Answer:
x=16.1
Step-by-step explanation:
open the brackets
-4.5= -0.5x-3.55
Take 3.55 to the other side.
-4.5-3.55 = -8.05
5/10x= -805/100
0.5x= - 8.05 = 16.1
If you’re good at statistics please help
Answer:
Step-by-step explanation:
probabilty distribution= interval of x/total area of the distribution
OR P(x)= frequency of x/total frequency(N)*the interval of x(w)
x f probabilty f/N*w
16 10 0.2
17 16 0.32
18 20 0.4
19 4 0.08
w is the width of the bar( interval) 17-16=1
N=10+16+20+4=50
( only need to draw histogram)
I’m struggling to understand this problem somebody please explain it to me thanks!!
ax-5d=3cx-2+7
Answer:
x = (5 +5d)/(a -3c)
Step-by-step explanation:
Maybe you're to solve for x.
__
This is a typical "3-step" linear equation.
First, you collect terms with the variable x on one side of the equation. You do that by subtracting from both sides the x-term you don't want where it is.
We choose to remove the 3cx term from the right side, so we subtract it from both sides.
ax -3cx -5d = 3cx -3cx +5 . . . . . . we have combined the constants, too
x(a -3c) -5d = 5 . . . . . . simplify and factor out x
Second, you remove any terms not containing x from the side of the equation with the x-terms. You do that by adding their opposite to both sides of the equation.
We need to remove the -5d term, so we add 5d to both sides.
x(a -3c) -5d +5d = 5 +5d
x(a -3c) = 5 +5d . . . . . . . . . . simplify
Third, we divide by the coefficient of x. We do that to both sides of the equation. We had to put parentheses around the terms on the right, because we're dividing the whole right side of the equation by (a-3c).
x(a -3c)/(a -3c) = (5 +5d)/(a -3c)
x = (5 +5d)/(a -3c)
Please help solve for the median !!
Answer:
Median = 14
Step-by-step explanation:
2, 5, 14, 15, 21, 18, 15, 9, 2
First, order the numbers:
2, 2, 5, 9, 14, 15, 15, 18, 21
Then, cancel out the numbers, starting the first and last number, going outwards in. If there is 1 number left, it is your median. If there are 2 left, add the 2 numbers together and divide them by two:
2, 2, 5, 9, 14, 15, 15, 18, 21
2, 5, 9, 14, 15, 15, 18
5, 9, 14, 15, 15
9, 14, 15
14
The median is 14.
Please tell me if I was wrong! I hope this helps you!
Answer: The median is 14
Step-by-step explanation: The median is the number that is halfway into the data set. To find the median, the data should be arranged in order from least to greatest. For this example. 2,2,5,9,14,15,15,18,21. Find the number that is halfway. which is 14
are:
4. Suppose that the distance of fly balls hit to the outfield (in baseball) is normally
distributed. We randomly sample 27 fly balls. Their recorded distances in feet
234, 310, 285, 249, 210, 311, 265, 290, 308,
254, 295, 287, 231, 302, 325, 308, 221, 237,
312, 277, 259, 223, 340, 204, 214, 303, 309
Let X be the distance of a fly ball.
Use Excel to calculate the following:
a. (1 pt) mean of the sample, x =
b. (1 pt) standard deviation of the sample, s =
C. (2 pts) Calculate the t-score at a 96% confidence level:
d. (2 pts) Calculate the Error Bound (EBM), using the formula, EBM =
(t)(s//n)
e. (1 pt) At 96% confidence level, provide the confidence interval (CI) for the
mean distance in feet of a fly ball.
hantor 92
D
Step-by-step explanation:
a. The mean can be found using the AVERAGE() function.
x = 272.7
b. The standard deviation can be found with the STDEV() function.
s = 39.9
c. The t-score can be found with the T.INV.2T() function. The confidence level is 0.04, and the degrees of freedom is 26.
t = 2.162
d. Find the lower and upper ends of the confidence interval.
Lower = 272.7 − 2.162 × 39.9 = 186.5
Upper = 272.7 + 2.162 × 39.9 = 358.9
Solve for y: 1/3y+4=16
Hey there! I'm happy to help!
We want to isolate y on one side of the equation to see what it equals. To do this, we use inverse operations to cancel out numbers on the y side and find the correct value.
1/3y+4=16
We subtract 4 from both sides, canceling out the +4 on the right but keeping the same y-value by doing the same to the other side.
1/3y=12
We divide both sides by 1/3 (which is multiplying both sides by 3) which will cancel out the 1/3 and tell us what y is equal to.
y=36
Now you know how to solve basic equations! Have a wonderful day! :D
Identify the sample space of the probability experiment and determine the number of outcomes in the sample space. Playing the game of roulette, where the wheel consists of slots numbered 00, 0, 1, 2, ..., To play the game, a metal ball is spun around the wheel and is allowed to fall into one of the numbered slots.a. The sample space is (00, 0}. b. The sample space is (00, 0, 1,2,., 33). c. The sample space is (00). d. The sample space is (1, 2,..., 33).
Answer:
The correct option is (B).
Step-by-step explanation:
It is provided that, in a game of roulette the wheel consists of slots numbered 00, 0, 1, 2, ..., 33.
The sample space of an experiment, is the set of all the possible outcomes of the random trials.
There are a total of 35 slots on the roulette wheel where the ball can land.
So, there are a total of 35 outcomes for one rotation of the wheel.
Then the sample space consists of all the 35 outcomes, i.e.
S = {00, 0, 1, 2, 3, ..., 33}
Thus, the correct option is (B).
Use parenthesis to make each number sentence true.
124 - 6 x 0 + 15 = 34
Answer:
12 - 6 x (0 + 15) = 34
How I got my answer
First, how i got my answer was that I had to solve the equation first, ignoring the answer. I got 0 x 6 = 0, then I did 124 - 0 = 124, then I did 124 - 15 = 109, which clearly isn't 34. I figured that we have to put the parentheses around the zero because if we don't, we are going have to multiply something by zero, which always gets zero. After that, I decided that I should put the parentheses around either the 6, or the 15. I did both, and saw which one was correct. If we put it around the 6, we get, 124 - (6 x 0) + 15 = 124 - 0 - 15 = 124 - 15 = 109, which isn't 34. Then I checked 124 - 6 x (0 + 15) = 124 - 6 x 15 = 124 - 90 = 34, and we just got the answer.
P.S. Sorry if it was confusing, I didn't really know how to explain it
200,000=2x10 to the power of 6
False.
2x10^6 you move the decimal point 6 places to the right. ( add 6 zeros after the 2)
2x 10^6 = 2,000,000
A store has clearance items that have been marked down about 30%. They are having a sale, advertising an additional 55% off clearance items. What percent of the original price do you end up paying
Answer:
60% discount given in total, so only 40% is paid.
Step-by-step explanation:
GIVING OUT BRAINLIEST TO THE FIRST PERSON TO ANSWER!!
One circle has a diameter of 6 inches. A second, larger circle has a diameter that is four times the diameter of the first circle. What is the ratio of the area of the smaller circle to the larger circle?
A. 2:3
B. 1:6:4
C. 1:16
D. 1:64
Please include ALL work! <3
Answer:
The answer is option CStep-by-step explanation:
To find the ratio first find the diameter of the larger circle
Diameter of first circle = 6 inches
Diameter of second circle = 4 × diameter of the first circle
Which is
Diameter of second circle
= 4 × 6 = 24 inches
Area of a circle = πr²
r is the radius
Area of smaller circle
Diameter = 6 inches
Radius = 6 / 2 = 3 inches
Area = (3)² π = 9π in²
Area of larger circle
Diameter = 24 inches
Radius = 24 / 2 = 12 inches
Area = (12)²π = 144π in²
The ratio of the smaller circle to the larger circle is
[tex] \frac{9\pi}{144\pi} [/tex]
Reduce the fraction by 9π
That's
[tex] \frac{1}{16} [/tex]
We have the final answer as
1 : 16Hope this helps you
Answer:
C. 1:16
Step-by-step explanation:
Area of a circle is:
[tex]\pi \times {r}^{2} [/tex]
Small circle Area:
radius = diameter/2
radius = 6/2 = 3
[tex]area \: of \: a \: circle \: = \pi {3}^{2} [/tex]
a = 28.27
Large circle 4 times larger diameter
6*4 = 24
diameter = 24
r = 24/2
r = 12
[tex]a \: = \pi {12}^{2} [/tex]
a = 452.39
area of large circle/ area of small circle
452.39/28.27 = 16.00
ratio is 1:16
ΔABC is similar to ΔMNO. The scale factor from ΔMNO to ΔABC is 3∕2 . If the area of ΔMNO is 10 square units, what's the area of ΔABC? Question 12 options: A) 45 square units B) 90 square units C) 22.5 square units D) 15 square units
Answer:
The area of ΔABC= 6.667 square units
Step-by-step explanation:
ΔABC is similar to ΔMNO.
The scale factor from ΔMNO to ΔABC is 3∕2
the area of ΔMNO is 10 square units,
The area of ΔABC/the area of ΔMNO
= 2/3
The area of ΔABC/10= 2/3
The area of ΔABC= 2/3 * 10
The area of ΔABC= 20/3
The area of ΔABC= 6 2/3
The area of ΔABC= 6.667 square units
Answer:
22.5 square units
Step-by-step explanation:
i multiplied 10 by 2 to get 20 and went with the closest answer and got it right.
i dont know how to do math but i guess it worked
Determine if the matrix is symmetric.
(-1 -5 -9 8)
The transpose of the given matrix is nothing. Because this is_____to the given matrix, the given matrix_____symmetric.
Answer:
because this is equal to the given matrix, the given matrix is symmetric.
Step-by-step explanation:
A symmetric matrix is a square matrix which has same number of rows and columns. Square matrix is equal to transpose. Equal matrices have equal dimensions. The given matrix is symmetric because the rows and columns are equally distributed.
1) Dada a função, em reais, definida por f(x)=3.x-5. calcule :
a) f(2)=
b) f(-1)=
Answer:
f(x)= 3x-5
f(2) = 3(2)-5 = 6-5= 1
f(-1)= 3(-1)-5= -3-5= -8
Hope this helps
if u have question let me know in comments ^°^
Please help . I’ll mark you as brainliest if correct!
Answer:
Stocks = $15,500
Bonds = $107,250
CD's = $47,250
Step-by-step explanation:
S + B + C = 170000
.0325S + .038B .067C = 7745
60,000 + C = b
S = $15,500
B = $107,250
C = $47,250
while jeff was replacing the obstruction of light on a cell tower, he accidentally dropped his cell phone. If he was 150 ft up at the time, approximately how long did it take the phone to reach the ground
Answer:
3.19 seconds
Step-by-step explanation:
Given:
Phone gets dropped from a Height = 150 ft
To find:
Time taken for the phone to reach the ground = ?
Solution:
First of all, let us learn about the formula of distance in terms of Initial speed u; Time t and Acceleration a:
[tex]s=ut+\dfrac{1}{2}at^2[/tex]
Here the phone is dropped from a height so a = g m/[tex]s^2[/tex] i.e. acceleration due to gravity.
g = 9.8 m/[tex]s^2[/tex]
s = 150 ft
Initial velocity, u = 0
Putting all the values in the formula:
[tex]150=0 t+\dfrac{1}{2}gt^2\\\Rightarrow 50=\dfrac{1}{2}\times 9.8 \times t^2\\\Rightarrow t^2=\dfrac{50}{4.9 }\\\Rightarrow t^2=10.20\\\Rightarrow t = 3.19\ sec[/tex]
So, the time taken is 3.19 seconds.
Can somebody explain how these would be done? The selected answer is incorrect, and I was told "Nice try...express the product by first multiplying the coefficients...then adding your "like term" angles...for instance, cos (2pi/5) + cos (-pi/2) = cos (2pi/5 + -pi/2)...then use the calculator in RADIAN mode to evaluate." Doing those steps, I got the correct constant but a coefficient that was completely off. For the second one, I was told "Good effort...express the quotient by first dividing the coefficients...then subtract your "like term" angles...for instance, cos (2pi/5) - cos (-pi/2) = cos (pi/6 - pi/3)...Finally, use the calculator (in radian MODE) to evaluate."
Answer:
Solution ( Second Attachment ) : - 2.017 + 0.656i
Solution ( First Attachment ) : 16.140 - 5.244i
Step-by-step explanation:
Second Attachment : The quotient of the two expressions would be the following,
[tex]6\left[\cos \left(\frac{2\pi }{5}\right)+i\sin \left(\frac{2\pi \:}{5}\right)\right][/tex] ÷ [tex]2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi \:}{2}\right)\right][/tex]
So if we want to determine this expression in standard complex form, we can first convert it into trigonometric form, then apply trivial identities. Either that, or we can straight away apply the following identities and substitute,
( 1 ) cos(x) = sin(π / 2 - x)
( 2 ) sin(x) = cos(π / 2 - x)
If cos(x) = sin(π / 2 - x), then cos(2π / 5) = sin(π / 2 - 2π / 5) = sin(π / 10). Respectively sin(2π / 5) = cos(π / 2 - 2π / 5) = cos(π / 10). Let's simplify sin(π / 10) and cos(π / 10) with two more identities,
( 1 ) [tex]\cos \left(\frac{x}{2}\right)=\sqrt{\frac{1+\cos \left(x\right)}{2}}[/tex]
( 2 ) [tex]\sin \left(\frac{x}{2}\right)=\sqrt{\frac{1-\cos \left(x\right)}{2}}[/tex]
These two identities makes sin(π / 10) = [tex]\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}[/tex], and cos(π / 10) = [tex]\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}[/tex].
Therefore cos(2π / 5) = [tex]\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}[/tex], and sin(2π / 5) = [tex]\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}[/tex]. Substitute,
[tex]6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right][/tex] ÷ [tex]2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi \:}{2}\right)\right][/tex]
Remember that cos(- π / 2) = 0, and sin(- π / 2) = - 1. Substituting those values,
[tex]6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right][/tex] ÷ [tex]2\sqrt{2}\left[0-i\right][/tex]
And now simplify this expression to receive our answer,
[tex]6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right][/tex] ÷ [tex]2\sqrt{2}\left[0-i\right][/tex] = [tex]-\frac{3\sqrt{5+\sqrt{5}}}{4}+\frac{3\sqrt{3-\sqrt{5}}}{4}i[/tex],
[tex]-\frac{3\sqrt{5+\sqrt{5}}}{4}[/tex] = [tex]-2.01749\dots[/tex] and [tex]\:\frac{3\sqrt{3-\sqrt{5}}}{4}[/tex] = [tex]0.65552\dots[/tex]
= [tex]-2.01749+0.65552i[/tex]
As you can see our solution is option c. - 2.01749 was rounded to - 2.017, and 0.65552 was rounded to 0.656.
________________________________________
First Attachment : We know from the previous problem that cos(2π / 5) = [tex]\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}[/tex], sin(2π / 5) = [tex]\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}[/tex], cos(- π / 2) = 0, and sin(- π / 2) = - 1. Substituting we receive a simplified expression,
[tex]6\sqrt{5+\sqrt{5}}-6i\sqrt{3-\sqrt{5}}[/tex]
We know that [tex]6\sqrt{5+\sqrt{5}} = 16.13996\dots[/tex] and [tex]-\:6\sqrt{3-\sqrt{5}} = -5.24419\dots[/tex] . Therefore,
Solution : [tex]16.13996 - 5.24419i[/tex]
Which rounds to about option b.
!2,19,26 what comes nxt
Answer:
12 , 19 , 26 , 33
Explaination:Here, n+7
12+7=19
19+7=26
So,
26+7=33
Hope you understand ❣
Step-by-step explanation:
12 , 19 , 26 , ?
Given
___________
a1= 12
a2= 19
a3 = 26
d= ?
a4 = ?
––——————
we can solve this by using formula from Ap .
But for this we have to find d
As we know that
common difference(d) = a2-a1 = 19 -12
= 7
so difference after every no is 7 so
a4 = a3 + d
= 26 +7
= 33
So 33 is ur answer mate
Hope it helps
What is the true solution to the equation below? 2 in e in2×-in e in 10×= in 30 A x=30 B x=75 C x=150 D x=300
Answer:
Option B.
Step-by-step explanation:
Let as consider the given equation:
[tex]2\ln e^{\ln 2x}-\ln e^{\ln 10x}=\ln 30[/tex]
It can be written as
[tex]2(\ln 2x)-(\ln 10x)=\ln 30[/tex] [tex][\because \ln e^a=a][/tex]
[tex]\ln (2x)^2-(\ln 10x)=\ln 30[/tex] [tex][\because \ln a^b=b\ln a][/tex]
[tex]\ln \dfrac{4x^2}{10x}=\ln 30[/tex] [tex][\because \ln \dfrac{a}{b}=\ln a-\ln b][/tex]
[tex]\ln \dfrac{2x}{5}=\ln 30[/tex]
On comparing both sides, we get
[tex]\dfrac{2x}{5}=30[/tex]
Multiply both sides by 5.
[tex]2x=150[/tex]
Divide both sides by 2.
[tex]x=75[/tex]
Therefore, the correct option is B.
Answer:
b x=75
Step-by-step explanation:
A survey of 1,565 households estimated that 72% of the households in a given state owned a television. What is the population? all the households in given state 1565 households surveyed 1127 households that owned televisions
Answer:
all the houses in given state
Step-by-step explanation:
edge 2021
Using sampling concepts, it is found that the population is given by:
All the households in given state.
What is a sampling?In a sampling, data is taken from a sample to be estimated for the entire population.
For example, if you want to find the proportion of New York State residents that are Buffalo Bills fans, surveying a sample of 1000 residents, the population is all New York State residents.
Hence, in this problem, the population is given by all the households in given state.
More can be learned about sampling concepts at https://brainly.com/question/25122507
A 20-foot ladder is placed against a tree. The bottom is located 5 feet from the base of the tree and the top of the ladder is 5√15 feet up the tree. Use tangent to find the angle created between the ladder and tree. Include a sketch that shows all known information and clearly shows what you need to find. Show all work and give the answer rounded to the nearest tenth of a degree.
Answer:
14.5°
Step-by-step explanation:
The sketch results in an angle of depression problem.
In this case, the opposite side of the triangle formed is 5 ft
The hypotenuse side is 20 ft
The adjacent side is the [tex]5\sqrt{15}[/tex] ft
Using tangent θ = opp/adj
tangent θ = 5/[tex]5\sqrt{15}[/tex] = [tex]\frac{1}{\sqrt{15} }[/tex] = 0.258
θ = [tex]tangent^{-1}[/tex] 0.258 = 14.5°
24. After a vertical reflection across the x-axis, f(x) is
Options:
A. –f(x)
B. f(x – 1)
C. –f(–x)
D. f(–x)
Answer:
A. –f(x)
Step-by-step explanation:
The transformation of a reflection about the x-axis is
f(x) -> -f(x).
So the answer is
A. –f(x)
*please help* If multiple forces are acting on an object, which statement is always true?
The acceleration will be directed in the direction of the gravitational force.
The acceleration will be directed in the direction of the applied force.
The acceleration will be directed in the direction of the net force. <-- MY ANSWER
The acceleration will be directed in the direction of the normal force.
Answer: You are correct. The answer is choice C.
The sum of the vectors is the resultant vector, which is where the net force is directed.
An example would be if you had a ball rolling on a table and you bumped the ball perpendicular to its initial velocity, then the ball would move at a diagonal angle rather than move straight in the direction where you bumped it.
Acceleration is the change in velocity over time, so the acceleration vector tells us how the velocity's direction is changing.
The direction of the acceleration on a body upon which multiple forces are applied depends on the direction of the netforce acting on the body.
When multiple forces acts on a body, such that the different forces acts in different directions. The acceleration will be in the direction of the netforce. This is the direction where the Cummulative sum of the forces is greatest. Acceleration due to gravity is always acting downward, if the upward force is greater than the Gravitational force, then the acceleration won't be in that direction.Therefore, acceleration will be due in the direction of the netforce.
Learn more :https://brainly.com/question/17858024?referrer=searchResults
Little bit more math hw
Answer:
[tex]x=-2[/tex]
Step-by-step explanation:
For these kind of problems, simply take the denominator and compare it to zero. Then solve the equation.
[tex]x+2=0\\\\\Rightarrow x=-2[/tex] By subtracting 2 from both sides!
Best Regards!
What is the area of polygon EFGH?
Answer:
C. 42 square units
Step-by-step explanation:
This is a rectangle and to calculate the area of a rectangle we multiply length and width
The length of this rectangle is 7 units and the width is 6 units
6 × 7 = 42 square units
Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 5 + ln(t), y = t2 + 2, (5, 3)
Answer:
Step-by-step explanation:
Given that:
[tex]x = 5 + In (t)[/tex]
[tex]y = t^2+2[/tex]
At point (5,3)
To find an equation of the tangent to the curve at the given point,
By without eliminating the parameter
[tex]\dfrac{dx}{dt}= \dfrac{1}{t}[/tex]
[tex]\dfrac{dy}{dt}= 2t[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ \dfrac{dy}{dt} }{\dfrac{dx}{dt} }[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ 2t }{\dfrac{1}{t} }[/tex]
[tex]\dfrac{dy}{dx}= 2t^2[/tex]
[tex]\dfrac{dy}{dx}_{ (5,3)}= 2t^2_{ (5,3)}[/tex]
t² + 5 = 4
t² = 4 - 5
t² = - 1
Then;
[tex]\dfrac{dy}{dx}_{ (5,3)}= -2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
By eliminating the parameter
x = 5 + In(t)
In(t) = 5 - x
[tex]t =e^{x-5}[/tex]
[tex]y = (e^{x-5})^2+5[/tex][tex]y = (e^{2x-10})+5[/tex]
[tex]\dfrac{dy}{dx} = 2e^{2x-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2e^{10-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
Find the mean of the data summarized in the given frequency distribution. Compare the computed mean to the actual mean of 51.1 degrees. Low Temperature (◦F) 40−44 45−49 50−54 55−59 60−64 Frequency 3 6 13 7
Answer:
[tex]Mean = 53.25[/tex]
Step-by-step explanation:
Given
Low Temperature : 40−44 || 45−49 || 50−54 || 55−59 || 60−64
Frequency: --------------- 3 -----------6----------- 1-----------3--- -----7
Required
Determine the mean
The first step is to determine the midpoints of the given temperatures
40 - 44:
[tex]Midpoint = \frac{40+44}{2}[/tex]
[tex]Midpoint = \frac{84}{2}[/tex]
[tex]Midpoint = 42[/tex]
45 - 49
[tex]Midpoint = \frac{45+49}{2}[/tex]
[tex]Midpoint = \frac{94}{2}[/tex]
[tex]Midpoint = 47[/tex]
50 - 54:
[tex]Midpoint = \frac{50+54}{2}[/tex]
[tex]Midpoint = \frac{104}{2}[/tex]
[tex]Midpoint = 52[/tex]
55- 59
[tex]Midpoint = \frac{55+59}{2}[/tex]
[tex]Midpoint = \frac{114}{2}[/tex]
[tex]Midpoint = 57[/tex]
60 - 64:
[tex]Midpoint = \frac{60+64}{2}[/tex]
[tex]Midpoint = \frac{124}{2}[/tex]
[tex]Midpoint = 62[/tex]
So, the new frequency table is as thus:
Low Temperature : 42 || 47 || 52 || 57 || 62
Frequency: ----------- 3 --||- -6-||- 1-||- --3- ||--7
Next, is to calculate mean by
[tex]Mean = \frac{\sum fx}{\sum x}[/tex]
[tex]Mean = \frac{42 * 3 + 47 * 6 + 52 * 1 + 57 * 3 + 62 * 7}{3+6+1+3+7}[/tex]
[tex]Mean = \frac{1065}{20}[/tex]
[tex]Mean = 53.25[/tex]
The computed mean is greater than the actual mean
p(a) = 0.60, p(b) = 0.20, and p(a and b) = 0.15 what is p(a or b) choices: A. 0.12, B. 0.65, C. 0.40, or D. 0.80 (Note- This is on AP3X)
Answer:
[tex]p(a\ or\ b) = 0.65[/tex]
Step-by-step explanation:
Given
[tex]p(a) = 0.60[/tex]
[tex]p(b) = 0.20[/tex]
[tex]p(a\ and\ b) = 0.15[/tex]
Required
[tex]p(a\ or\ b)[/tex]
The relationship between the given parameters and the required parameters is as follows;
[tex]p(a\ and\ b) = p(a) + p(b) - p(a\ or\ b)[/tex]
Substitute values for the known parameters
[tex]0.15 = 0.60 + 0.20 - p(a\ or\ b)[/tex]
[tex]0.15 = 0.80 - p(a\ or\ b)[/tex]
Collect Like Terms
[tex]p(a\ or\ b) = 0.80 - 0.15[/tex]
[tex]p(a\ or\ b) = 0.65[/tex]
Hence;
[tex]p(a\ or\ b) = 0.65[/tex]
Statistics professors believe the average number of headaches per semester for all students is more than 18. From a random sample of 15 students, the professors find the mean number of headaches is 19 and the standard deviation is 1.7. Assume the population distribution of number of headaches is normal.
Complete Question
Statistics professors believe the average number of headaches per semester for all students is more than 18. From a random sample of 15 students, the professors find the mean number of headaches is 19 and the standard deviation is 1.7. Assume the population distribution of number of headaches is normal.the correct conclusion at [tex]\alpha =0.001[/tex] is?
Answer:
There is no sufficient evidence to support the professor believe
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 18[/tex]
The sample size is [tex]n = 15[/tex]
The sample mean is [tex]\= x = 19[/tex]
The standard deviation is [tex]\sigma = 1.7[/tex]
The level of significance is [tex]\alpha = 0.001[/tex]
The null hypothesis is [tex]H_o: \mu = 18[/tex]
The alternative hypothesis is [tex]H_a : \mu > 18[/tex]
The critical value of the level of significance from the normal distribution table is
[tex]Z_{\alpha } = 3.290527[/tex]
The test hypothesis is mathematically represented as
[tex]t = \frac{\= x - \mu }{ \frac{\sigma}{ \sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 19 - 18}{ \frac{1.7}{ \sqrt{15} } }[/tex]
[tex]t = 2.28[/tex]
Looking at the value of t and [tex]Z_{\alpha }[/tex] we can see that [tex]t < Z_{\alpha }[/tex] so we fail to reject the null hypothesis.
This mean that there is no sufficient evidence to support the professor believe
You are an urban planner assessing the growth of a city. Ten years ago, the city's population was 250,823. Its current population is 325,823. By about what percentage has the city grown over the past ten years? Round to the nearest percent.
Answer:
Here is the answer i got-
Step-by-step explanation:
325823-250823=75000
325823’s 244367250percent is 75000
Express the product of z1 and z2 in standard form given that [tex]z_{1} = -3[cos(\frac{-\pi }{4} )+isin(\frac{-\pi }{4} )][/tex] and [tex]z_{2} = 2\sqrt{2} [cos(\frac{-\pi }{2} )+isin(\frac{-\pi }{2} )][/tex]
Answer:
Solution : 6 + 6i
Step-by-step explanation:
[tex]-3\left[\cos \left(\frac{-\pi }{4})\right+i\sin \left(\frac{-\pi }{4}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi }{2}\right)\right][/tex]
This is the expression we have to solve for. Now normally we could directly apply trivial identities and convert this into standard complex form, but as the expression is too large, it would be easier to convert into trigonometric form first ----- ( 1 )
( Multiply both expressions )
[tex]-6\sqrt{2}\left[\cos \left(\frac{-\pi }{4}+\frac{-\pi \:\:\:}{2}\right)+i\sin \left(\frac{-\pi \:}{4}+\frac{-\pi \:\:}{2}\right)\right][/tex]
( Simplify [tex]\left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] for both [tex]\cos \left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] and [tex]i\sin \left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] )
[tex]\left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] = [tex]\left(-\frac{3\pi }{4}\right)[/tex]
( Substitute )
[tex]-6\sqrt{2}\left(\cos \left(-\frac{3\pi }{4}\right)+i\sin \left(-\frac{3\pi }{4}\right)\right)[/tex]
Now that we have this in trigonometric form, let's convert into standard form by applying the following identities ----- ( 2 )
sin(π / 4) = √2 / 2 = cos(π / 4)
( Substitute )
[tex]-6\sqrt{2}\left(-\sqrt{2} / 2 -i\sqrt{2} / 2 )[/tex]
= [tex]-6\sqrt{2}\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)[/tex] = [tex]-\frac{\left(-\sqrt{2}-\sqrt{2}i\right)\cdot \:6\sqrt{2}}{2}[/tex]
= [tex]-3\sqrt{2}\left(-\sqrt{2}-\sqrt{2}i\right)[/tex] = [tex]-3\sqrt{2}\left(-\sqrt{2}\right)-\left(-3\sqrt{2}\right)\sqrt{2}i[/tex]
= [tex]3\sqrt{2}\sqrt{2}+3\sqrt{2}\sqrt{2}i:\quad 6+6i[/tex] - Therefore our solution is option a.