Solve for x. round to the nearest tenth, if necessary.
Answer:
29
Step-by-step explanation:
all in all it is 180 so 61 + m (which is 90 because it is a right angle)=151
then 180-151=29
Solve the equation sine Ф=0.6792 for 0°≤Ф≤360
Answer:
42.78⁹, 137.22⁹.
Step-by-step explanation:
sine Ф=0.6792
Angle Ф in the first quadrant = 42.78 degrees.
The sine is also positive in the second quadrant so the second solutio is
180 - 42.78
= 137.33 degres.
4.Find the first five terms of the recursive sequence
Answer:
5, 12, 19, 26, 33
Step-by-step explanation:
Using the recursive rule and a₁ = 5 , then
a₂ = a₁ + 7 = 5 + 7 = 12
a₃ = a₂ + 7 = 12 + 7 = 19
a₄ = a₃ + 7 = 19 + 7 = 26
a₅ = a₄ + 7 = 26 + 7 = 33
The first 5 terms are 5, 12, 19, 26, 33
What is the slope of the line that contains the points in the table?
х
У
15
-2
9
ON
3
4
-3
O A. 3
O B. -6
O c. 2
O D. -3
Answer:
https://www.dasd.org › 4444PDF
Web results
Entering Algebra 2: Answer Key
Which of the following would best be solved using factoring by grouping?
3x^2 + 12x = 8 or x^2 + 3x - 10 = 0 or x^2 = 25 or x^3 + 5x^2 - 9x - 45 = 0
Answer:
the last one: x^3 + 5x^2 - 9x - 45 = 0
Step-by-step explanation:
You can solve all the other ones by simple factoring and/or calculator.
Since the last one has more than 3 terms, it's likely that you'll have to use group factoring to solve it.
A ball is thrown into the air. The path it takes is modeled by the equation: -3t+24t = h, where t is the time in seconds and h is the height of the ball above the ground, measured in feet. Write an inequality to model when the height of the ball is at least 36 feet above the ground. For how long is the ball at or above 36 feet?
Given:
The given equation is:
[tex]-3t^2+24t=h[/tex]
Where, t is the time in seconds and h is the height of the ball above the ground, measured in feet.
To find:
The inequality to model when the height of the ball is at least 36 feet above the ground. Then find time taken by ball to reach at or above 36 feet.
Solution:
We have,
[tex]-3t^2+24t=h[/tex]
The height of the ball is at least 36 feet above the ground. It means [tex]h\geq 36[/tex].
[tex]-3t^2+24t\geq 36[/tex]
[tex]-3t^2+24t-36\geq 0[/tex]
[tex]-3(t^2-8t+12)\geq 0[/tex]
Splitting the middle term, we get
[tex]-3(t^2-6t-2t+12)\geq 0[/tex]
[tex]-3(t(t-6)-2(t-6))\geq 0[/tex]
[tex]-3(t-2)(t-6)\geq 0[/tex]
The critical points are:
[tex]-3(t-2)(t-6)=0[/tex]
[tex]t=2,6[/tex]
These two points divide the number line in 3 intervals [tex](-\infty,2),(2,6),(6,\infty)[/tex].
Intervals Check point [tex]-3(t-2)(t-6)\geq 0[/tex] Result
[tex](-\infty,2)[/tex] 0 [tex](-)(-)(-)=(-)<0[/tex] False
[tex](2,6)[/tex] 4 [tex](-)(+)(-)=+>0[/tex] True
[tex](6,\infty)[/tex] 8 [tex](-)(+)(+)=(-)<0[/tex] False
The inequality is true for (2,6) and the sign of inequality is [tex]\geq[/tex]. So, the ball is above 36 feet between 2 to 6 seconds.
[tex]6-2=4[/tex]
Therefore, the required inequality is [tex]-3t^2+24t\geq 36[/tex] and the ball is 36 feet above for 4 seconds.
HEELLLPPPPPP what’s the answer????????????????????????? HEELLLLLLLPPPPPPPPPPPPPP
Answer:
(-2,-2)
Step-by-step explanation:
x^2 + y^2 = 9
A circle has an equation of the form
(x-h)^2 + (y-k)^2 = r^2
where the center is at ( h,k) and the radius is r
The circle is centered at (0,0) and has a radius 3
The only point entirely within the circle must have points less than 3
(-2,-2)
Which of the following are important properties of the arithmetic mean? Check all that apply. Multiple select question. The mean is always less than the median. All of the values in the data are used in calculating the mean. Σ(X-X)=0 i.e. the sum of the deviations is zero. There is only one mean for a set of data. The mean can be calculated for nominal data.
Answer:
All of the values in the data are used in calculating the mean.
The sum of the deviations is zero.
There is only one mean for a set of data.
Step-by-step explanation:
Required
True statement about arithmetic mean
(a) False
The mean can be equal to, greater than or less than the median
(b) True
The arithmetic mean is the summation of all data divided by the number of data; hence, all values are included.
(c) True
All mean literally represent the distance of each value from the average; so, when each value used in calculating the mean is subtracted from the calculated mean, then the end result is 0. i.e.[tex]\sum(x - \bar x) = 0[/tex]
(d) True
The mean value of a distribution is always 1 value. When more values are added to the existing values or some values are removed from the existing values, the mean value will change.
(e) False
Nominal data are not numerical or quantitative data; hence, the mean cannot be calculated.
help asap! what does sinø=
Answer:
-3/5
Step-by-step explanation:
Pythagorean formula :
x^2 + y^2 = r^2
(-8)^2 + (-6)^2 = r^2
64 + 36 = 100
r^2 = 100
r= 10
sin is the y coordinate over the radius :
-6/10
-3/5
What set of transformations are applied to parallelogram ABCD to create A’B’C’D’
How do I solve this math equation: 7=8-p
Answer:
p = 1
Step-by-step explanation:
7 = 8 - p
7 + p = 8
p = 8-7
p = 1
Answered by Gauthmath
if x=2+√5 find the value of x²-1/x²
Answer:
[tex]{ \tt{ {x}^{2} - \frac{1}{ {x}^{2} } }} \\ = { \tt{ {(2 + \sqrt{5} )}^{2} - \frac{1}{ {(2 + \sqrt{5}) }^{2} } }} \\ = { \tt{ \frac{(2 + \sqrt{5} ) {}^{4} - 1}{ {(2 + \sqrt{5} )}^{2} } }} \\ = { \tt{ \frac{(9 + 4 \sqrt{5}) {}^{2} }{ {(9 + 4\sqrt{5}) }}}} \\ = { \tt{9 + 4 \sqrt{5} }}[/tex]
Answer:
[tex]8\sqrt{5}[/tex]
Step-by-step explanation:
[tex]x = 2 + \sqrt{5}\\\\ x^{2} = (2+ \sqrt{5})^{2} \\\\ \ \ \ \ = 2^{2}+2* \sqrt{5}*2+( \sqrt{5})^{2}\\\\[/tex]
[tex]= 4 + 4 \sqrt{5}+5\\\\= 9+4 \sqrt{5}[/tex]
[tex]\frac{1}{x^{2}}=\frac{1}{9+4\sqrt{5}}\\\\=\frac{1*(9-4\sqrt{5}}{(9+4\sqrt{5})(9-4\sqrt{5})}\\\\=\frac{9-4\sqrt{5}}{9^{2}-(4\sqrt{5})^{2}}\\\\=\frac{9-4\sqrt{5}}{81-4^{2}(\sqrt{5})^{2}}\\\\=\frac{9-4\sqrt{5}}{81-16*5}\\\\=\frac{9-4\sqrt{5}}{81-80}\\\\=\frac{9-4\sqrt{5}}{1}\\\\=9-4\sqrt{5}[/tex]
[tex]x^{2}-\frac{1}{x^{2}}= 9 + 4\sqrt{5} -(9 - 4\sqrt{5})\\\\[/tex]
[tex]= 9 + 4\sqrt{5} - 9 + 4\sqrt{5}\\\\= 9 - 9 + 4\sqrt{5} + 4\sqrt{5}\\\\= 8\sqrt{5}[/tex]
If you take half my age and add 7, you get my age 13 years ago. How old am I?
Answer:
You are currently 40 years old
Step-by-step explanation:
Let's say the current age is represented by the variable x.
x = current age
The question says that "if you take half my age and add 7, you get my age 13 years ago"
This can be represented like this:
1/2(x) + 7 = x - 13
Now we solve for x using basic algebra:
1/2(x) = x - 20
-1/2(x) = -20
x = 40
To check if this is correct, plug it back into the equation and see if both sides equal each other:
1/2(40) + 7 = (40) - 13
20 + 7 = 27
27 = 27
Hope this helps (●'◡'●)
The following geometric sequences represent the populations of two
bacterial cultures at the 1-hour mark, the 2-hour mark, the 3-hour mark, and so
on. Culture A starts with more bacteria, but culture B has a ratio of increase
that is larger. Which culture will have the greater population at the 18-hour
mark?
Culture A: 400, 600, 900, 1350,...
Culture B: 5, 10, 20, 40,...
A. Culture A
B. Culture B
!PLEASE HELP!
In angle ABC, AB = 2 and AC = 11. Find m
A.38
B.10
C.22
Answer:
10 digress when converted to nearest digree
Instructions: Find the lengths of the other two sides of the isosceles right triangle below.
Given:
The ratio of 45-45-90 triangle is [tex]x:x:x\sqrt{2}[/tex].
The hypotenuse of the given isosceles right triangle is [tex]7\sqrt{2}[/tex].
To find:
The lengths of the other two sides of the given isosceles right triangle.
Solution:
Let [tex]l[/tex] be the lengths of the other two sides of the given isosceles right triangle.
From the given information if is clear that he ratio of equal side and hypotenuse is [tex]x:x\sqrt{2}[/tex]. So,
[tex]\dfrac{x}{x\sqrt{2}}=\dfrac{l}{7\sqrt{2}}[/tex]
[tex]\dfrac{1}{\sqrt{2}}=\dfrac{l}{7\sqrt{2}}[/tex]
[tex]\dfrac{7\sqrt{2}}{\sqrt{2}}=l[/tex]
[tex]7=l[/tex]
Therefore, the lengths of the other two sides of the given isosceles right triangle are 7 units.
lll give brainliest
What is the slope of a line that runs parallel to y = -x + 7? Use a number to fill in the blank.
Answer:
Lines parallel to this line will have a slope of -1
Step-by-step explanation:
y = -x + 7
This line is in slope intercept form
y = mx+b where m is the slope
The slope is -1
Parallel lines have the same slope
Lines parallel to this line will have a slope of -1
Answer:
-1
Step-by-step explanation:
Parallel lines have the same slope
The equation y = -x + 7 has a slope of -1 meaning that a line parallel to it would also have a slope of -1
Which of the following rational functions is graphed below?
10
- 10
10
- 10+
O A. F(x) =
X-2
*(x+5)
B. F(x) =
(x + 5)(x-2)
C. F(x) =
(x+5)(- 2)
х
х
D. F(x) =
(x + 5)(x - 2)
The rational function is:
f(x) = x/ (x - 2)(x + 5).
The correct option is D.
What are the asymptotes?As the function approaches a certain value—typically infinity or negative infinity—as the input approaches positive or negative infinity, this is known as a horizontal asymptote.
When the vertical asymptotes are x = 2 and x = -5, this means that the denominator of the rational expression must contain the factors (x - 2) and (x + 5), but not (x - a) or (x + b) for any other values of a and b.
When the horizontal asymptote is x = 0, this means that the degree of the numerator and denominator must be the same, and the leading coefficients must be equal.
Let's start by setting up the denominator:
denominator = (x - 2)(x + 5)
To satisfy the horizontal asymptote at x = 0, the numerator must also have a factor of x, so we can write:
numerator = kx
where k is a constant to be determined.
To ensure that the rational expression has the desired vertical asymptotes, we need to add any necessary linear or quadratic factors to the numerator.
Since the denominator already has linear factors, we only need to add a quadratic factor.
We can choose any quadratic factor that doesn't affect the horizontal asymptote or the other vertical asymptote.
For example, we can choose:
numerator = kx(x + 7)
Putting it all together, the rational expression is:
f(x) = kx / (x - 2)(x + 5)
To determine the value of k, we can use the fact that the leading coefficients of the numerator and denominator must be equal. The leading term of the numerator is kx², and the leading term of the denominator is x².
Therefore:
k = 1
So the final rational expression is:
f(x) = x / (x - 2)(x + 5)
To learn more about the asymptotes;
https://brainly.com/question/4084552
#SPJ7
Bagels cost 35p each how much is 6?
Answer:
1 = 35p
6 = 35p×6
= 240p
Therefore, 6 bagels cost 240 p
please evaluate P(7,1)
Answer:
7
Step-by-step explanation:
Using the definition
n[tex]P_{r}[/tex] = [tex]\frac{n!}{(n-r)!}[/tex]
where n! = n(n - 1)(n - 2)..... 3 × 2 × 1
Then
7[tex]P_{1}[/tex] = [tex]\frac{7!}{(7-1)!}[/tex] = [tex]\frac{7!}{6!}[/tex] ← cancel out the multiples 6 ×5 × 4 × 3 × 2 × 1 , then
7[tex]P_{1}[/tex] = 7
look at the picture
Please help
Answer:
The probability that Aaron goes to the gym on exactly one of the two days is 0.74
Step-by-step explanation:
Let P(Aaron goes to the gym on exactly one of the two days) be the probability that Aaron goes to the gym on exactly one of the two days.
Then
P(Aaron goes to the gym on exactly one of the two days) =
P(Aaron goes to the gym on Saturday and doesn't go on Sunday) +
P(Aaron doesn't go to the gym on Saturday and goes on Sunday)
If Aaron goes to the gym on Saturday the probability that he goes on Sunday is 0.3. Then If Aaron goes to the gym on Saturday the probability that he does not go on Sunday is 1-0.3 =0.7 Since the probability that Aaron goes to the gym on Saturday is 0.8,
P(Aaron goes to the gym on Saturday and doesn't go on Sunday) =
P(the probability that Aaron goes to the gym on Saturday)×P(If Aaron goes to the gym on Saturday the probability that he does not go on Sunday)=
0.8×0.7=0.56
The probability that Aaron doesn't go to the gym on Saturday is 1-0.8=0.2 And if Aaron does not go to the gym on Saturday the probability he goes on Sunday is 0.9.
Thus, P(Aaron doesn't go to the gym on Saturday and goes on Sunday) = P(The probability that Aaron doesn't go to the gym on Saturday)×P(if Aaron does not go to the gym on Saturday the probability he goes on Sunday)
=0.2×0.9=0.18
Then
P(Aaron goes to the gym on exactly one of the two days) =0.56 + 0.18 =0.74
Which is equivalent to 3√8 1/4x?
Answer:
[tex]{ \tt{ \sqrt[3]{8} {}^{ \frac{1}{4} x} }} \\ = { \tt{ {8}^{( \frac{1}{4}x) \frac{1}{3} } }} \\ = { \tt{ {8}^{ \frac{1}{12} x} }} \\ = { \tt{ \sqrt[12]{8} {}^{x} }}[/tex]
Answer:
[tex]\sqrt[12]{8^{x} }[/tex]
Step-by-step explanation:
[tex]\sqrt[12]{8^{x} }[/tex]
To solve 2x=8 you need to divide by what number?
PLEASEEEE HELP
Answer:
divide by 2
Step-by-step explanation:
to find x you must divide 8 by 2.
Answer:
you divide 8 by 2
Step-by-step explanation:
To isolate the variable, x you need to divide by 2 on both sides so it cancels out the 2 on 2x and will divide 8 by 2=4
classify the following as a chemical or physical: hydrogen gas is very explosive
Answer:
chemical
Step-by-step explanation:
The average net primary production in tropical rain forests each year is 8,900 kilocalories per square meter. If the total net primary production of a selected portion of a tropical rain forest in a given year is 1.8*10^ 8. kilocalories, what is the approximate total area, in square meters, of the selected portion?
A) 4.9 * 10 ^ 3
B) 1.6 * 10 ^ 4
C) 2.0 * 10 ^ 4
D) 1.6 * 10 ^ 12
Answer:
C: 2 × 10⁴
Step-by-step explanation:
We are told that the average net primary production in tropical rain forests each year is 8,900 kilocalories per square meter.
Thus;
P_net,average = 8900 Kcal/m²
We are also told that net primary production of a selected portion of a tropical rain forest in a given year is 1.8 × 10^(8) kilocalories.
Thus;
P_net = 1.8 × 10^(8) Kcal
To get the average, the formula is;
P_net,average = P_net/Area
Thus;
Area = P_net/P_net,average
Plugging in the relevant values;
Area = (1.8 × 10^(8))/8900
Area ≈ 2 × 10⁴ m²
What is the solution to this equation?
log_8 16 + 2log_8x =2
The value of x for the given equation [tex]log_{8}[/tex](16) + 2[tex]log_{8}[/tex](x) = 2 will be 2 so option (B) must be correct.
What is a logarithm?The exponent indicates the power to which a base number is raised to produce a given number called a logarithm.
In another word, a logarithm is a different way to denote any number.
Given the equation
[tex]log_{8}[/tex](16) + 2[tex]log_{8}[/tex](x) = 2
We know that,
xlogb = log[tex]b^{x}[/tex]
So,
2[tex]log_{8}[/tex](x) = logx²
For the same base
logA + logB = log(AB)
So,
[tex]log_{8}[/tex](16) + [tex]log_{8}[/tex](x)² = 2
[tex]log_{8}[/tex](16x²) = 2
We know that
[tex]log_{a}[/tex](b) = c ⇒ b = [tex]a^{c}[/tex]
so,
[tex]log_{8}[/tex](16x²) = 2 ⇒ 8² = 16x²
x = 2 hence x = 2 will be correct answer.
For more about logarithm
https://brainly.com/question/20785664
#SPJ2
Find BD, given that line AB is the angle bisector of < CAD.
Answer:
5
Step-by-step explanation:
because line AB divided the triangle into two equal halves
Can u help sold this
Answer:
0
Step-by-step explanation:
To calculate the slope or gradient we use this formula:
Slope = y2-y1/x2-x1
(-3,2) = (x1, y1)
(4,2) = (x2, y2)
Slope = 2-2/4-(-3) = 0
Answer from Gauthmath
Answer:
[tex]we \: know \: that \: slope = \frac{y2 - y1}{x2 - x1} \\ = \frac{2 - 2}{4 - - 3} \\ = \frac{0}{7} = 0 \\ slope \: = 0 \\ thank \: you[/tex]
Hi I need help with this question please!!! I don’t understand it :/
Answer:
- 22.5
Step-by-step explanation:
Substitute x = 3 into f(x) and x = 16 into h(x) , then
[tex]\frac{1}{2}[/tex] g(3) - h(16)
= [tex]\frac{1}{2}[/tex] × - 3(3)² - (2[tex]\sqrt{16}[/tex] + 1)
= [tex]\frac{1}{2}[/tex] × - 3(9) - (2(4) + 1)
= [tex]\frac{1}{2}[/tex] × - 27 - (8 + 1)
= - 13.5 - 9
= - 22.5
Which are vertical angles?
Answer:
The top answer is correct
Step-by-step explanation:
Vertical angles are formed when two lines meet each other at a point and they are always equal to each other. Their angles are also equal. In this problem number two has angles that do not match and number three also has different angles. Finally number four also has different angles and is not equal to each other. Leaving number one (the top answer) which looks to have the same angle, and is equal to each other.