the size of object . So option B is applied .

B)  real, inverted and smaller than the object.

2 )

An object is placed 46.9 cm away from a spherical convex mirror. The radius of curvature of the mirror is 20.0 cm.

The object is placed at a point beyond its radius of curvature, its image will be formed at a point between f and C   or between focal point and centre of curvature . Its size will be smaller than size of object and it will be real and inverted .

B)  real, inverted and smaller than the object.


Related Questions

The block moves up an incline with constant speed. What is the total work WtotalWtotalW_total done on the block by all forces as the block moves a distance LLL

Answers

Answer:

External force    W₁ = F L

Friction force    W₂ = - fr L

weight component   W₃ = - mg sin θ L

Y Axis   Force      W=0

Explanation:

When the block rises up the plane with constant velocity, it implies that the sum of the forces is zero.

For these exercises it is indicated to create a reference system with the x axis parallel to the plane and the y axis perpendicular

let's write the equations of translational equilibrium in given exercise

X axis

        F - fr -Wₓ = 0

        F = fr + Wₓ

the components of the weight can be found using trigonometry

         Wₓ = W sin θ

         [tex]W_{y}[/tex] = W cos θ

let's look for the work of these three forces

          W = F x cos θ

External force

          W₁ = F L

since the displacement and the force have the same direction

Friction force

          W₂ = - fr L

since the friction force is in the opposite direction to the displacement

For the weight component

          W₃ = - mg sin θ L

because the weight component is contrary to displacement

Y Axis  

          N- Wy = 0

in this case the forces are perpendicular to the displacement, the angle is 90º and the cosine 90 = 0

therefore work is worth zero

Complete each of the statements

A. Lines of force are lines used to represent ________ an ________ electric field


B. The intensity of an electric field is the coefficient between the _________ that in the field exerts on a test ___________ located at that point and the value of said charge

C. The electric field is uniform if at any point in the field its _________ and ________ is the same

D. The van der graff generator is a _________ machine which has two __________ that are driven by a _________ that generates a rotation

Answers

Answer:

A:  magnitude and direction

B: Force that the field exerts on a test charge

C: its magnitude and direction is the same.

D: electrostatic machine

two rollers that are driven by a motor that generates a rotation

Explanation:

A screen is placed a distance dd to the right of an object. A converging lens with focal length ff is placed between the object and the screen. In terms of f, what is the smallest value d can have for an image to be in focus on the screen?

Answers

Answer:

2f

Explanation:

The formula for the object - image relationship of thin lens is given as;

1/s + 1/s' = 1/f

Where;

s is object distance from lens

s' is the image distance from the lens

f is the focal length of the lens

Total distance of the object and image from the lens is given as;

d = s + s'

We earlier said that; 1/s + 1/s' = 1/f

Making s' the subject, we have;

s' = sf/(s - f)

Since d = s + s'

Thus;

d = s + (sf/(s - f))

Expanding this, we have;

d = s²/(s - f)

The derivative of this with respect to d gives;

d(d(s))/ds = (2s/(s - f)) - s²/(s - f)²

Equating to zero, we have;

(2s/(s - f)) - s²/(s - f)² = 0

(2s/(s - f)) = s²/(s - f)²

Thus;

2s = s²/(s - f)

s² = 2s(s - f)

s² = 2s² - 2sf

2s² - s² = 2sf

s² = 2sf

s = 2f

21.-Una esquiadora olímpica que baja a 25m/s por una pendiente a 20o encuentra una región de nieve húmeda de coeficiente de fricción μr =0.55. ¿Cuánto desciende antes de detenerse?

Answers

Answer:

y = 12.82 m

Explanation:

We can solve this exercise using the energy work theorem

          W = ΔEm

friction force work is

          W = fr . s = fr s cos θ

the friction force opposes the movement, therefore the angle is 180º

           W = - fr s

we write Newton's second law, where we use a reference frame with one axis parallel to the plane and the other perpendicular

           N -Wy = 0

           N = mg cos θ

the friction force remains

            fr = μ N

            fr = μ mg cos θ

             

work gives

           W = - μ mg s cos θ

initial energy

           Em₀ = ½ m v²

the final energy is zero, because it stops

we substitute

          - μ m g s cos θ = 0 - ½ m v²

          s = ½ v² / (μ g cos θ)

         

let's calculate

          s = ½ 20² / (0.55 9.8 cos 20)

          s = 39.49 m

this is the distance it travels along the plane, to find the vertical distance let's use trigonometry

            sin 20 = y / s

           y = s sin 20

           y = 37.49 sin 20

           y = 12.82 m

A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.700 T pointing perpendicular to the plane of the loop. the loop is connected in series with a resistor of 265 ohms. The magnetic field is now increased at a constant rate by a factor of 2.30 in 29.0 s.

Calculate the magnitude of induced emf in the loop while the magnetic field is increasing.

With the magnetic field held constant a ts its new value of 1.61 T, calculate the magnitude of its induced voltage in the loop while it is pulled horizontally out of the magnetic field region during a time interval of 3.90s.

Answers

Answer:

(a) The magnitude of induced emf in the loop while the magnetic field is increasing is 9.5 mV

(b) The magnitude of the induced voltage at a constant magnetic field is 124.7 mV

Explanation:

Given;

radius of the circular loop, r = 31.0 cm = 0.31 m

initial magnetic field, B₁ = 0.7 T

final magnetic field, B₂ = 2.3B₁ = 2.3 X 0.7 T = 1.61 T

duration of change in the field, t = 29

(a) The magnitude of induced emf in the loop while the magnetic field is increasing.

[tex]E = A*\frac{\delta B}{\delta t} \\\\[/tex]

[tex]E = A*\frac{B_2 -B_1}{\delta t}[/tex]

Where;

A is the area of the circular loop

A = πr²

A = π(0.31)² = 0.302 m²

[tex]E = A*\frac{B_2 -B_1}{\delta t} \\\\E = 0.302*\frac{1.61-0.7}{29} \\\\E = 0.0095 \ V\\\\E = 9.5 \ mV[/tex]

(b) the magnitude of the induced voltage at a constant magnetic field

E = A x B/t

E = (0.302 x 1.61) / 3.9

E = 0.1247 V

E = 124.7 mV

Therefore, the magnitude of the induced voltage at a constant magnetic field is 124.7 mV

PLEASE ANSWER ASAP
What happens to the ocean water before the precipitation part of the water cycle? ANSWERS; A.The ocean water condenses into the clouds. B.The ocean water collects back in the ocean. C.The ocean water falls back to Earth's surface. D. The ocean water runs off Earth's surface.

Answers

Answer:

B.

Explanation:

The water collects in the ocean; it is then evaporated by the sun. After evaporation the water turns into water vapor, it then condenses to form clouds.

The ocean water prior to the part of the water cycle should be option B.

Ocean water:

The ocean water should be collected back in the ocean prior to the part of the water cycle.

Because this should be done when it is evaporated by the sun.  When the evaporation is done so the water should be transformed into water vapor.

Find out more information about the  Water here:brainly.com/question/4381433?referrer=searchResults

At what frequency should a 200-turn, flat coil of cross sectional area of 300 cm2 be rotated in a uniform 30-mT magnetic field to have a maximum value of the induced emf equal to 8.0 V

Answers

Answer:

The frequency of the coil is 7.07 Hz

Explanation:

Given;

number of turns of the coil, 200 turn

cross sectional area of the coil, A = 300 cm² = 0.03 m²

magnitude of the magnetic field, B = 30 mT = 0.03 T

Maximum value of the induced emf, E = 8 V

The maximum induced emf in the coil is given by;

E = NBAω

Where;

ω is angular frequency = 2πf

E = NBA(2πf)

f = E / 2πNBA

f = (8) / (2π x 200 x 0.03 x 0.03)

f = 7.07 Hz

Therefore, the frequency of the coil is 7.07 Hz


I MIND TRICK PLZ HELP LOL
Troy and Abed are running in a race. Troy finishes the race in 12 minutes. Abed finishes the race in 7 minutes and 30 seconds. If Troy is running at an average speed of 3 miles per hour and speed varies inversely with time, what is Abed’s average speed for the race?

Answers

Answer:

Explanation:

Let the race be of a fixed distance x

[tex]Average Speed = \frac{Total Distance}{Total Time}[/tex]

Troy's Average speed = 3 miles/hr = x / 0.2 hr

x = 0.6 miles

Abed's Average speed = 0.6 / 0.125 = 4.8 miles/hr

Two 1.0 nF capacitors are connected in series to a 1.5 V battery. Calculate the total energy stored by the capacitors.

Answers

Answer:

1.125×10⁻⁹ J

Explanation:

Applying,

E = 1/2CV²................... Equation 1

Where E = Energy stored in the capacitor, C = capacitance of the capacitor, V = Voltage of the battery.

Given; C = 1.0 nF,  = 1.0×10⁻⁹ F, V = 1.5 V

Substitute into equation 1

E = 1/2(1.0×10⁻⁹×1.5²)

E = 1.125×10⁻⁹ J

Hence the energy stored by the capacitor is 1.125×10⁻⁹ J

An electric heater draws 13 amperes of current when connected to 120 volts. If the price of electricity is $0.10/kWh, what would be the approximate cost of running the heater for 8 hours?
(A) $0.19
(B) $0.29
(C) $0.75
(D) $1.25
(E) $1.55

Answers

Answer:

C $0.75 my friend I wish it is right answer

A small glass bead charged to 5.0 nC is in the plane that bisects a thin, uniformly charged, 10-cm-long glass rod and is 4.0 cm from the rod's center. The bead is repelled from the rod with a force of 910 N. What is the total charge on the rod?

Answers

Answer:

Explanation:

Let B= bead

Q = rod

the electric field at the glass bead pocation is

(Gauss theorem)

E = Q / (2 π d L εo)

the force is

F = q E = q Q / (2 π d L εo)

then

Q = 2 π d L εo F / q

Q = 2*3.14*4x10^-2*10^-1*8.85x10^-12*910x10^-4 / 5x10^-9 = 2.87x10^-8 C = 40.5 nC

A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 6 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t)

Answers

Answer:I don’t know

Explanation:

At a department store, you adjust the mirrors in the dressing room so that they are parallel and 6.2 ft apart. You stand 1.8 ft from one mirror and face it. You see an infinite number of reflections of your front and back.(a) How far from you is the first "front" image? ft (b) How far from you is the first "back" image? ft

Answers

Answer:

a) 3.6 ft

b) 12.4 ft

Explanation:

Distance between mirrors = 6.2 ft

difference from from the mirror you face = 1.8 ft

a) you stand 1.8 ft in front of the mirror you face.

According to plane mirror rules, the image formed is the same distance inside the mirror surface as the distance of the object (you) from the mirror surface. From this,

your distance from your first "front" image = 1.8 ft + 1.8 ft = 3.6 ft

b) The mirror behind you is 6.2 - 1.8 = 4.4 ft behind you.

the back mirror will be reflected 3.6 + 4.4 = 8 ft into the front mirror,

the first image of your back will be 4.4 ft into the back mirror,

therefore your distance from your first "back" image = 8 + 4.4 = 12.4 ft

Two protons moving with same speed in same direction repel each other but what about two protons moving with different speed in the same direction?

Answers

Answer:In the case of two proton beams the protons repel one another because they have the same sign of electrical charge. There is also an attractive magnetic force between the protons, but in the proton frame of reference this force must be zero! Clearly then the attractive magnetic force that reduces the net force between protons in the two beams as seen in our frame of reference is relativistic. In particular the apparent magnetic forces or fields are relativistic modifications of the electrical forces or fields. As such modifications, they cannot be stronger than the electrical forces and fields that produce them. This follows from the fact that switching frames of reference can reduce forces, but it can’t turn what is attractive in one frame into a repulsive force in another frame.

In the case of wires the net charges in two wires are zero everywhere along the wires. That makes the net electrical forces between the wires very nearly zero. Yet the relativistic magnetic forces and fields will be of the same sort as in the case of two beams of charges of a single sign. This is true even in the frame of reference of what we think as the moving charges, that is, the electrons. In the frame of reference moving at the drift velocity of these current-carrying electrons, it is the protons or positively charged ions that are moving in the other direction. Consequently in any frame of reference for current-carrying wires in parallel, the net electrical force will be essentially zero, and there will be a net attractive magnetic force

Explanation:                                                                              

Explanation:

Particles with similar charges (both positive or both negative) will always repel each other, regardless of their speed or direction.

A fish in a flat-sided aquarium sees a can of fish food on the counter. To the fish's eye, the can looks to be 43 cmcm outside the aquarium.

Required:
What is the actual distance between the can and the aquarium?

Answers

Answer:

The actual distance is  [tex]d_a = 0.3233\ m[/tex]

Explanation:

From the question we are told that

     The  distance of the can is d =  43 cm  =  0.43 m

     

Generally the actual distance is mathematically represented as

         [tex]d_a = [\frac{ n_a }{n_w} ]* d[/tex]

Where  [tex]n_a , n_w[/tex] are the refractive index of air and water and their value is  

         [tex]n_a = 1 , \ \ \ n_w = 1.33[/tex]

So

       [tex]d_a = [\frac{ 1 }{1.33} ]* 0.43[/tex]

       [tex]d_a = 0.3233\ m[/tex]

When the atmosphere is not quite clear, one may sometimes see colored circles concentric with the Sun or the Moon. These are generally not more than a few diameters of the Sun or Moon and invariably the innermost ring is blue. The explanation for these phenomena involves:_________
A) reflection
B) refraction
C) interference
D) diffraction
E) Doppler effect

Answers

Answer:

D) diffraction

Explanation:

Corona is an optical phenomenon produced by the diffraction of sunlight or moonlight, as light moves through water droplets in the atmosphere.

This phenomenon produces one or more diffuse concentric rings of light around the Sun or Moon, usually seen as colored circles.

Therefore, the explanation for these phenomena of colored concentric circles, sometimes seen with the Sun or the Moon involves diffraction.

In the lab , you have an electric field with a strength of 1,860 N/C. If the force on a particle with an unknown charge is 0.02796 N, what is the value of the charge on this particle.

Answers

Answer:

The charge is  [tex]q = 1.50 *10^{-5} \ C[/tex]

Explanation:

From the question we are told that

   The electric field strength is  [tex]E = 1860 \ N/C[/tex]

    The force is  [tex]F = 0.02796 \ N[/tex]

Generally the charge on this particle is mathematically represented as

     [tex]q = \frac{F}{E}[/tex]

=>   [tex]q = \frac{0.02796}{ 1860}[/tex]

=>   [tex]q = 1.50 *10^{-5} \ C[/tex]

) Calculate current passing in an electrical circuit if you know that the voltage is 8 volts and the resistance is 10 ohms

Answers

Explanation:

Hey, there!

Here, In question given that,

potential difference (V)= 8V

resistance (R)= 10 ohm

Now,

According to the Ohm's law,

V= R×I { where I = current}

or, I = V/R

or, I = 8/10

Therefore, current is 4/5 A or 0.8 A.

(A= ampere = unit of current).

Hope it helps...

Red and orange stars are found evenly spread throughout the galactic disk, but blue stars are typically found

Answers

Answer:

only in or near star-forming clouds

Explanation:

When in the galactic disk, Red and orange stars are found evenly spread so here Blue stars are hot and therefore massive and therefore short-lived,  that is means they never have time to venture far from the places, where they were born. so correct answer is blue stars are typically found only in or near star-forming clouds

If a convex lens were made out of very thin clear plastic filled with air, and were then placed underwater where n = 1.33 and where the lens would have an effective index of refraction n = 1, the lens would act in the same way
a. as a flat refracting surface between water and air as seen from the water side.
b. as a concave mirror in air.
c. as a concave lens in air.
d. as the glasses worn by a farsighted person.
e. as a convex lens in air.

Answers

Answer:

D. A convex lens in air

Explanation:

This is because the air tight plastic under water will reflect light rays in the same manner as a convex lens

(a) Determine the capacitance of a Teflon-filled parallel-plate capacitor having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.


pF

(b) Determine the maximum potential difference that can be applied to a Teflon-filled parallel-plate capacitor having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.
kV

Answers

Explanation:

(a) Given that,

Area of a parallel plate capacitor, [tex]A=1.8\ cm^2=1.8\times 10^{-4}\ m^2[/tex]

The separation between the plates of a capacitor, [tex]d=0.01\ mm = 10^{-5}\ m[/tex]

The dielectric constant of, k = 2.1

When a dielectric constant is inserted between parallel plate capacitor, the capacitance is given by :

[tex]C=\dfrac{k\epsilon_o A}{d}[/tex]

Putting all the values we get :

[tex]C=\dfrac{2.1\times 8.85\times 10^{-12}\times 1.8\times 10^{-4}}{0.01\times 10^{-3}}\\\\C=3.345\times 10^{-10}\ F\\\\C=334.5\ pF[/tex]

(b) We know that the Teflon has dielectric strength of 60 MV/m, [tex]E=60\times 10^6\ V/m[/tex]

The voltage difference between the plates at this critical voltage is given by :

[tex]V=Ed\\\\V=60\times 10^6\times 0.01\times 10^{-3} \\\\V=600\ V[/tex]

or

V = 0.6 kV

We have that the Capacitance and potential difference is mathematically given as

[tex]Vmax=\frac{Q}{334.68pF}[/tex]C=334.68pF



Capacitance &potential difference

Question Parameters:

having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm

having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.

a)

Generally the equation for the Capacitance  is mathematically given as

[tex]C=\frac{ke_0A}{d}\\\\Therefore\\\\C=\frac{2.1*1.80e-4*8.85e12}{0.01e-3}\\\\[/tex]

C=334.68pF

b)

Generally the equation for the Capacitance  is mathematically given as

[tex]Vmax=\frac{Q}{C}[/tex]

Where

Q is the charge on the plates, and hence not given

Therefore, maximum potential difference is

[tex]Vmax=\frac{Q}{334.68pF}[/tex]

For more information on potential difference visit

https://brainly.com/question/14883923

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses. But he loses them while travelling. Fortunately he has his old pair as a spare. (a) If the lenses of the old pair have a power of 2.25 diopters, what is his near point (measured from the eye) when wearing the old glasses, if they rest 2.0 cm in front of the eye

Answers

Answer:

30.93 cm

Explanation:

Given that:

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses

The power of the old pair of lens p = 2.25 diopters

The focal point length = 1/p

The focal point length =  1/2.25

The focal point length = 0.444 m

The focal point length = 44.4 cm

The near point of the person from the glass = (85 -2)cm , This is because the glasses are usually 2 cm from the lens

The near point of the person from the glass = 83 cm

Let consider s' to be the image on the same sides of the lens,

∴ s' = -83 cm

We known that:

the focal length of a mirror image 1/f =1/u +1/v

Assume the near point is at an excellent distance s from the glass where the person wears the corrective glasses.

Then:

1/f = 1/s + 1/s'

1/s = 1/f - 1/s'

1/s = (s' -f)/fs'

s = fs'/(s'-f)

s =( 44.4× -83)/(-83 - 44.4)

s = - 3685.2 / - 127.4

s = 28.93 cm

Thus , the near distance point measured from the eye wearing the old glasses, if they rest 2.0 cm in front of the eye = (28.93 +2.0)cm

= 30.93 cm

We've seen that for thermal radiation, the energy is of the form AVT4, where A is a universal constant, V is volume, and T is temperature. 1) The heat capacity CV also is proportional to a power of T, Tx. What is x

Answers

Answer:

this raise the temperature is x = 3

Explanation:

Heat capacity is the relationship between heat and temperature change

          C = Q / ΔT

if the heat in the system is given by the change in energy and we carry this differential formulas

          [tex]c_{v}[/tex] = dE / dT

In this problem we are told that the energy of thermal radiation is

        E = A V T⁴

Let's look for the specific heat

        c_{v} = AV 4 T³

the power to which this raise the temperature is x = 3

A student wants to create a 6.0V DC battery from a 1.5V DC battery. Can this be done using a transformer alone

Answers

Answer:

Therefore, we need an invert, and a rectifier, along with the transformer to do the job.

Explanation:

A transformer, alone, can not be used to convert a DC voltage to another DC voltage. If we apply a DC voltage to the primary coil of the transformer, it will act as short circuit due to low resistance. It will cause overflow of current through winding, resulting in overheating pf the transformer.

Hence, the transformer only take AC voltage as an input, and converts it to another AC voltage. So, the output voltage of a transformer is also AC voltage.

So, in order to convert a 6 V DC to 1.5 V DC we need an inverter to convert 6 V DC to AC, then a step down transformer to convert it to 1.5 V AC, and finally a rectifier to convert 1.5 V AC to 1.5 V DC.

Therefore, we need an invert, and a rectifier, along with the transformer to do the job.

Without actually calculating any logarithms, determine which of the following intervals the sound intensity level of a sound with intensity 3.66×10^−4W/m^2 falls within?

a. 30 and 40
b. 40 and 50
c. 50 and 60
d. 60 and 70
e. 70 and 80
f. 80 and 90
g. 90 and 100

Answers

Answer:

f. 80 and 90

Explanation:

1 x 10⁻¹² W/m² sound intensity falls within 0 sound level

1 x 10⁻¹¹ W/m² sound intensity falls within 10 sound level

1 x 10⁻¹⁰ W/m² sound intensity falls within 20 sound level

1 x 10⁻⁹ W/m² sound intensity falls within 30 sound level

1 x 10⁻⁸ W/m² sound intensity falls within 40 sound level

1 x 10⁻⁷ W/m² sound intensity falls within 50 sound level

1 x 10⁻⁶ W/m² sound intensity falls within 60 sound level

1 x 10⁻⁵ W/m² sound intensity falls within 70 sound level

1 x 10⁻⁴ W/m² sound intensity falls within 80 sound level

1 x 10⁻³ W/m² sound intensity falls within 90 sound level

Given sound intensity (3.66 x 10⁻⁴ W/m²) falls with 1 x 10⁻⁴ W/m² of intensity which is within 80 and 90 sound level.

f. 80 and 90

which is example of radiation

Answers

Answer:

Ultraviolet light from the sun.

Explanation:

This is an example of radiation.

Answer:

X-Ray

Explanation:

x-Ray is an example of radiation.

"A satellite requires 88.5 min to orbit Earth once. Assume a circular orbit. 1) What is the circumference of the satellites orbit

Answers

Answer:

 circumference of the satellite orbit  = 4.13 × 10⁷ m

Explanation:

Given that:

the time period T = 88.5 min = 88.5 × 60  = 5310 sec

The mass of the earth [tex]M_e[/tex] = 5.98 × 10²⁴ kg

if  the radius of orbit is r,

Then,

[tex]\dfrac{V^2}{r} = \dfrac{GM_e}{r^2}[/tex]

[tex]{V^2} = \dfrac{GM_e r}{r^2}[/tex]

[tex]{V^2} = \dfrac{GM_e }{r}[/tex]

[tex]{V} =\sqrt{ \dfrac{GM_e }{r}}[/tex]

Similarly :

[tex]T = \sqrt{\dfrac{ 2 \pi r} {V} }[/tex]

where; [tex]{V} =\sqrt{ \dfrac{GM_e }{r}}[/tex]

Then:

[tex]T = {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ {GM_e }} }[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ {6.674\times 10^{-11} \times 5.98 \times 10^{24} }} }[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ 3.991052 \times 10^{14} }}[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {19977617.48}[/tex]

[tex]5310 \times 19977617.48= 2 \pi r^{3/2}}[/tex]

[tex]1.06081149 \times 10^{11}= 2 \pi r^{3/2}}[/tex]

[tex]\dfrac{1.06081149 \times 10^{11}}{2 \pi}= r^{3/2}}[/tex]

[tex]r^{3/2}} = \dfrac{1.06081149 \times 10^{11}}{2 \pi}[/tex]

[tex]r^{3/2}} = 1.68833392 \times 10^{10}[/tex]

[tex]r= (1.68833392 \times 10^{10})^{2/3}}[/tex]

[tex]r= 2565.38^2[/tex]

r = 6579225 m

The  circumference of the satellites  orbit can now be determined by using the formula:

 circumference = 2π r

 circumference = 2π  × 6579225 m

 circumference = 41338489.85 m

 circumference of the satellite orbit  = 4.13 × 10⁷ m

An interference pattern is produced by light with a wavelength 590 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.580 mm .


Required:

a. If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima?

b. What would be the angular position of the second-order, two-slit, interference maxima in this case?

Answers

Answer:

a. 0.058°

b.  0.117°

Explanation:

a. The angular position of the first-order is:

[tex] d*sin(\theta) = m\lambda [/tex]

[tex] \theta = arcsin(\frac{m \lambda}{d}) = arcsin(\frac{1* 590 \cdot 10^{-9} m}{0.580 \cdot 10^{-3} m}) = 0.058 ^{\circ} [/tex]

Hence, the angular position of the first-order, two-slit, interference maxima is 0.058°.

b. The angular position of the second-order is:

[tex] \theta = arcsin(\frac{m \lambda}{d}) = arcsin(\frac{2* 590 \cdot 10^{-9} m}{0.580 \cdot 10^{-3} m}) = 0.12 ^{\circ} [/tex]

Therefore, the angular position of the second-order, two-slit, interference maxima is 0.117°.

I hope it helps you!

If a diode at 300°K with a constant bias current of 100μA has a forward voltage of 700mV across it, what will the voltage drop across this same diode be if the bias current is increased to 1mA? g

Answers

Answer:

the voltage drop across this same diode will be 760 mV

Explanation:

Given that:

Temperature T = 300°K

current [tex]I_1[/tex] = 100 μA

current [tex]I_2[/tex] = 1 mA

forward voltage [tex]V_r[/tex] = 700 mV = 0.7 V

To objective is to find the voltage drop across this same diode  if the bias current is increased to 1mA.

Using the formula:

[tex]I = I_o \begin {pmatrix} e^{\dfrac{V_r}{nv_T}-1} \end {pmatrix}[/tex]

[tex]I_1 = I_o \begin {pmatrix} e^{\dfrac{V_r}{nv_T}-1} \end {pmatrix}[/tex]

where;

[tex]V_r[/tex] = 0.7

[tex]I_1 = I_o \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix}[/tex]

[tex]I_2 = I_o \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix}[/tex]

[tex]\dfrac{I_1}{I_2} = \dfrac{ I_o \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix} }{ I_o \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix} }[/tex]

[tex]\dfrac{100 \ \mu A}{1 \ mA} = \dfrac{ \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix} }{ \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix} }[/tex]

Suppose n = 1

[tex]V_T = \dfrac{T}{11600} \\ \\ V_T = \dfrac{300}{11600} \\ \\ V_T = 25. 86 \ mV[/tex]

Then;

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 10 \begin {pmatrix} e ^{\dfrac{ 0.7} { nV_T} -1} \end {pmatrix}[/tex]

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 10 \begin {pmatrix} e ^{\dfrac{ 0.7} { 25.86} -1} \end {pmatrix}[/tex]

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 5.699 \times 10^{12}[/tex]

[tex]{e^\dfrac{V_r'}{nv_T}} = 5.7 \times 10^{12}[/tex]

[tex]{\dfrac{V_r'}{nv_T}} =log_{e ^{5.7 \times 10^{12}}}[/tex]

[tex]{\dfrac{V_r'}{nv_T}} =29.37[/tex]

[tex]V_r'=29.37 \times nV_T[/tex]

[tex]V_r'=29.37 \times 25.86[/tex]

[tex]V_r'=759.5 \ mV[/tex]

[tex]Vr' \simeq[/tex] 760 mV

Thus, the voltage drop across this same diode will be 760 mV

An engine causes a car to move 10 meters with a force of 100 N. The engine produces 10,000 J of energy. What is the efficiency of this engine?

Answers

Answer:

10%

Explanation:

Efficiency = work done / energy used

e = (10 m × 100 N) / (10,000 J)

e = 0.1

The efficiency is 0.1, or 10%.

Other Questions
Identify the careers that require a college degree and those that require technical training. insurance sales agent supply chain manager office clerk engine assembler auditor survey researcher New Harvest Bakery acquired all the outstanding common stock of Red Rock Bakery for $69,300 in cash. The book values and fair values of Red Rock's assets and liabilities were as follows: Book Value Fair Value Current assets $ 28,700 $ 22,300 Property, plant, and equipment 47,800 52,600 Other assets 3,500 5,800 Current liabilities 15,100 14,900 Long-term liabilities 29,000 21,400 Calculate the amount paid for goodwil Find the probability that when a couple has four children, at least one of them is a boy. (Assume that boys and girls are equally likely.) At a baby shower, 15 guests are in attendance and 4 of them are randomly selected to receive a door prize. If all 4 prizes are identical, in how many ways can the prizes be awarded? Douglas and McGarty (2001) reported that the anonymity of Internet chat rooms, newsgroups and listservs seems to foster more hostile behavior than is observed in face-to-face conversations. This is an example of how _______ contribute(s) to deindividuation. idk how to put the picture but can someone just tell me the points where the two dots go plz will give good rate nd say thx plz answer fastGraph -8x-y=8 The area formula, A = tr2, would be used to find the area of aA. square.B. rectangle.O circle.D. triangleE parallelogram. Imagine you are directing a movie based on a book or short story you have read. Choose one of the characters and describe what you would make his or her costume look like. I need help again, sorry Can you get hiv from animals such as cows and chickens ? A plumber (come) ____________ to our house yesterday. He (want) _____________ to repair our washing machine. While he (repair) _______________ the washing machine, I (watch) ___________________ the news. Suddenly, I (realize) ____________ that they (show) ____________________ our street on TV. The reporter said that a car had crashed into a stop sign just before reaching the crossroads. While I (listen) _________________ carefully to what had happened, someone (knock) ________________ at my door. I (open) ______________ the door and (see) ___________a police officer standing there. He (ask) ____________ for the plumber. As it (turn out) ________________, it (be) __________ our plumbers car that had rolled down the street. In haste, the plumber had forgotten to put the handbrake on. There is a 3 percent defect rate at a specific point in a production process. If an inspector is placed at this point, all the defects can be detected and eliminated. The inspector would cost $8 per hour and could inspect units in the process at the current production rate of 30 per hour. If no inspector is hired and defects are allowed to pass this point, there is a cost of $10 per defective unit to correct the defects later on. Assume that the line will operate at the same rate (i.e., the current production rate) regardless of whether the inspector is hired or not. a. If an inspector is hired, what will be the inspection cost per unit? (Round your answer to 3 decimal places.) Cost per unit $ b. If an inspector is not hired, what will be the defective cost per unit? (Round your answer to 3 decimal places.) Cost per unit $ c. Should an inspector be hired based on costs alone? Yes No What were the state governments like after the revolutionary war a police car drives a constant speed of 64 mph.how far can it travel in 2 hours Given the following information. Which of the statements below can you support with this information? Maximum capacity (labor hours): 480 hours per week Effective capacity ratio: 85 % Actual time worked: 380 hours per week over the last two weeks On-time delivery %: 75 percent of the jobs are being completed on timea. More capacity needs to be added in the short term to improve performance in the system. b. We need to look at variability in the rate at which jobs enter the shop. c. Our workforce is not working hard enough. d. Our workforce may be waiting on delayed arrivals of inputs needed to do the work. Describe the reasons why you selected the specific option(s) that you did. _Thirty-two holes are drilled in rows on a metal block. The number of rows is more than the number of holes in each row. Find the number of row. (a)7 (b)25(c)67(d)4 (e) 12 _ Find the value of x needed to make the equation below true. *-4(1.5x-5)+4x=26 If f(x)=ax+b and f(2)=1 and f(-3)=11, what is the value of A? Which are the two most popular candidates for gamma-ray bursters? Group of answer choices collisions between a white dwarf and a giant, and merger of two neutron stars hypernova making a black hole, and merger of two neutron stars formation of uranium in the core of a supergiant, and collisions of white dwarfs mergers of two black holes, and merger of a neutron star and a white dwarf hypernova making pulsars, and mergers of two white dwarfs Change the direct speech into indirect speech in thefollowing dialogue, and write it in a paragraph.Betru: "What are you doing here, Tedla? I haven't seen you since June."Tedla: "I've just come back from my holiday in Nekemte."Betru: "Did you enjoy it?"Tedla: "I love Ireland. And the people in Nekemte were so friendly."Betru: "Did you go to Shambu?"Tedla: "It was my first trip. I can show you some pictures. Are you doinganything tomorrow?"Betru: "I must arrange a couple of things. But I am free tonight."Tedla: "You might come to my place. What time shall we meet?"Betru: "I'll be there at eight. Is it all right?"