Answer:
-7/1, -2.1, square root of 5, square root of 9, and last 3.5
Step-by-step explanation:
Square root of 9 is 3.
Square root of 5 is 2.24
-7/2 as a decimal is -3.5
So, from least to greatest order is:
-7/2 > -2.1 > Square root of 5 > Square root of 9 > 3.5
a is less than or equal to 10
Lmk
Answer:
[tex]a \leqslant 10[/tex]
Step-by-step explanation:
a is less than or equal to 10
less than: <
equal: =
less than or equal to: ≤
Hope this helps ;) ❤❤❤
hope it helps you
imp=draw dark shaded point in thqt line and point towards left
Diana paints 150 fence posts and chuck paints 130 fence posts. Diana paints 10 more fence posts than chuck. How many fence posts does chuck paint per hour?
Complete Question
The complete question is shown on the first uploaded image
Answer:
Step-by-step explanation:
From the question we are told that
The relationship is [tex]\frac{150 }{d} = \frac{130}{c}[/tex]
The number of fence post painted by chuck is [tex]l = 130[/tex]
The number of fence post painted by Diana is [tex]k = 150[/tex]
can paint 10 fences more than chuck so let say the of fence painted in an hour by chuck is [tex]g[/tex]
Then the number of fence post painted by Diana in one hour is
[tex]f = g+ 10[/tex]
So
[tex]\frac{150 }{ g + 10 } = \frac{130}{g}[/tex]
[tex]130 g + 1300 = 150g[/tex]
[tex]g = 65 \ m[/tex]
Write a rational number in fraction form that is equivalent to -1.\overline{5}
Answer:
[tex]\dfrac{-14}{9}[/tex].
Step-by-step explanation:
The given number is [tex]-1.\overline{5}[/tex].
We need to find a rational number in fraction form that is equivalent to given number.
Let [tex]x=-1.\overline{5}[/tex]
[tex]x=-1.555...[/tex] ...(1)
Multiply both sides by 10.
[tex]10x=-15.555...[/tex] ...(2)
Subtracting (1) from (2), we get
[tex]10x-x=-15.555...-(-1.555...)[/tex]
[tex]9x=-14[/tex]
Divide both sides by 9.
[tex]x=\dfrac{-14}{9}[/tex]
Therefore, the required rational number is [tex]\dfrac{-14}{9}[/tex].
what is the number if 4 is subtracted from the sum of one fourth of 5 times of 8 and 10
Answer:18.5
Step-by-step explanation:
10+8=18
18*5=90
90/4
22.5-4=18.5
In your own words, define Quadratic Equation. How many solutions does a Quadratic Equation have?
Answer: an equation that has one term which is nameless and squared also no term which gets raised to higher power.
Step-by-step explanation:
What value does the 2 in the number 0.826?
Answer:
.02
Step-by-step explanation:
2 is in "Hundredths' place in .826
So, the number is multiplied with 1/100 or .01
=> 2 x 1/100
=> 2/100
=> .02
=> 2 x .01
=> .02
The value of 2 in .826 is .02
Which is the solution to the inequality?
2 3/5 <b-8/15
Answer:
3 2/15 <b
Step-by-step explanation:
2 3/5 <b-8/15
Add 8/ 15 to each side
2 3/5 + 8/ 15 <b-8/15 + 8/15
2 3/5 + 8 /15 <b
Get a common denominator
2 3/5 *3/3 + 8/15
2 9/15 + 8/15 < b
2 17/15 < b
2 + 15/15 + 2 /15 < b
3 2/15 <b
Answer:
B > 3 2/15
Step-by-step explanation:
What are the solution(s) of the quadratic equation 98 - x2 = 0?
x = +27
Ox= +63
x = +7/2
no real solution
Answer:
±7 sqrt(2) = x
Step-by-step explanation:
98 - x^2 = 0
Add x^2 to each side
98 =x^2
Take the square root of each side
±sqrt(98) = sqrt(x^2)
±sqrt(49*2) = x
±7 sqrt(2) = x
Answer:
[tex]\huge \boxed{{x = \pm 7\sqrt{2} }}[/tex]
Step-by-step explanation:
[tex]98-x^2 =0[/tex]
[tex]\sf Add \ x^2 \ to \ both \ sides.[/tex]
[tex]98=x^2[/tex]
[tex]\sf Take \ the \ square \ root \ of \ both \ sides.[/tex]
[tex]\pm \sqrt{98} =x[/tex]
[tex]\sf Simplify \ radical.[/tex]
[tex]\pm \sqrt{49} \sqrt{2} =x[/tex]
[tex]\pm 7\sqrt{2} =x[/tex]
[tex]\sf Switch \ sides.[/tex]
[tex]x= \pm 7\sqrt{2}[/tex]
In particular, OLS for the multiple regression model involves selecting parameters that will minimize:___________
Answer:
Ordinary Least Square (OLS) for the multiple regression model involves selecting parameters of a straight line function that will minimize the sum of the squares of the variance in the given dataset and those forecasted by the straight-line function.
Cheers
i will give brainliest and 5 stars if you help ASAP
Answer:
[tex] Area = 240 m^2 [/tex]
Step-by-step explanation:
The area of the right triangle above = [tex] \frac{1}{2}*base*height [/tex].
Where,
base = 16 m
height = 30 m
Plug in the above values into the area formula:
[tex] Area = \frac{1}{2}*16*30 [/tex]
[tex] Area = 8*30 [/tex]
[tex] Area = 240 m^2 [/tex]
Refer to the attachment for solution.
x = 4 7 9 I dont mind for a step by step
Answer:
[tex]\boxed{\sf x = 9}[/tex]
Step-by-step explanation:
According to chord-chord theorem:
=> [tex]x* 2 = 3 * 6[/tex]
=> [tex]2x = 18[/tex]
Dividing both sides by 2
=> x = 18/2
=> x = 9
You have found the following ages (in years) of all 666 lions at your local zoo: 13,2,1,5,2,7 What is the average age of the lions at your zoo? What is the standard deviation? Average age: _____ years old Standard deviation: ____ years
Answer:
[tex]Mean = 5[/tex]
[tex]S_x = 4.123[/tex]
Step-by-step explanation:
Given
Number of Lions, n: 6
Ages: 13, 2, 1, 5, 2, 7
Required
Determine the:
1. Mean
2. Standard Deviation
Mean is calculated as;
[tex]Mean = \frac{\sum x}{n}[/tex]
[tex]Mean = \frac{13+2+1+5+2+7}{6}[/tex]
[tex]Mean = \frac{30}{6}[/tex]
[tex]Mean = 5[/tex]
Standard Deviation is calculated as follows
[tex]S_x = \sqrt{\frac{\sum (x_i - Mx)^2}{N}}[/tex]
Where Mx represent mean
Substitute values for x, Mean and Land
[tex]S_x = \sqrt{\frac{(13 - 5)^2+(2 - 5)^2+(1 - 5)^2+(5 - 5)^2+(2 - 5)^2+(7 - 5)^2}{6}}[/tex]
[tex]S_x = \sqrt{\frac{(8)^2+(- 3)^2+(-4)^2+(0)^2+(-3)^2+(2)^2}{6}}[/tex]
[tex]S_x = \sqrt\frac{64+9+16+0+9+4}{6}}[/tex]
[tex]S_x = \sqrt\frac{102}{6}}[/tex]
[tex]S_x = \sqrt{17}[/tex]
[tex]S_x = 4.123[/tex]
The mean and standard deviation is 5 and 4.123 respectively
We want to find the mean or average and the standard deviation of the given set.
The average age is 5 years old and the standard deviation is 4.52 years old.
We know that for a general set of N elements {x₁, x₂, ..., xₙ} the average or mean is given by:
[tex]M = \frac{x_1 + x_2 + ... + x_n}{N}[/tex]
And the standard deviation is given by:
[tex]S = \sqrt{\frac{(x_1 - M)^2 + ... + (x_n - M)^2}{N - 1}[/tex]
The given set is:
{13, 2, 1, 5, 2, 7}
Now we just need to use the two given formulas for our set.
The mean is:
[tex]M = \frac{13 + 2 + 1+ 5 + 2 +7}{6} = 5[/tex]
And the standard deviation is:
[tex]S = \sqrt{\frac{(13 - 5)^2 + (2 - 5)^2 + (1 - 5)^2 + (5 - 5)^2 + (2 - 5)^2 + (7 - 5)^2}{6 - 1} } = 4.52[/tex]
So the average age is 5 years old and the standard deviation is 4.52 years old.
If you want to learn more you can read:
https://brainly.com/question/12402189
Find the mean, variance, and standard deviation of the binomial distribution with the given values of n and p. n = 50 p = 0.2
Answer:
The mean, variance, and standard deviation of the binomial distribution are 10, 8, and 2.83 respectively.
Step-by-step explanation:
We have to find the mean, variance, and standard deviation of the binomial distribution with the given values of n and p, i.e; n = 50 p = 0.2.
Let X = binomial random variable
So, X ~ Binom(n = 50, p = 0.2)
Now, the mean of the binomial distribution is given by;
Mean of X, E(X) = n [tex]\times[/tex] p
= 50 [tex]\times[/tex] 0.2 = 10
Now, the variance of the binomial distribution is given by;
Variance of X, V(X) = n [tex]\times[/tex] p [tex]\times[/tex] (1 - p)
= 50 [tex]\times[/tex] 0.2 [tex]\times[/tex] (1 - 0.2)
= 10 [tex]\times[/tex] 0.8 = 8
Also, the standard deviation of the binomial distribution is given by;
Standard deviation of X, S.D.(X) = [tex]\sqrt{\text{n} \times \text{p} \times (1 - \text{p})}[/tex]
= [tex]\sqrt{\text{50} \times \text{0.2} \times (1 - \text{0.2})}[/tex]
= [tex]\sqrt{8}[/tex] = 2.83
During the school year, there were 315 total points scored between basketball, soccer, baseball, and football. The baseball team scored 55 points. The soccer team scored twice as much as the baseball team. The football team scored 0.5 more than 1.5 times as much as the baseball team. How many points did the basketball team score?
Answer:
67.5p.
Step-by-step explanation:
315p in total.
- Baseball has 55p.
- Soccer teams points = 55x2 = 110p.
- Football team points = 110 x 0.5 = 55 x 1.5 = 82.5p.
So then you just do 315p - 82.5p - 55p - 110p = 67.5p
Un taxímetro inicia con 50 unidades y el banderazo o arranque es de $4500, las unidades comienzan a cambiar p0r cada kilometros recorrido. La función lineal que representa esta situación es y = 50x +4500 donde y representa el precio que cuesta la carrera y x la distancia recorrida en kilómetros. a) ¿ Cuanto cuesta una carrera si la distancia recorrida fue de 23 kilómetros?
Answer: $5650
Step-by-step explanation:
El precio de la carrera es:
y = ($50/km)*x + $4500.
Donde x representa la cantidad recorrida en Km.
Ahora se nos pregunta:
¿ Cuanto cuesta una carrera si la distancia recorrida fue de 23 kilómetros?
Para esto, debemos reemplazar la variable en la equacion por 23km:
x = 23km
y = ($50/km)*23km + $4500 = $5650
line and passes through C -2,0 in the 1, -3) Quetion of the line in standard form
Answer:
[tex]\huge\boxed{x+y=-2}[/tex]
Step-by-step explanation:
The standard form of an equation of a line:
[tex]Ax+By=C[/tex]
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
where
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have two points (-2, 0) and (1, -3).
Substitute:
[tex]x_1=-2;\ y_1=0;\ x_2=1;\ y_2=-3[/tex]
[tex]m=\dfrac{-3-0}{1-(-2)}=\dfrac{-3}{1+2}=\dfrac{-3}{3}=-1\\\\y-0=-1(x-(-2))\\\\y=-(x+2)[/tex]
[tex]y=-x-2[/tex] add x to both sides
[tex]x+y=-2[/tex]
logx - logx-1^2=2log(x-1)
Answer:
x is approximately 2.220744
Step-by-step explanation:
This can be simplified a little using properties of logarithms, and then solve it by graphing:
[tex]log(x)-log(x-1)^2=2\,log(x-1)\\log(x)-2\,log(x-1)=2\,log(x-1)\\log(x)=4\,log(x-1)[/tex]
So we use a graphing tool to find the intersection point of the graph of [tex]log(x)[/tex], and the graph of [tex]4\,log(x-1)[/tex]
Please see attached image for the graph and solution.
The value of x is approximately 2.220744
Answer:
x = 2.32011574011
Step-by-step explanation:
The problem with your original equation is that it is a long way of saying ...
log(x) -log(x) -1 = 2log(x-1)
0 -1 = 2log(x-1)
which has the solution ...
-1/2 = log(x -1)
1/√10 = x -1
x = 1 + 1/√10 ≈ 1.3162278
__
We have asked for clarification, and what we got was ...
[tex]\log{(x)}-\log{(x-1^2)}=2\log{(x-1)}[/tex]
which, again, is a long way of saying ...
[tex]\log{(x)}-\log{(x-1)}=2\log{(x-1)}[/tex]
The other reasonable interpretation of your 'clarified' equation is ...
[tex]\log{(x)}-\log{((x-1)^2)}=2\log{(x-1)}[/tex]
which you already have an answer to. You have declared that a "misconception."
So, we are left with the interpretation that the equation you want a solution to is ...
[tex]\log{(x)}-\log{(x-1)}=2\log{(x-1)}[/tex]
_____
When solving these graphically, I like to write the equation as a function whose zero(s) we're trying to find. For this, when we subtract the right side, we get ...
[tex]f(x)=\log{(x)}-3\log{(x-1)}[/tex]
A graphing calculator shows that f(x) = 0 when ...
x ≈ 2.32011574011
__
If you don't like my interpretation, check out the second attachment. It has your x-1² as the argument of the middle term. You can see that the calculator interpreted that the same way I did (as required by the order of operations).
Combine like terms to simplify the expression: 2/5k - 3/5 +1/10k
━━━━━━━☆☆━━━━━━━
▹ Answer
1/2k - 3/5
▹ Step-by-Step Explanation
2/5k - 3/5 + 1/10k
Collect like terms:
2/5k + 1/10k = 1/2
Final Answer:
1/2k - 3/5
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Answer:
1/2k - 3/5
Step-by-step explanation:
Hey there!
Well the only fraction needed to combine are,
2/5 and 1/10.
To add them we need to make 2/5 have a denominator of 10.
To do that we multiply 5 by 2.
5*2 = 10
What happens to the denominator happens to the denominator.
2*2 = 4
Fraction - 4/10
4/10 + 1/10 = 5/10
5/10
simplified
1/2
1/2k - 3/5
Hope this helps :)
Is the quotient of two rational numbers always a rational number? Explain.
Answer:
Yes,
Step-by-step explananation
The quotient of two rational numbers is always rational, and the reason for this lies in the fact that the product of two integers is always an rational number.
The Quotient of two Rational Numbers is a Rational Number if and only if Numerator and Denominator are Multiples.
From Algebra, we know that a Rational Number is a Real Number of the form:
[tex]x = \frac{a}{b}[/tex], [tex]a, b\in \mathbb{N}[/tex], [tex]x \in \mathbb{R}[/tex] (1)
Where:
[tex]a[/tex] - Numerator.[tex]b[/tex] - Denominator.[tex]x[/tex] - Quotient.The Quotient can be an Integer or not. In the first case, all Quotients have their equivalent Rational Numbers.
Now, if we divide a Rational Number by another Rational Number, then we have the following expression:
[tex]x' = \frac{x_{1}}{x_{2}}[/tex]
If [tex]x'[/tex] is a Rational Number, then it must also an Integer and if [tex]x'[/tex] is an Integer, then [tex]x_{1}[/tex] and [tex]x_{2}[/tex] must be Multiples of each other.
The Quotient of two Rational Numbers is a Rational Number if and only if Numerator and Denominator are Multiples.
Please see this question related to Rational Numbers: https://brainly.com/question/24398433
If you want to turn a ball into a giant water balloon, how many cubic feet of lake water can you fill it with if the radius of this balloon is 1.5 feet?
Answer:
14.13 cubic feet of lake water can fill the given balloon.
Step-by-step explanation:
concept used:
volume of sphere = 4/3 [tex]\pi r^3[/tex]
where r is the radius of sphere
we take [tex]\pi[/tex] = 3.14
_____________________________________
shape of balloon can be taken as spherical.
Amount water filled in the balloon will be equal to capacity of balloon which is equal to volume of spherical balloon.
Given radius of balloon = 1.5 feet
Thus, volume of balloon = 4/3 [tex]\pi[/tex] 1.5^3 = 4/3*3.14*1.5^3
volume of balloon = 42.39/3 = 14.13 cubic feet
Thus, 14.13 cubic feet of lake water can fill the given balloon.
Please answer this correctly without making mistakes
Answer:
5/12
Step-by-step explanation:
3/4-1/3=
9/12-4/12=
5/12
Please tell me the answer ASAP Lynette's average score on five tests is 18. If she scores 24 points on her sixth test, what is her average score on all six tests? Show Your Work
Answer:
The average score of 6 tests is 19.
Step-by-step explanation:
Given that the average score of 5 tests is 18. So first, we have to find the total number of scores for 5 tests :
[tex]let \: x = total \: no. \: of \: scores[/tex]
[tex] \frac{x}{5} = 18[/tex]
[tex]x = 18 \times 5[/tex]
[tex]x = 90[/tex]
We have found out that the total scores for 5 tests is 90. So we have to find the average of 6 scores :
[tex] \frac{x + 24}{5 + 1} = \frac{90 + 24}{6} = \frac{114}{6} = 19[/tex]
[tex] \LARGE{ \boxed{ \rm{ \pink{Solution : )}}}}[/tex]
Given:Average score in 5 tests = 18He scored 24 points in 6th pointTo FinD:Find the average score in all six tests?How to find?We need to know how to find the average
☄ For this case, We are gonna find average score...!
[tex] \large{ \boxed{ \sf{Avg. \: score = \frac{Total \: score}{No. \: of \: tests} }}}[/tex]
So, Let's proceed further towards solution....
Solution:We have,
Avg. score = 18No. of tests = 5Finding total score in 5 tests,
⇛ Total score = Avg. score × No. of tests
⇛ Total score = 18 × 5
⇛ Total score = 90
According to question,
He scored 24 marks in 6th test⇛ Total score now = 90 + 24 = 114
No. of tests = 6Finding the average score of 6 tests,
⇛ Avg. score = 114 / 6
⇛ Avg. score = 19 points
☄ Avg. score of lynette in 6 tests = 19
━━━━━━━━━━━━━━━━━━━━
Suppose P( A) = 0.60, P( B) = 0.85, and A and B are independent. The probability of the complement of the event ( A and B) is: a. .4 × .15 = .060 b. 0.40 + .15 = .55 c. 1 − (.40 + .15) = .45 d. 1 − (.6 × .85) = .490
Answer: a. 0.4 × 0.15 = 0.060
Step-by-step explanation: Probability of the complement of an event is the one that is not part of the event.
For P(A):
P(A') = 1 - 0.6
P(A') = 0.4
For P(B):
P(B') = 1 - 0.85
P(B') = 0.15
To determine probability of A' and B':
P(A' and B') = P(A')*P(B')
P(A' and B') = 0.4*0.15
P(A' and B') = 0.06
Probability of the complement of the event is 0.060
The points (-6,-4) and (3,5) are the endpoints of the diameter of a circle. Find the length of the radius of the circle.
The length of the radius is a
(Round to the nearest hundredth as needed.)
Answer:
40.5
Step-by-step explanation:
diameter^2 = (3 +6)^2 + (5+4)^2
or, d^2 = 9^2 + 9^2
or, d^2 = 81 +81
or,d^2 =162
or d=√ 162
• d= 81
then radius = d/2
r = 81/2
•r= 40.5 ans
A diameter that is perpendicular to a chord bisects the chord. True False
Answer:
[tex]\Large \boxed{\sf True}[/tex]
Step-by-step explanation:
[tex]\sf A \ diameter \ that \ is \ perpendicular \ to \ a \ chord \ bisects \ the \ chord.[/tex]
Answer:
True!!
I just did the assignment and got it right
arthur walks 5/8 mi to school jonathan rides a bus 8 times that far> How far does Jonathan ride to school
Answer:
Step-by-step explanation:
Distance walked by Arthur = 5/8 miles
Distance ride by Jonathan = 8 times that of Arthur
it means that Distance rode on bus by Jonathan is 8 multiplied by Distance walked by Arthur
Distance rode on bus by Jonathan = 8 * Distance walked by Arthur
Distance rode on bus by Jonathan = 8 * 5/8 = 5 Miles Answer
if a salesman has a base salary of 35,000 per year makes 5% commission on each sales ,how much must he do in sales to make a total of 75,000 for the year
He must do a 8,00,000 sales to make total of 75000 for the year.
For salesman base salary = 35000, Salary to be atained is 75000. Having commission of 5% on every sales. Sales to be determine so the salesman attained 75000 for year.
In mathematics it deals with numbers of operations according to the statements.
Here, according to the statement.
Let x be sales,
35,000 + 5%x = 75,000
0.05x = 75000-35000
x = 40000/0.05
x = 8,00,000
Thus, he must do a 8,00,000 sales to make total of 75000 for the year
Learn more about arithmetic here:
brainly.com/question/14753192
#SPJ2
Solving a word problem with three unknowns using a linear...
Rachel, Trey, and Deshaun sent a total of 98 text messages during the weekend. Trey sent 4 times as many messages as Deshaun. Rachel sent 10 fewer
messages than Deshaun. How many messages did they each send?
Number of text messages Rachel sent:
221
Х
?
Answer:If Rachel texted 221 text messages, then Deshaun texted 231 text messages, and Trey texted 924 text messages.
Step-by-step explanation:
221+10=231, 321 times 4 equal 924
Find the length of a square with a perimeter of 48cmeter
Answer:
12
Step-by-step explanation:
Perimeter of a square:
4(L)
L = Length
=> 4(L) = 48
=> 4L = 48
=> 4L/4 = 48/4
=> L = 12
The length of the square is 12 cm.
Answer:
12
Step-by-step explanation:
Since the lengths of the sides of a square are equal, divide the perimeter by 4
plzzzzzzzzz someone help
Answer: 4
Step-by-step explanation:
Since this inequality gives us a list, we want to choose the greatest number shown because x≤?. Because x has to be less than or equal to a number, it makes the most sense to put the greatest number there. In the list, 4 is the greatest number.