Answer:
ΔHrxn = -635.14kJ/mol
Explanation:
We can make algebraic operations of reactions until obtain the desire reaction and, ΔH of the reaction must be operated in the same way to obtain the ΔH of the desire reaction (Hess's law). Using the reactions:
(1)Ca(s) + 2 H+(aq) → Ca2+(aq) + H2(g) ΔH = 1925.9 kJ/mol
(2) 2H2(g) + O2 g) → 2 H2O(l) ΔH = −571.68 kJ/mole
(3) CaO(s) + 2 H+(aq) → Ca2+(aq) + H2O(l) ΔH = 2275.2 kJ/mole
Reaction (1) - (3) produce:
Ca(s) + H2O(l) → H2(g) + CaO(s)
ΔH = 1925.9kJ/mol - 2275.2kJ/mol = -349.3kJ/mol
Now this reaction + 1/2(2):
Ca(s) + ½ O2(g) → CaO(s)
ΔH = -349.3kJ/mol + 1/2 (-571.68kJ/mol)
ΔHrxn = -635.14kJ/molIf 1 mol of a pure triglyceride is hydrolyzed to give 2 mol of RCOOH, 1 mol of R'COOH, and 1 mol of glycerol, which of the following compounds might be the triglyceride?
CHOC(O)R
A. CHOC(O)R
CHOC(O)R
CH,OC(O)R
B. CHOC(O)R
CH2OC(O)R
CHOC(O)R
C. CHOC(O)R
CHOC(O)R
CHOC(O)R
D. CHOC(O)R
CHOC(O)R
Answer:
The correct option is C.
Note the full question and structure of the moleculesis found in the attachment below.
Explanation:
Triglycerides or triacylglycerols are non-polar, hydrophobic lipid molecules composed of three fatty acids linked by ester bonds to a molecule of glycerol.
The fatty acids linked to the glycerol molecule are denoted by R and may be of the same kind or different. when the R group is the same, the R is attached in all the three positions for ester bonding in the glycerol molecule but when they are different are denoted by R, R' and R'' respectively.
During the hydrolysis of triglycerides, the three fatty acids molecules are obtained as well as a glycerol molecule.
From the question, when 1 mole of the triglyceride is hydrolysed, 2 moles of RCOOH, 1 mole of R'COOH and 1 mole of glycerol is obtained. The triglyceride must then be composed of two fatty acids which are the same denoted by R, and a different fatty acid molecule denoted by R'.
The correct option therefore, is C
1.) A sample of neon gas at a pressure of 0.646 atm and a temperature of 242 °C, occupies a volume of 515 mL. If the gas is cooled at constant pressure until its volume is 407 mL, the temperature of the gas sample will be ________°C.
2.) A sample of argon gas at a pressure of 0.633 atm and a temperature of 261 °C, occupies a volume of 694 mL. If the gas is heated at constant pressure until its volume is 796 mL, the temperature of the gas sample will be___________°C.
3.) 0.962 mol sample of carbon dioxide gas at a temperature of 20.0 °C is found to occupy a volume of 21.5 liters. The pressure of this gas sample ismm ____________ Hg.
Answer:1 )T2=134°C 2) T2=339.48°C. 3)
P=817.59 mmHg.
Explanation:
1.Given ;
pressure, P1 of neon gas = 0.646 atm
temperature, T1 =242oC + 273=515oC
Volume, V1 =515ml
Volume V2= 407ml
temperature , T 2= ?
Solution;
And at constant pressure, the volume cools at V2=407 mL at T2=?
From ideal gas equation, PV=nRT
V/T=constant
therefore
V1/V2=T1/T2 = T2=(V2 xT1)/V1
T2=(407 mL x 515 K)/515 mL= 407K.
T2= 407K -273= 134°C. recall 0°C=273 K)
2..Given ;
pressure, P1 of neon gas = 0.633 atm
temperature, T1 =261oC + 273=534oC
Volume, V1 =694ml
Volume V2= 796ml
temperature , T 2= ?
Solution;
And at constant pressure, the volume expands at V2=796mL at T2=?
From ideal gas equation, PV=nRT
V/T=constant
therefore
V1/V2=T1/T2 = T2=(V2 xT1)/V1
T2=(796 mL x 534 K)/694mL= 612.48K.
T2= 612.48K -273= 339.48°C. recall 0°C=273 K
3
Given;
moles of CO2= n=0.962 mol,
temperature T=20°C=20+273 K =293 K,
volume V=21.5 L,
gas constant R at L·mmHg/mol·K= 62.3637 L mmHg mol^-1 K^-1
Using ideal gas equation PV=nRT
P=nRT/V
P=(0.962 mol)x(62.3637mmHg mol^-1 K^-1)x(293 K)/(21.5L)
P=817.59 mmHg.
The intermolecular forces present in CH 3NH 2 include which of the following? I. dipole-dipole II. ion-dipole III. dispersion IV. hydrogen bonding
Answer:
I. dipole-dipole
III. dispersion
IV. hydrogen bonding
Explanation:
Intermolecular forces are weak attraction force joining nonpolar and polar molecules together.
London Dispersion Forces are weak attraction force joining non-polar and polar molecules together. e.g O₂, H₂,N₂,Cl₂ and noble gases. The attractions here can be attributed to the fact that a non -polar molecule sometimes becomes polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant.
Dispersion forces are the weakest of all electrical forces that act between atoms and molecules. The force is responsible for liquefaction or solidification of non-polar substances such as noble gas an halogen at low temperatures.
Dipole-Dipole Attractions are forces of attraction existing between polar molecules ( unsymmetrical molecules) i.e molecules that have permanent dipoles such as HCl, CH3NH2 . Such molecules line up such that the positive pole of one molecule attracts the negative pole of another.
Dipole - Dipole attractions are more stronger than the London dispersion forces but weaker than the attraction between full charges carried by ions in ionic crystal lattice.
Hydrogen Bonding is a dipole-dipole intermolecular attraction which occurs when hydrogen is covalently bonded to highly electronegative elements such as nitrogen, oxygen or fluorine. The highly electronegative elements have very strong affinity for electrons. Hence, they attracts the shared pair of electrons in the covalent bonds towards themselves, leaving a partial positive charge on the hydrogen atom and a partial negative charge on the electronegative atom ( nitrogen in the case of CH3NH2 ) . This attractive force is know as hydrogen bonding.
Answer:
The intermolecular forces present in CH_3NH_2 includes
II. (ion-dipole) and IV. (hydrogen bonding)Explanation:
The intermolecular forces present in CH_3NH_2 includes II. (ion-dipole) and IV. (hydrogen bonding)
It is a polar molecule due to NH polar bond and it can form Hydrogen bond also due to NH bond.
Interaction will be dipole- dipole and Hydrogen dispersion forces can always be taken into account.
For more information on intermolecular forces, visit
https://brainly.com/subject/chemistry
what is ammonium nitrate
Answer:
Ammonium nitrate is a chemical compound with the chemical formula NH₄NO₃. It is a white crystalline solid consisting of ions of ammonium and nitrate.
Why can gasses change volume?
A. The forces holding the gas particles together are
stronger than gravity.
B. The gas particles have no mass, so they can change volume.
C. Gravity has no effect on gas particles, so they can float away.
O D. There are no forces holding the gas particles together.
Answer:
There are no forces holding the gas particles together.
Explanation:
I add a 50. g piece of Al (c = 0.88 J/g-deg) that is at 225°C to 100. mL of water at 20°C. What is the final temperature of the water in °C? The density of water is approximately 1g/mL.
Answer:
THE FINAL TEMPERATURE OF WATER IS -4.117 °C
Explanation:
Mass of the aluminium = 50 g
c = 0.88 J/g C
Initial temperature of aluminium = 225 °C
Volume of water = 100 ml
Density of water = 1 g/ml
Mass of water = density * volume of water
Mass of water = 1 * 100 = 100 g of water
Initial temperature of water = 20 C
It is worthy to note that the heat of a system is constant and conserved as no heat is lost or gained by a closed system,
So therefore,
heat lost by aluminium = heat gained by water
H = mass * specific heat capacity * temeprature change
So:
m c ( T2- T1) = m c (T2-T1)
50 * 0.88 * ( T2 - 225) = 100 * 4.18 *( T2 - 20)
44 ( T2 - 225 ) = 418 ( T2 - 20)
44 T2 - 9900 = 418 T2 - 8360
-9900 + 8360 = 418 T2 - 44 T2
-1540 = 374 T2
T2 = - 4.117
So therefore the final temperature of water is -4.117 °C
An aqueous solution of potassium bromide, KBr, contains 4.34 grams of potassium bromide and 17.4 grams of water. The percentage by mass of potassium bromide in the solution is 20 %.
Answer:
True
Explanation:
The percentage by mass of a substance in a solution can be calculated by dividing the mass of the substance dissolved in the solution by the total mass of the solution. This can be expressed mathematically as:
Percentage by mass = mass of substance in solution/mass of solution x 100
In this case;
mass of KBr = 4.34 grams
mass of water = 17.4 grams
mass of solution = mass of KBr + mass of water = 4.34 + 17.4 = 21.74
Percentage by mass of KBr = 4.34/21.74 x 100
= 19.96 %
19.96 is approximately 20%.
Hence, the statement is true.
We discussed the different types of intermolecular forces in this lesson, which can affect the boiling point of a substance.
1. Which of these has the highest boiling point?
A) Ar
B) Kr
C) Xe
D) Ne
2. Which substance has the highest boiling point?
A) CH4
B) He
C) HF
D) Cl2
Answer:
1, C, Xe 2, B,He
Explanation:
1, cause as u go down a group the boiling point increases.
2, boiling point of single element is greater than a compound
According to periodic trends in periodic table boiling point increases down the group and hence Xe has highest boiling point and more amount of heat is required to boil an element hence He has highest boiling point.
What is periodic table?
Periodic table is a tabular arrangement of elements in the form of a table. In the periodic table, elements are arranged according to the modern periodic law which states that the properties of elements are a periodic function of their atomic numbers.
It is called as periodic because properties repeat after regular intervals of atomic numbers . It is a tabular arrangement consisting of seven horizontal rows called periods and eighteen vertical columns called groups.
Elements present in the same group have same number of valence electrons and hence have similar properties while elements present in the same period show gradual variation in properties due to addition of one electron for each successive element in a period.
Learn more about periodic table,here:
https://brainly.com/question/11155928
#SPJ2
What is advertising used for? Check all that apply. influencing consumer tastes tracking product popularity increasing product awareness promoting company branding gathering data about potential consumers
Answer:
influencing consumer tastes
increasing product awareness
promoting company branding
Explanation:
Advertising is basically a form of communication using creative ideas and communicating benefits of the products. Advertising plays a very crucial role in product business and some of the important uses of advertising are as follows:
Creative advertisements, influence customers or consumers to buy the product.Advertisings involve information regarding the product and so increases product awareness.Advertising on social media platforms, TVs, radio and newspapers, promotes company branding.Hence, the correct options are:
influencing consumer tastesincreasing product awarenesspromoting company branding
Answer:
1,3,4
Explanation:
I took the test
Determine which set of properties correctly describes copper (Cu)?
A. Giant structure, conducts electricity, high melting point, soluble in water, malleable
B. Malleable, brittle, soluble in oil or gasoline, high melting point, simple structure
C. Ionic lattice, conducts electricity, soluble in oil or gasoline, low melting point, ductile
D. Malleable, conducts electricity, high melting point, giant structure, metallic lattice
Answer:
D. Malleable, conducts electricity, high melting point, giant structure, metallic lattice
Explanation:
Copper is a metal with an atomic number of 29. This metal is soft and reddish in color which explains why it is very malleable(beaten to form various shapes without breaking).
All metals are good conductors of electricity including copper which is also a metal. Metals generally are insoluble in water. Copper also has a high melting point which is a characteristic of metals due to their giant structure and metallic lattice which makes it difficult to be broken down.
If the heat of combustion for a specific compound is −1320.0 kJ/mol and its molar mass is 30.55 g/mol, how many grams of this compound must you burn to release 617.30 kJ of heat?
Answer:
14.297 g
Explanation:
From the question;
1 mo of the compound requires 1320.0 kJ
From the molar mass;
1 ml of the compound weighs 30.55g
How many grams requires 617.30kJ?
1 ml = 1320
x mol = 617.30
x = 617.30 / 1320
x = 0.468 mol
But 1 mol = 30.55
0.468 mol = x
x = 14.297 g
2NH3 → N2 + 3H2 If 2.22 moles of ammonia (NH3) decomposes according to the reaction shown, how many moles of hydrogen (H2) are formed? A) 2.22 moles of H2 B) 1.11 moles of H2 C) 3.33 moles of H2 D) 6.66 moles of H2
Answer:
C
Explanation:
According to the mole ratio, using 2NH3 will give you 3H2. Which means in order to find the moles of H2 you would only need to divide 2 and multiply 3 to get the amount of moles of H2 produced.
Answer:
I think it's C
Explanation:
Please, tell me if I'm incorrect.
Identify four general properties that make an NSAID unique as compared to the NSAID aspirin. List specific properties that make aspirin, naproxen, and ibuprofen unique from one another
Answer:
NSAIDs are steroidal anti-inflammatories, their action is on the phospholipase A2 enzyme, this enzyme is responsible for breaking down the phospholipids of the membrane to trigger an inflammatory response. This is how steroidal anti-inflammatory drugs inhibit ALL inflammatory pathways (not like NSAIDs that they only inhibit the COX pathway).
These corticosteroid drugs cannot exceed the systemic mineralocorticoid value 1 in the body, since this corticosteroid hormone is also released by the adrenal cortex.
The NSAIDs generate: sporadic peaks in blood glucose, hypertension, fluid retention, increase in body fat mass, possible suppression of the adrenal cortex over time, inhibiting endogenous synthesis of corticosteroids.
On the other hand, naproxen and ibuprofen are NSAIDs, that is, non-steroidal anti-inflammatory drugs that do not influence both routes of inflammation, but only COX, this enzyme is abbreviated as COX but is called cyclooxygenase, and is responsible for a single route of inflammation.
NSAIDs such as naproxen and ibuprofen can cause gastric disorders such as ulcers or gastritis if they are consumed in a very repetitive manner.
In addition, both drugs are anti-inflammatory, analgesic and antipyretic. Although its two main functions are the first two, it was shown to have an effect in lowering body temperature.
That they are anti-inflammatory means that they inhibit the path of inflammation and analgesics the path of pain.
Explanation:
Both types of drugs generate the same effect but by different mechanisms.
Some are steroids and others are not, although steroids are considered to have a greater risk of benefit that is why they are administered against more systematically compromised instances such as anaphylactic shock.
NSAIDs such as naproxen and ibuprofen are the most prescribed today, since they have few risks and very good benefits, meaning that their adverse effects are not lethal or highly relevant and have a good effect on symptoms.
Both must be administered with care when treating a diabetic patient since corticosteroids generate glycemic peaks or increase in blood glucose, and NSAIDs compete for plasma protein with oral hypoglycemic agents, thus generating that these are in higher free concentrations. high diffusing better through the tissues and increases the potency of the adverse effects of these.
A small amount of solid calcium hydroxide is shaken vigorously in a test tube almost full of water until no further change occurs and most of the solid settles out. The resulting solution is:______.
Answer:
Lime water, [tex]Ca(OH)_{2}_({aq} )[/tex] is formed.
Explanation:
Lime-water is a clear and colourless dilute solution of aqueous calcium hydroxide salt.
Small amounts of calcium hydroxide salt, [tex]Ca(OH)_{2}_(s)[/tex] is sparsely soluble at room temperature when dispersed vigorously. if in excess, a white suspension called 'milk of lime'is formed.
I hope this explanation is helpful.
Why will the conjugate base of a weak acid affect pH? Select the correct answer below: it will react with hydroxide
Answer:
It will react with water
Explanation:
I know this is an older question, but I just wanted to provide the correct answer.
Since we are dealing with a weak base, and the acid is somewhat stronger, it will react with the water molecules to produce hydronium, which will affect the pH of the solution.
The conjugate base of a weak acid affect pH because it will react with hydronium ion.
A weak acid is an acid that does not dissociate completely in water. On the other hand, a strong acid achieves almost 100% dissociation in water.
Acids dissociate in water to yield the hydronium ion and a conjugate base. For instance, the weak acid, acetic acid is dissociated as follows;
CH3COOH(aq) + H2O(l) ⇄ CH3COO-(aq) + H3O+(aq)
We can see that the conjugate base( CH3COO-) could react with the hydronium ions thereby moving the equilibrium position to the left hand side and affecting the pH by decreasing the hydronium ion concentration.
Learn more: https://brainly.com/question/8592296
Missing parts;
Why will the conjugate base of a weak acid affect pH? Select the correct answer below: O it will react with hydroxide O it will react with water O it will react with hydronium O none of the above
An actacide tablet containing Mg(OH)2 (MM = 58.3g / (mol)) is titrated with a 0.100 M solution of HNO3. The end point is determined by using an indicator. Based on 20.00mL HNO3 being used to reach the endpoint, what was the mass of the Mg * (OH) in the antacid tablet? * 0.0583 g 0.583 5.83 g 58.3 g
Answer:
0.0583g
Explanation:
The equation of the reaction is;
2HNO3(aq) + Mg(OH)2(aq) -------> Mg(NO3)2(aq) + 2H2O(l)
From the question, number of moles of HNO3 reacted= concentration × volume
Concentration of HNO3= 0.100 M
Volume of HNO3 = 20.00mL
Number of moles of HNO3= 0.100 × 20/1000
Number of moles of HNO3 = 2×10^-3 moles
From the reaction equation;
2 moles of HNO3 reacts with 1 mole of Mg(OH)2
2×10^-3 moles reacts with 2×10^-3 moles ×1/2 = 1 ×10^-3 moles of Mg(OH)2
But
n= m/M
Where;
n= number of moles of Mg(OH)2
m= mass of Mg(OH)2
M= molar mass of Mg(OH)2
m= n×M
m= 1×10^-3 moles × 58.3 gmol-1
m = 0.0583g
Does the amount of methanol increase, decrease, or remain the same when an equilibrium mixture of reactants and products is subjected to the following changes?
a. the catalyst is removed
b. the temp is increased
c. the volume is decreased
d. helium is added
e. CO is added
Answer:
a. Methanol remains the same
b. Methanol decreases
c. Methanol increases
d. Methanol remains the same
e. Methanol increases
Explanation:
Methanol is produced by the reaction of carbon monoxide and hydrogen in the presence of a catalyst as follows; 2H2+CO→CH3OH.
a) The presence or absence of a catalyst makes no difference on the equilibrium position of the system hence the methanol remains constant.
b) The amount of methanol decreases because the equilibrium position shifts towards the left and more reactants are formed since the reaction is exothermic.
c) If the volume is decreased, there will be more methanol in the system because the equilibrium position will shift towards the right hand side.
d) Addition of helium gas has no effect on the equilibrium position since it does not participate in the reaction system.
e) if more CO is added the amount of methanol increases since the equilibrium position will shift towards the right hand side.
Fill in the blanks with the words given below- [Atoms, homogeneous, metals, true, saturated, homogeneous, colloidal, compounds, lustrous] 1.An element which are sonorous are called................ 2.An element is made up of only one kind of .................... 3.Alloys are ............................. mixtures. 4.Elements chemically combines in fixed proportion to form ........................ 5. Metals are................................... and can be polished. 6. a solution in which no more solute can be dissolved is called a .................... solution. 7. Milk is a .............. solution but vinegar is a .................. solution. 8. A solution is a ................... mixture. pls help, could not get these answers
Answer:
1. metals
2. atom
3. homogeneous
4. compounds
5. lustrous
6. saturated
7. colloidal
8. homogeneous
Explanation:
A student determines the value of the equilibrium constant to be 1.5297 x 107 for the following reaction: HBr(g) + 1/2 Cl2(g) --> HCl(g) +1/2 Br2(g) Based on this value of Keq, calculate the Gibbs free energy change for the reaction of 2.37 moles of HBr(g) at standard conditions at 298 K.
Answer:
[tex]\Delta G=-97.14kJ[/tex]
Explanation:
Hello,
In this case, the relationship between the equilibrium constant and the Gibbs free energy of reaction is:
[tex]\Delta G=-RTln(K)[/tex]
Hence, we compute it as required:
[tex]\Delta G=-8.314\frac{J}{mol\times K}*298K*ln(1.5297x10^7)\\\\\Delta G=-40.99kJ/mol[/tex]
And for 2.37 moles of hydrogen bromide, we obtain:
[tex]\Delta G=-40.99kJ/mol*2.37mol\\\\\Delta G=-97.14kJ[/tex]
Best regards.
11mg of cyanide per kilogram of body weight is lethal for 50% of domestic chickens. How many grams per kilogram of body weight is a lethal dose for 50% of domestic chickens?
Answer:
[tex]0.033g[/tex]
Explanation:
Hello,
In this case, since 11 mg per kilogram of body weight has the given lethality, the mg that turn out lethal for a chicken weighting 3 kg is computed by using a rule of three:
[tex]11mg\longrightarrow 1kg\\\\x\ \ \ \ \ \ \longrightarrow 3kg[/tex]
Thus, we obtain:
[tex]x=\frac{3kg*11mg}{1kg}\\ \\x=33mg[/tex]
That in grams is:
[tex]=33mg*\frac{1g}{1000mg} \\\\=0.033g[/tex]
Regards.
A sample of ammonia gas was allowed to come to equilibrium at 400 K. 2NH3(g) <----> N2(g) 3H2(g) At equilibrium, it was found that the concentration of H2 was 0.0484 M, the concentration of N2 was 0.0161 M, and the concentration of NH3 was 0.295 M. What was the initial concentration of ammonia
Answer:
0.327 M
Explanation:
Step 1: Write the balanced equation
2 NH₃(g) ⇄ N₂(g) + 3H₂(g)
Step 2: Make an ICE chart
2 NH₃(g) ⇄ N₂(g) + 3 H₂(g)
I x 0 0
C -2y +y +3y
E x-2y y 3y
Step 3: Find the value of y
The concentration of N₂ at equilibrium is 0.0161 M. Then,
y = 0.0161
Step 4: Find the value of x
The concentration of NH₃ at equilibrium is 0.295 M. Then,
x-2y = 0.295
x-2(0.0161) = 0.295
x = 0.327
i) Briefly discuss the strengths and weaknesses of the four spectroscopy techniques listed below. Include in your answer the specific structural information you get from each method.
IR
UV-VIS
NMR
Mass Spec
delete please .....................................
What is the mass number of an element
Answer:
A (Atomic mass number or Nucleon number)
Explanation:
The mass number is the total number of protons and nucleons in an atomic nucleus.
Hope this helps.
Please mark Brainliest...
Write the equation for the reaction described: A solid metal oxide, , and hydrogen are the products of the reaction between metal and steam. (Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank.)
Answer:
Pb + 2H2O --> PbO2 + 2H2
Explanation:
Products:
Solid metal; PbO2
Hydrogen; H
Reactants:
Metal; Pb
Steam; H2O
Reactants --> Products
Pb + H2O --> PbO2 + H2
Upon balancing we have;
Pb + 2H2O --> PbO2 + 2H2
A. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
Br(g)
Cl2(g)
I2(g)
F2(g)
B. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
H2S(g)
H2O(g)
H2O2(g)
C. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
C(s, amorphous)
C(s, diamond)
C(s, graphite)
Answer:
A. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy
I2(g)>Br2(g)>Cl2(g)>F2(g)
B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
H2O2(g)>H2S(g) >H2O(g)
C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
C(s, amorphous) >C(s, graphite)>C(s, diamond)
Explanation:
Hello,
In this case, we can apply the following principles to explain the order:
- The greater the molar mass, the larger the standard molar entropy.
- The greater the molar mass and the structural complexity, the larger the standard molar entropy.
- The greater the structural complexity, the larger the standard molar entropy.
A. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy
I2(g)>Br2(g)>Cl2(g)>F2(g)
This is due to the fact that the greater the molar mass, the larger the standard molar entropy.
B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
H2O2(g)>H2S(g) >H2O(g)
This is due to the fact that the greater the molar mass and the structural complexity, the larger the standard molar entropy as the hydrogen peroxide has four bonds and weights 34 g/mol as well as hydrogen sulfide that has two bonds only.
C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
C(s, amorphous) >C(s, graphite)>C(s, diamond)
Since the molecular complexity is greater in the amorphous carbon (messy arrangement), mid in the graphite and lower in the diamond (well organized).
Regards.
When balancing redox reactions under basic conditions in aqueous solution, the first step is to:________.
a. balance oxygen
b. balance hydrogen
c. balance the reaction as though under acidic conditions
d. none of the above
Answer:
When balancing redox reactions under basic conditions in aqueous solution, the first step is to balance oxygen.
Explanation:
Oxidation-reduction reactions or redox reactions are those in which an electron transfer occurs between the reagents. An electron transfer implies that there is a change in the number of oxidation between the reagents and the products.
The gain of electrons is called reduction and the loss of electrons oxidation. That is to say, there is oxidation whenever an atom or group of atoms loses electrons (or increases its positive charges) and in the reduction an atom or group of atoms gains electrons, increasing its negative charges or decreasing the positive ones.
The oxidation and reduction half-reactions, in a basic medium, adjust the oxygens and hydrogens as follows:
In the member of the half-reaction that presents excess oxygen, you add as many water molecules as there are too many oxygen. Then, in the opposite member, the necessary hydroxyl ions are added to fully adjust the half-reaction. Normally, twice as many hydroxyl ions, OH-, are required as water molecules have previously been added.
In short, you first adjust the oxygens with OH-, then you adjust the H with H₂O, and finally you adjust the charge with e-
So, when balancing redox reactions under basic conditions in aqueous solution, the first step is to balance oxygen.
Answer:
c. balance the reaction as though under acidic conditions
Explanation:
When balancing redox reactions under basic conditions, a good technique is to first balance the reaction as though under acidic conditions. We then adjust the result to reflect the basic conditions.
The direction of the functional group is called?
Explanation:
they are called hydrocarbyls
pls mark me brainliest
Answer:
The first carbon atom that attaches to the functional group is referred to as the alpha carbon.
A sample is found to contain 1.29×10-11 g of salt. Express this quantity in picograms
Answer:12.9e-12g or in short 12.9pg
Explanation:as p=1e-12
Testbank Question 47 Consider the molecular orbital model of benzene. In the ground state how many molecular orbitals are filled with electrons?
Answer:
There are fifteen molecular orbitals in benzene filled with electrons.
Explanation:
Benzene is an aromatic compound. Let us consider the number of bonding molecular orbitals that should be present in the molecule;
There are 6 C-C σ bonds, these will occupy six bonding molecular orbitals filled with electrons.
There are 6 C-H σ bonds, these will occupy another six molecular orbitals filled with electrons
The are 3 C=C π bonds., these will occupy three bonding molecular pi orbitals.
All these bring the total number of bonding molecular orbitals filled with electrons to fifteen bonding molecular orbitals.
If one pound is the same as 454 grams, then convert the mass of 78 grams to pounds.
Answer:
0.17 lb
Explanation:
78 g * (1 lb/454 g)=0.17 lb
If you want additional help with chemistry or another subject for FREE, check out growthinyouth.org.