Answer:
A. 120
Step-by-step explanation:
The rest of the answers are acute.
120 is the only one that matches the type of angle <V is.
Always pay attention to the type of angle it is.
Using only four 4's and any operational sign find the value of 8
Answer:
The answer is 4 + 4 + 4 - 4 = 8
Step-by-step explanation:
The four fours problem is one of the problems given in the book "The Man Who Calculated" by Malba Tahan, a Brazilian-born professor of mathematical sciences.
There are many complicated problems in this book made with the intention of using logic to find a value.
The 4 fours problem is based on using these numbers and using any operation to result in the numbers 1 through 10.
The height of the plant is given by the equation h = 0.5d + 4. Rewrite this as a function rule where f(x) is the height, in centimeters, and x is the time, in days. Use the rule to complete the table, and then use the drawing tools to create the graph representing this relationship.
Answer:
Here's what I get
Step-by-step explanation:
h = 0.5d + 4
A function rule tells you how to convert an input value (x) into an output value (y).
Your function rule is
ƒ(x) = 0.5x + 4
An easy way to represent your function is to make a graph.
The easiest way to make a graph is to make a table containing some inputs and their corresponding outputs.
Here's a typical table.
[tex]\begin{array}{cc}\textbf{x} &\textbf{y} \\0 & 4 \\2 & 5 \\4 & 6 \\6 & 7\\6 & 8 \\\end{array}[/tex]
The graph is like the one below.
What is the quotient of 35,423 ÷ 15?
Answer: 2361.53
Step-by-step explanation:
Use long division and round.
(The 3 is repeated)
If the solutions for a quadratic equation are -2 and 5 what is the equation
Answer:
f(x) = x^2 - 3x -10
Step-by-step explanation:
If the solutions are {-2, 5}, the factors of the quadratic are (x + 2) and (x - 5).
The equation is f(x) = (x + 2)(x - 5) = x^2 - 3x -10
For the following polynomial, find P(a), P(-x) and P(x + h).
P(x) = 7x-6
Answer:
Step-by-step explanation:
Hello, please consider the following.
P(a) = 7 * a - 6
P(-x)= 7 *(-x) - 6 = -7x - 6
P(x+h) = 7 * (x+h) - 6 = 7x + 7h - 6
Hope this helps.
Thank you.
The values of the polynomial for the given expressions are:
P(a) = 7a - 6
P(-x) = -7x - 6
P(x + h) = 7x + 7h - 6
To find P(a), P(-x), and P(x + h) for the given polynomial P(x) = 7x - 6, we need to substitute the respective values of x into the polynomial expression.
1. P(a):
P(a) = 7a - 6
2. P(-x):
P(-x) = 7(-x) - 6
P(-x) = -7x - 6
3. P(x + h):
P(x + h) = 7(x + h) - 6
P(x + h) = 7x + 7h - 6
To know more about polynomial:
https://brainly.com/question/2928026
#SPJ2
Listed below are systolic blood pressure measurements (mm Hg) taken from the right and left arms of the same woman. Assume that the paired sample data is a simple random sample and that the differences have a distribution that is approximately normal. Use a 0.05 significance level to test for a difference between the measurements from the two arms. What can be concluded?
Right_arm(mm_Hg) Left_arm(mm_Hg)
149 166
136 179
129 190
137 148
139 138
Data was entered in SPSS using the paired t-test approach!!
a. In this example, μd is the mean value of the differences d for the population of all pairs of data, where each individual difference d is defined as the measurement from the right arm minus the measurement from the left arm. What are the null and alternative hypotheses for the hypothesis test?
b.) Identify the test statistic.
c.) Identify the P-value.
d.) What is the conclusion based on the hypothesis test?
Answer:
There is a significant difference in the systolic blood pressure measurements between the two arms.
Step-by-step explanation:
The dependent t-test (also known as the paired t-test or paired samples t-test) compares the two means associated groups to conclude if there is a statistically significant difference amid these two means.
In this case a paired t-test is used to determine whether there is a difference in the systolic blood pressure measurements between the two arms.
The SPSS output is attached below.
(a)
The hypothesis for the test can be defined as follows:
H₀: There is no difference in the systolic blood pressure measurements between the two arms, i.e. d = 0.
Hₐ: There is a significant difference in the systolic blood pressure measurements between the two arms, i.e. d ≠ 0.
(b)
Consider the SPSS output.
The test statistic value is t = 0.871.
(c)
Consider the SPSS output.
The p-value of the test is:
p-value = 0.433.
(d)
The significance level of the test is, α = 0.05.
Decision rule:
If the p-value of the test is less than the significance level then the null hypothesis will be rejected and vice-versa.
p-value = 0.433 > α = 0.05
The null hypothesis will not be rejected at 5% level of significance.
Conclusion:
Thus, it can be concluded that there is a significant difference in the systolic blood pressure measurements between the two arms.
Write the polar form of a complex number in standard form for [tex]8[cos(\frac{\pi}{2}) + isin(\frac{\pi}{2})][/tex]
Answer:
Solution : 8i
Step-by-step explanation:
We can use the trivial identities cos(π / 2) = 0, and sin(π / 2) = 1 to solve this problem. Let's substitute,
[tex]8\left[cos\left(\frac{\pi }{2}\right)+isin\left(\frac{\pi \:}{2}\right)\right][/tex] = [tex]8\left(0+1i\right)[/tex]
And of course 1i = i, so we have the expression 8(0 + i ). Distributing the " 8, " 8( 0 ) = 0, and 8(i) = 8i, making the fourth answer the correct solution.
Solve the following system of equations.
2x + y = 3
x = 2y-1
ANSWER: ______
plz help me
(1,1) is your answer.
Work is shown below.
Any questions? Feel free to ask.
Answer: (1,1)
Step-by-step explanation:
Find the area of the shape shown below.
2
2
4
Hurry and answer plz!!!!
1
Answer:
7 square units
Step-by-step explanation:
We can break down this complex shape into smaller shapes.
I've broken it down into a rectangle, a square, and a triangle (See attached picture)
Let's first find the area of the triangle. To do this we use the formula [tex]\frac{bh}{2}[/tex]. The base is 1 (because the top is 2, and 1 is already used on the triangle - 2-1 = 1.) and the height is 2 (because 4 is already used on the left, and 2 was used on the right so 4-2=2).
[tex]\frac{2\cdot1}{2} = \frac{2}{2} = 1[/tex].
Now let's find the area of the top square - we can just square 2 which is 4.
To find the area of the bottom rectangle, we can multiply it's two side lengths of 2 and 1 = 2.
Adding these all together gets us 4+2+1 = 7.
Hope this helped!
4x + 1 -5x =2x +4(x-5)
Answer:
x = 3
Step-by-step explanation:
To answer for x first distribute the 4 in the parenthesis
4x + 1 - 5x = 2x +4x - 20
Next add or subtract the x's
-x + 1 = 6x - 20
Now subtract 6x and 1 on both sides to get x on the left and the rest on the right
-7x = -21
Lastly, divide -7 on both sides
x = 3
The perpendicular bisectors of ΔKLM intersect at point A. If AK = 25 and AM = 3n - 2, then what is the value of n?
Answer:
n = 9 is the answer.
Step-by-step explanation:
Given a Triangle [tex]\triangle KLM[/tex] with its perpendicular bisectors intersecting at a point A.
AK = 25 units and
AM = 3n -2
To find:
Value of n = ?
Solution:
First of all, let us learn about perpendicular bisectors and their intersection points.
Perpendicular bisector of a line PQ is the line which divides the line PQ into two equal halves and is makes an angle of [tex]\bold{90^\circ}[/tex] with the line PQ.
And in a triangle, the perpendicular bisectors of 3 sides meet at one point and that point is called Circumcenter of the triangle.
We can draw a circle from circumcenter so that the circle passes from the three vertices of the triangle.
i.e.
Circumcenter of a triangle is equidistant from all the three vertices of the triangle.
In the given statement, we are given that A is the circumcenter of the [tex]\triangle KLM[/tex].
Please refer to the attached image for the given triangle and sides.
The distance of A from all the three vertices will be same.
i.e. AK = AM
[tex]\Rightarrow 25 = 3n-2\\\Rightarrow 3n =25+2\\\Rightarrow 3n =27\\\Rightarrow \bold{n = 9}[/tex]
Therefore, n = 9 is the answer.
Perimeter =68 Length (L) is 4 less than twice the width (W)
Answer:
Length = 21.3333333333; Width: 12.6666666667
Step-by-step explanation:
Perimeter = 68
Perimeter of a rectangle:
2 (L +W)
Length (L) = 2W - 4
Width = W
2 ( 2W -4 +W) = 68
=> 2 (3W - 4) = 68
=> 6w -8 = 68
=> 6w = 76
=> w = 12.6666666667
Length = (12.6666666667 X 2) - 4
=> 21.3333333333
please help
-3(-4x+4)=15+3x
Answer:
x=3
Step-by-step explanation:
● -3 (-4x+4) = 15 + 3x
Multiply -3 by (-4x+4) first
● (-3) × (-4x) + (-3)×(4) = 15 + 3x
● 12 x - 12 = 15 +3x
Add 12 to both sides
● 12x - 12 + 12 = 15 + 3x +12
● 12 x = 27 + 3x
Substract 3x from both sides
● 12x -3x = 27 + 3x - 3x
● 9x = 27
Dividr both sides by 9
● 9x/9 = 27/9
● x = 3
AB is dilated from the origin to create A'B' at A' (0, 8) and B' (8, 12). What scale factor was AB dilated by?
Answer:
4
Step-by-step explanation:
Original coordinates:
A (0, 2)
B (2, 3)
The scale is what number the original coordinates was multiplied by to reach the new coordinates
1. Divide
(0, 8) ÷ (0, 2) = 4
(8, 12) ÷ (2, 3) = 4
AB was dilated by a scale factor of 4.
4. Solve the system of equations. (6 points) Part I: Explain the steps you would take to solve the system by eliminating the x-terms. (1 point) Part II: Explain the steps you would take to solve the system by eliminating the y-terms. (2 points) Part III: Choose either of the methods described in parts I or II to solve the system of equations. Write your answer as an ordered pair. Show your work. (3 points)
Answer:
The system of equations you want to be solved is not given. I would however give an example with which the method of elimination will be shown, and can be used in solving problems of the nature.
Step-by-step explanation:
Consider the system of equations:
x + y = 7 ................................(1)
2x - y = 8 ..............................(2)
To eliminate x:
First multiply (1) by 2 to have
2x + 2y = 14 ...........................(3)
Next, subtract (2) from (3) to have
3y = 6
y = 6/3 = 2
To eliminate y:
Add (1) and (2) to have
3x = 15
x = 15/3 = 5
Therefore, (x, y) = (5, 2).
slope of -4/3x with point (7,20) find equation
Answer:
y= -4/3x+10 2/3
Step-by-step explanation:
To do this, just put the equation in point slope form and then rearrange it to y=mx+b, or slope intercept form. Slope point form is arranged like this, y-y1=m(x-x1). Now, just insert in the variables (x1=x coordinate of point, y1= y coordinate of point, m=slope). So your equation is now y-20=-4/3(x-7), which simplifies to y-20=-4/3x-9 1/3. Now rearrange it so that y in by itself, and all like terms are combined, making it look like this: y=-4/3x+10 2/3. Now its in slope intercept form and you've got your answer.
I hope my explanation wasn't confusing and that my answer helped.
Find the 14th term in the sequence 1, 1/3, 1/9, … Find the sum of the first 10 terms of the sequence above.
Answer:
This is a geometric progresion that begins with 1 and each term is 1/3 the preceeding term
Let Pn represent the nth term in the sequence
Then Pn = (1/3)^n-1
From this P14 = (1/3)^13 = 1/1594323
5. The sum of the first n terms of a GP beginning a with ratio r is given by
Sn = a* (r^n+1 - 1)/(r - 1)
With n = 10, a = 1 and r = 1/3, S10 = ((1/3)^11 - 1)/(1/3 - 1) = 1.500
write 32 1/2 in radical form
Answer:
Nothing further, the simplest answer is 32 1/2
Step-by-step explanation:
12. Consider the function ƒ(x) = x^4 – x^3 + 2x^2 – 2x. How many real roots does it have?
options:
A) 2
B) 1
C) 3
D) 4
Answer:
Step-by-step explanation:
Hello, let's factorise as much as we can.
[tex]x^4-x^3 + 2x^2-2x\\\\=x(x^3-x^2+2x-2)\\\\=x(x-1)(x^2+2)[/tex]
So, the solutions are
[tex]0, \ 1, \ \sqrt{2}\cdot i, \ -\sqrt{2}\cdot i[/tex]
There are only 2 real roots.
Thank you.
Answer:
So, the solutions are
There are only 2 real roots.
Step-by-step explanation:
What are the solutions to the system of equations? {y=2x2−8x+5y=x−2 (3.5, 0.5) and (1, −1) (7, 5) and (0.5, −1.5) (3.5, 1.5) and (1, −1) (3.5, 1.5) and (−1, −3)
Answer:
[tex](1,-1)[/tex] and [tex](3.5,1.5)[/tex]
Step-by-step explanation:
Given
[tex]y = 2x^2 - 8x+5[/tex]
[tex]y = x - 2[/tex]
Required
Determine the solution
Substitute x - 2 for y in [tex]y = 2x^2 - 8x+5[/tex]
[tex]x - 2 = 2x^2 - 8x+5[/tex]
Collect like terms
[tex]0 = 2x^2 - 8x - x + 5 + 2[/tex]
[tex]0 = 2x^2 - 9x + 7[/tex]
Expand the expression
[tex]0 = 2x^2 - 7x - 2x+ 7[/tex]
Factorize
[tex]0 = x(2x - 7) -1(2x - 7)[/tex]
[tex]0 = (x-1)(2x - 7)[/tex]
Split the expression
[tex]x - 1 = 0[/tex] or [tex]2x - 7 = 0[/tex]
Solve for x in both cases
[tex]x = 1[/tex] or [tex]2x = 7[/tex]
[tex]x = 1[/tex] or [tex]2x/2 = 7/2[/tex]
[tex]x = 1[/tex] or [tex]x = 3.5[/tex]
Recall that
[tex]y = x - 2[/tex]
When [tex]x = 1[/tex]
[tex]y = 1 -2[/tex]
[tex]y = -1[/tex]
When [tex]x = 3.5[/tex]
[tex]y = 3.5 - 2[/tex]
[tex]y = 1.5[/tex]
Hence, the solution is;
[tex](1,-1)[/tex] and [tex](3.5,1.5)[/tex]
find the h.c.f of 186,310,434
186|2
93|3
31|31
1
310|2
155|5
31|31
1
434|2
217|7
31|31
1
[tex]186=2\cdot3\cdot31\\310=2\cdot5\cdot31\\434=2\cdot7\cdot31\\\\\text{hcf}(186,310,434)=2\cdot31=62[/tex]
Which, if any, pair of sides are parallel? AB II DC and AD II BC Cannot be determined AB II DC only AD II BC only
Answer:
120%
Step-by-step explanation:
John painted his most famous work, in his country, in 1930 on composition board with perimeter 101.14 in. If the rectangular painting is 5.43 in. taller than it is wide, find the dimensions of the painting.
Answer:
22.57 x 28
Step-by-step explanation:
10.86 + 4x = 101.14
-10.86 -10.86
4x = 90.28
/4 /4
x = 22.57
5.43 + 22.57 = 28
22.57
a vegetable garden and he's around the path of seemed like a square that together are 10 ft wide. The path is 2 feet wide. Find the total area of the vegetable garden and path
Answer:
Garden: 36 square feet
Path: 64 square feet
Step-by-step explanation:
Let's first find the total area. The total area will be 100 square feet since the side length is 10. Since the path is 2 feet wide and on all sides, that means that the inside square will have a side length of 6. That means that the vegetable garden is 36 square feet. The path will be 100 - (the garden), and the garden is 36 square feet, which means the outer path will be 64.
) A random sample of size 36 is selected from a normally distributed population with a mean of 16 and a standard deviation of 3. What is the probability that the sample mean is somewhere between 15.8 and 16.2
Answer:
The probability is 0.31084
Step-by-step explanation:
We can calculate this probability using the z-score route.
Mathematically;
z = (x-mean)/SD/√n
Where the mean = 16, SD = 3 and n = 36
For 15.8, we have;
z = (15.8-16)/3/√36 = -0.2/3/6 = -0.2/0.5 = -0.4
For 16.2, we have
z = (16.2-16)/3/√36 = 0.2/3/6 = 0.2/0.5 = 0.4
So the probability we want to calculate is;
P(-0.4<z<0.4)
We can get this using the standard normal distribution table;
So we have;
P(-0.4 <z<0.4) = P(z<-0.4) - P(z<0.4)
= 0.31084
Which choice is equivalent to the expression below? √-12
A. 12i
B. -12i
C. -2√3
D. 2i √3
E. -2√3i
PLEASE DON’T GUESS
Answer:
D. 2i√3
Step-by-step explanation:
You have the expression √-12. You can divide the number in the radical sign into the numbers that make up the expression. After you do this, you will be able to take numbers out of the radical sign
√(-12)
√(-1 × 4 × 3)
√-1 = i
√4 = 2
√3 = √3
2i√3
The answer is D.
Emily thinks the perfect tomato sauce has 8 cloves of garlic in every 500 mL, of sauce. Raphael's tomato sauce has 121 cloves of garlic in every 900 mL of sauce. What will Emily think of Raphael's tomato sauce? Choose 1 answer: Choose 1 answer: (Choice A) A It is too garlicky. (Choice B) B It is not garlicky enough. (Choice C) C It is perfect.
Answer:
A
Step-by-step explanation:
Let's find the ml per garlic for each sauce. Emily's has 1 clove of garlic for 62.5 ml. Raphael's has 1 clove of garlic for 7.438... ml. So, A, it will be too garlicky.
Question:
A school's band members raised money by selling magazine subscriptions and shirts. Their profit from selling shirts was per shirt minus a one-time set-up fee. Their profit from selling magazine subscriptions was per subscription. They made exactly the same profit from shirts as they did from magazines. They also sold the same number of shirts as magazine subscriptions. How many shirts did they sell?
Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have?
The gasoline gauge on a van initially read ⅛ full. When 15 gallons of gasoline were added to the tank, the gauge then read ¾ full. How many more gallons would be needed to fill the tank?
Answer:
Question 1: 40 shirts and 40 magizines
Question 2: $4.4
Question 3: 6 gallons
Answer:
hello
Step-by-step explanation:
use the product of powers property to simplify the numeric expression.
4 1/3 • 4 1/5 = _____
Answer:
The value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
Step-by-step explanation:
We need to simplify the numeric expression using property. The expression is as follows :
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex]
The property to be used is : [tex]x^a{\cdot} x^b=x^{a+b}[/tex]
This property is valid if the base is same. Here, base is x.
In this given problem, x = 4, a = 1/3 and b = 1/5
So,
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}}=4^{\dfrac{1}{3}+\dfrac{1}{5}}\\\\=4^{\dfrac{5+3}{15}}\\\\=4^{\dfrac{8}{15}}[/tex]
So, the value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
The domain of the following relation has how many elements?
[(1/2, 3.14/6), (1/2, 3.14/4), (1/2, 3.14/3), (1/2,3.14/2)]
a. 0
b. 1
c. 4
Answer:
b. 1
Step-by-step explanation:
All first coordinates are 1/2.
Answer: b. 1