Answer:
The answer is "2.4049"
Step-by-step explanation:
Calculating the test of Hypothesis: [tex]H_{0}: 23\% \ \text{off all adults which reconize the compony's logo}\\\\H_{1}: \text{more than 23\% of adult recornise the compony's logo}\\\\[/tex]
that is
[tex]H_{0}: p=0.23\ against \ H_{1}:p>0.01\\\\Z=\frac{P-p}{\sqrt{\frac{p(1-p)}{n}}}\sim N(0,1)\\\\[/tex]
Given:
[tex]p= 0.23\\\\ \therefore \\\\1-p=0.77\\\\n=1200\\\\ P=\frac{311}{1200}=0.2591\\\\\therefore\\\\Z= \frac{0.2591-0.23}{\sqrt{((0.23)\times \frac{(1-0.23))}{1200}}}=2.4049[/tex]
Z=2.576 tabled value. Because Z is 2.4049, that's less than Z stated, there is no indication that a null hypothesis is rejectable, which means that 23% of all adults record the logo of the Company.
find the measure of x
Answer:
[tex]B)\ x=43[/tex]
Step-by-step explanation:
One is given a circle with many secants within the circle. Please note that a secant refers to any line in a circle that intersects the circle at two points. A diameter is the largest secant in the circle, it passes through the circle's midpoint. One property of a diameter is, if a triangle inscribed in a circle has a side that is a diameter of a circle, then the triangle is a right triangle. One can apply this to the given triangle by stating the following:
[tex]x+47+90=180[/tex]
Simplify,
[tex]x+47+90=180[/tex]
[tex]x+137=180[/tex]
Inverse operations,
[tex]x+137=180[/tex]
[tex]x=43[/tex]
How do we solve this?
Answer:
[tex] = - \frac{1}{36(6x + 1) ^{6} } + c[/tex]
I hope I helped you^_^Answer:
[tex]-\frac{1}{36\left(6x+1\right)^6} +C[/tex]
Step-by-step explanation:
we're going to us u substitution
[tex]\int (6x+1)^-7 dx[/tex]
[tex]u=6x+1[/tex]
[tex]\int\frac{1}{6u^7} du[/tex]
take out the constant, [tex]\frac{1}{6}[/tex]
[tex]\frac{1}{6}[/tex] · [tex]\int u^-7du[/tex]
next use the power rule, [tex]\int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1[/tex]
[tex]\frac{1}{6}\cdot \frac{u^{-7+1}}{-7+1}[/tex]
simplify by substituting [tex]6x+1[/tex] for [tex]u[/tex]
[tex]\frac{1}{6}\cdot \frac{(6x+1)^{-7+1}}{-7+1} = -\frac{1}{36\left(6x+1\right)^6}[/tex]
add a constant, [tex]C[/tex]
[tex]-\frac{1}{36\left(6x+1\right)^6} +C[/tex]
4. Lynn can walk two miles intenta
24 minutes. At this rate, how long will
it take her to walk 6 miles?
the mode of 3,5,1,2,4,6,0,2,2,3 is
giving out brainliest
Which of the following graphs represents a one-to-one function? On a coordinate plane, a function has two curves connected to a straight line. The first curve has a maximum of (negative 6, 4) and a minimum of (negative 4.5, negative 1). The second curve has a maximum of (negative 3.5, 2) and a minimum of (negative 2.5, 0.5). The straight line has a positive slope and starts at (negative 2, 1) and goes through (1, 2). On a coordinate plane, a circle intersects the x=axis at (negative 2, 0) and (2, 0) and intercepts the y-axis at (0, 4) and (0, negative 4). On a coordinate plane, a v-shaped graph is facing up. The vertex is at (0,0) and the function goes through (negative 4, 4) and (4, 4). A coordinate plane has 7 points. The points are (negative 4, 1), (negative 3, 4), (negative 1, 3), (1, negative 3), (3, negative 4), (4, negative 2), (5, 3). Mark this and return
Answer:
d. this graph
Step-by-step explanation:
find the value of the trigonometric ratio. make sure to simplify the fraction if needed
Answer:
Sin A = o/h
= 9/41
Step-by-step explanation:
since Sin is equal to opposite over hypotenuse, from the question, the opposite angle of A is 9 and hypotenuse angle of A is 41. Thus the answer for Sin A= 9/41
HELPPP!!!
find the area of a triangle with a height of 9cm and a base of 5 cm
Answer:
A = 22.5 cm^2
Step-by-step explanation:
The area of a triangle is
A = 1/2 bh where b is the base and h is the height
A = 1/2(5)(9)
A = 45/2
A = 22.5 cm^2
[tex]\begin{gathered} {\underline{\boxed{ \rm {\red{Area \: \: of \: \: triangle \: = \: \frac{1}{2} \: \times \: base \: \times \: height}}}}}\end{gathered}[/tex]
Base of triangle = 5 cm.Height of triangle is 9 cm.Solution[tex]\bf \longrightarrow \:Area \: \: of \: \: triangle \: = \: \frac{1}{2} \: \times \: 5 \: cm \: \times \: 9 \: cm[/tex]
[tex]\bf \longrightarrow \:Area \: \: of \: \: triangle \: = \: \frac{1}{2} \: \times \: 45 \: cm[/tex]
[tex]\bf \longrightarrow \:Area \: \: of \: \: triangle \: = \: \frac{45 \: {cm}^{2} }{2} \: \\ [/tex]
[tex]\bf \longrightarrow \:Area \: \: of \: \: triangle \: = \: \cancel\frac{45}{2} \: \: ^{22.5 \: {cm}^{2} } \: \\ [/tex]
[tex]\bf \longrightarrow \:Area \: \: of \: \: triangle \: = \: 22.5 \: {cm}^{2} [/tex]
Hence , the area of triangle is 22.5 cm²
Please Help!!! Thank you!
find x
Answer:
If the hypotenuse of the 30 60 90 triangle is 7 sqrt 3, then the length of the longer side is equal to 7 x 3, or 21.
Now going to the 45 45 90 triangle, we can see that x is equal to 21[tex]\sqrt{2}[/tex]. This is because the hypotenuse of a 45 45 90 triangle is equal to the side length times sqrt 2.
So our answer is, 21[tex]\sqrt{2}[/tex].
Let me know if this helps!
2
7) through: (-3,0), slope
3
Answer:
Step-by-step explanation:
Point-slope equation for line of slope m that passes through (x₀, y₀):
y-y₀ = m(x-x₀)
Slope =3 and (x₀, y₀)=(-3,0)
y = 3(x+3)
y = 3x+ 9
:::::
Slope-intercept equation for line of slope m and y-intercept b:
y = mx+b
m=1 and b= -4:
y = x-4
What is the remainder when () = 3 − 11 − 10 is divided by x+3
Answer:
-18/x+3
Step-by-step explanation:
Hãy tìm hàm gốc f(t) có hàm ảnh Laplace như dưới đây:
F(p)=6/p(2p^2+4p +10)
It looks like we're given the Laplace transform of f(t),
[tex]F(p) = L_p\left\{f(t)\right\} = \dfrac6{p(2p^2+4p+10)} = \dfrac3{p(p^2+2p+5)}[/tex]
Start by splitting up F(p) into partial fractions:
[tex]\dfrac3{p(p^2+2p+5)} = \dfrac ap + \dfrac{bp+c}{p^2+2p+5} \\\\ 3 = a(p^2+2p+5) + (bp+c)p \\\\ 3 = (a+b)p^2 + (2a+c)p + 5a \\\\ \implies \begin{cases}a+b=0 \\ 2a+c=0 \\ 5a=3\end{cases} \implies a=\dfrac35,b=-\dfrac35, c=-\dfrac65[/tex]
[tex]F(p) = \dfrac3{5p} - \dfrac{3p+6}{5(p^2+2p+5)}[/tex]
Complete the square in the denominator,
[tex]p^2+2p+5 = p^2+2p+1+4 = (p+1)^2+4[/tex]
and rewrite the numerator in terms of p + 1,
[tex]3p+6 = 3(p+1) + 3[/tex]
Then splitting up the second term gives
[tex]F(p) = \dfrac3{5p} - \dfrac{3(p+1)}{5((p+1)^2+4)} - \dfrac3{5((p+1)^2+4)}[/tex]
Now take the inverse transform:
[tex]L^{-1}_t\left\{F(p)\right\} = \dfrac35 L^{-1}_t\left\{\dfrac1p\right\} - \dfrac35 L^{-1}_t\left\{\dfrac{p+1}{(p+1)^2+2^2}\right\} - \dfrac3{5\times2} L^{-1}_t\left\{\dfrac2{(p+1)^2+2^2}\right\} \\\\ L^{-1}_t\left\{F(p)\right\} = \dfrac35 - \dfrac35 e^{-t} L^{-1}_t\left\{\dfrac p{p^2+2^2}\right\} - \dfrac3{10} e^{-t} L^{-1}_t\left\{\dfrac2{p^2+2^2}\right\} \\\\ \implies \boxed{f(t) = \dfrac35 - \dfrac35 e^{-t} \cos(2t) - \dfrac3{10} e^{-t} \sin(2t)}[/tex]
What is the volume of a cone below?
What are the x-intercepts for the function ƒ(x) = -x(x − 4)?
A 0
B -1, 4
C 4
D 0, 4
What are the solutions to the quadratic equation 4x2 − x − 3 = 0?
Answer:
D
Step-by-step explanation:
f(x)=-x(x-4)
f(x)=-x²+4x
-x²+4x=0
x(-x+4)=0
x=0, x=4
(2)
4x²-x-3=0
(4x²+3x)-(4x-3)=0
x(4x+3)-1(4x+3)=0
x=1, x=-3/4
Help please!??!!?!?
9514 1404 393
Answer:
a) CP = SP/1.1
b) CP = $59.50
c) GST = $5.95
Step-by-step explanation:
a) Divide by the coefficient of CP.
SP = 1.1×CP
CP = SP/1.1
__
b) Use the formula with the given value.
CP = $65.45/1.1 = $59.50
__
c) You can do this two ways: subtract CP from SP, or multiply CP by 0.1.
GST = SP -CP = $65.45 -59.50 = $5.95
GST = CP×0.10 = $59.50 × 0.10 = $5.95
A 10-ft ladder, whose base is sitting on level ground, is leaning at an angle against a vertical wall when its base starts to slide away from the vertical wall. When the base of the ladder is 6 ft away from the bottom of the vertical wall, the base is sliding away at a rate of 4 ft/sec. At what rate is the vertical distance from the top of the ladder to the ground changing at this moment?
Answer:
2.5/ft per sec
Step-by-step explanation:
its vertica.
The height of the ladder is decreasing at a rate of 24 ft/sec.
What is the Pythagorean theorem?Pythagorean theorem states that for a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
We can apply this theorem only in a right triangle.
Example:
The hypotenuse side of a triangle with the two sides as 4 cm and 3 cm.
Hypotenuse side = √(4² + 3²) = √(16 + 9) = √25 = 5 cm
We have,
Let's denote the distance between the base of the ladder and the wall by x.
The length of the ladder = L.
Now,
L = 10 ft
dx/dt = 4 ft/sec
x = 6 ft.
The rate of change of the height of the ladder with respect to time.
Using the Pythagorean theorem, we have:
L² = x² + y²
Differentiating both sides with respect to time t, we get:
2L (dL/dt) = 2x(dx/dt) + 2y(dy/dt)
Substituting L = 10 ft, x = 6 ft, and dx/dt = 4 ft/sec.
20(dL/dt) = 12(4) + 2y(dy/dt)
Simplifying and solving for dy/dt.
dy/dt = (20/2y)(dL/dt) - 24
Now,
The height of the ladder.
Using the Pythagorean theorem again, we have:
y² = L² - x²
= 100 - 36
= 64
y = 8
Now,
Substituting y = 8 ft, dL/dt = 0
(since the length of the ladder is constant), and dx/dt = 4 ft/sec.
dy/dt
= (20/2(8))(0) - 24
= -24 ft/sec
Therefore,
The height of the ladder is decreasing at a rate of 24 ft/sec.
Learn more about the Pythagorean theorem here:
https://brainly.com/question/14930619
#SPJ2
The sum of the two numbers is 66. The larger number is 10 more than the smaller number. What are the numbers?
Answer:
28 and 38
Step-by-step explanation:
a+b = 66
a + 10 = b
using substitution, a + (a+10) = 66
2a = 56
a = 28
28 + 10 = 38
b = 38
Which of the following rational functions is graphed below?
o
A. F(x) = 1/2x
B. AX) = 1/x-2
C. F(x) = 1/x+2
Answer:
Option B.
Step-by-step explanation:
We can see that we have an asymptote at x = 2
Remember that in a rational function, the asymptote is at the x-value such that the denominator is equal to zero.
So, the denominator is something like:
(x + a)
we have that the denominator is zero when x = 2
Then:
(2 + a) = 0
solving that for a, we get:
a = -2
Then the denominator of the rational function is:
(x - 2)
For the given options, the only one with this denominator is option B, then the correct option is B.
Answer:
B. f(x) = 1/x-2
Step-by-step explanation:
Math is ez bro.
The figure to the right shows the graphs of the cost and revenue functions for a
company that manufactures and sells small radios. The solid red line represents the
revenue function, R(x) = 55x; the dashed blue line represents the cost function,
C(x) = 15,000 + 30x. Use the formulas to find R(300) - C(300). Describe what this means for the company
(Type integers or decimals.)
R(300) - C(300) = ???
which represents a $ ???
loss for the company
B. R(300) - C(300) = ??
which represents a ??
gain for the company
From the formula R(300) - C(300) we understand that is loss of 7500 for the company.
The given functions are R(x) = 55x and C(x) = 15,000 + 30x.
What is the function?Functions are the fundamental part of the calculus in mathematics. The functions are the special types of relations. A function in math is visualized as a rule, which gives a unique output for every input x.
The given function is R(300) - C(300).
Now, R(300) = 55 × 300 = 16500
C(300) = 15,000 + 30 × 300
=15,000 + 9000
= 24,000
Now, R(300) - C(300) = 16500-24000
= -7,500
Therefore, from the formula R(300) - C(300) we understand that is loss of 7500 for the company.
To learn more about the function visit:
https://brainly.com/question/12426369.
#SPJ
HELP WITH 16 What is the value of X
Answer:
C - 136
(115+157)/2
Step-by-step explanation:
Find the measure of the incanted angle to the nearest degree
Answer:
Sinx = 21/40
x = inverse of sin (21/40)
x= 31.6682
hope u got it
Answer:
31.6 degrees
Step-by-step explanation:
sin-¹(p/h) = 31.6
The least-squares regression equation
y = 8.5 + 69.5x can be used to predict the monthly cost for cell phone service with x phone lines. The list below shows the number of phone lines and the actual cost.
(1, $90)
(2, $150)
(3, $200)
(4, $295)
(5, $350)
Calculate the residuals for 2 and 5 phone lines, to the nearest cent.
The residual for 2 phone lines is $___
The residual for 5 phone lines is $___
Answer:
First one: 2.5
Second: -6
8.5+69.5(5) = 147.5
150 - 147.5 = 2.5
8.5 + 69.5(5) = 356
350 - 356 = -6
ED2021
The residual for 2 phone lines is $2.5.
The residual for 5 phone lines is -$6.
What is the residual in a least-square regression equation?
The residual is the vertical distance separating the observed point from your expected y-value, or more simply put, it is the difference between the actual y and the predicted y.
How to solve the question?In the question, we are asked to find the residual for 2 and 5 lines using the least-squares regression equation y = 8.5 + 69.5x and the actual costs given to us.
We know that the residual is the vertical distance separating the observed point from your expected y-value, or more simply put, it is the difference between the actual y and the predicted y.
Thus for 2 phone lines:-
Actual Cost = $150.
Predicted Cost, y = 8.5 + 69.5*2 = 147.5.
Residual = Actual Cost - Predicted Cost = 150 - 147.5 = $2.5.
Thus, the residual for 2 phone lines is $2.5.
Thus for 5 phone lines:-
Actual Cost = $350.
Predicted Cost, y = 8.5 + 69.5*2 = 356.
Residual = Actual Cost - Predicted Cost = 350 - 356 = -$6.
Thus, the residual for 2 phone lines is -$6.
Learn more about the residual in a least-square regression equation at
https://brainly.com/question/20165292
#SPJ2
A kite is a ........... quadrilateral
Answer:
yes
Step-by-step explanation:
The complete sentence is,
A kite is a convex quadrilateral.
We have to given that,
To find a kite is which type of a quadrilateral.
We know that,
A quadrilateral known as a kite has four sides that may be divided into two pairs of neighboring, equal-length sides.
The two sets of equal-length sides of a parallelogram, however, are opposite one another as opposed to being contiguous.
Hence, The complete sentence is,
A kite is a convex quadrilateral.
Learn more about quadrilateral visit:
https://brainly.com/question/23935806
#SPJ7
Use the graph to complete the statement. O is the origin. r(180°,O) ο Ry−axis : (2,5)
A. ( 2, 5)
B. (2, -5)
C. (-2, -5)
D. (-2, 5)
9514 1404 393
Answer:
B. (2, -5)
Step-by-step explanation:
Reflection across the y-axis is the transformation ...
(x, y) ⇒ (-x, y)
Rotation 180° about the origin is the transformation ...
(x, y) ⇒ (-x, -y)
Applying the rotation after the reflection, we get ...
(x, y) ⇒ (x, -y)
(2, 5) ⇒ (2, -5)
_____
Additional comment
For these transformations, the order of application does not matter. Either way, the net result is a reflection across the x-axis.
Answer:
(2,-5)
Step-by-step explanation:
Given FE=23.5, find BD.
Answer:
11.75
Step-by-step explanation:
The required triangle is attached below :
The triangle AFE has it's by the mid segment as BD ;as B is the mid-point of line EA ; and D is the mid-point of line FA ;
HENCE, The Length of the midsegment BD = 1/2FE
Hence, BD =. 1/2 * 23.5
BD = 23.5 / 2 = 11.75
What is the image of -8 ,8 after a dilation by a scale factor of one fourth centered at the origin?
Answer:
(-2, 2)
Step-by-step explanation:
If you have a point (x, y) and you do a dilation by a scale factor K centered at the origin, the new point will just be (k*x, k*y)
So, if the original point is (-8, 8)
And we do a dilation by a scale factor k = 1/4
Then the image of the point will be:
(-8*(1/4), 8*(1/4))
(-8/4, 8/4)
(-2, 2)
Value of [(3/2)^(-2)] is *
Answer:
[tex] { (\frac{3}{2} )}^{ - 2} \\ = { (\frac{2}{3}) }^{2} \\ = \frac{4}{9} \\ thank \: you[/tex]
Given two dependent random samples with the following results: Population 1 30 35 23 22 28 39 21 Population 2 45 49 15 34 20 49 36 Use this data to find the 90% confidence interval for the true difference between the population means. Assume that both populations are normally distributed. Step 1 of 4: Find the point estimate for the population mean of the paired differences. Let x1 be the value from Population 1 and x2 be the value from Population 2 and use the formula d=x2−x1 to calculate the paired differences. Round your answer to one decimal place.
Answer:
(-14.8504 ; 0.5644)
Step-by-step explanation:
Given the data:
Population 1 : 30 35 23 22 28 39 21
Population 2: 45 49 15 34 20 49 36
The difference, d = population 1 - population 2
d = -15, -14, 8, -12, 8, -10, -15
The confidence interval, C. I ;
C.I = dbar ± tα/2 * Sd/√n
n = 7
dbar = Σd/ n = - 7.143
Sd = standard deviation of d = 10.495 (using calculator)
tα/2 ; df = 7 - 1 = 6
t(0.10/2,6) = 1.943
Hence,
C.I = - 7.143 ± 1.943 * (10.495/√7)
C.I = - 7.143 ± 7.7074
(-14.8504 ; 0.5644)
substitute for A,P and T in the fomula A=P (1+r)^t,give that A=1 000 000,P=10 000 and T=2,and express as a quadratic equation
A = 10,00,000
P = 10,000
T = 2
1000000 = 10000(1+r/100)^2
1000000 = 10000((100 + r)/100)^2
1000000 = 10000× 100 + r/100 × 100 + r/100
1000000 = 10000 + r^2
1000000 - 10000 = r^2
990000 = r^2
√99000 = r
Quadratic Equation
10000(1+r/100)^2
Please answer this and show the work/explain
2/7m - 1/7 = 3/14
(2/7)m - (1/7) = 3/14
2m/7 =(3/14) + (1/7)
2m/7 = (3/14) + 2(1/7)
here we are multiplying 2 with 1/7 to make the denominator same for addition.
2m/7 = (3/14) +(2/14)
2m/7 = (3 + 2)/14
2m/7 = 5/14
2m = (5 *7)/14
2m = 35/14
2m = 5/2
m = 5/4
m = 1.25
So the value of "m" is 1.25
What is the measure of m?
Answer:
√245
Step-by-step explanation:
altitude on hypotenuse theorem:
m^2=7*35
m^2=245
m=√245