The first two statements are false, whereas the last statement, which says that pressure and volume of a gas are inversely related, is true.
How are pressure and volume related to one another?Statement 1: This claim was incorrect because, according to the ideal gas law, PV=nRT, pressure (P) and volume (V) are inversely proportional to each other at a constant temperature (T) and amount of gas (n). This means that as pressure increases, volume decreases. This relationship is known as Boyle's law. Therefore, the statement that pressure has no effect on volume of a gas is false.
Statement 2: This claim was incorrect because, pressure and volume of a gas are inversely related according to Boyle's law, which states that at a constant temperature, the pressure of a gas is inversely proportional to its volume. This means that if the pressure of a gas increases, its volume will decrease, and if the pressure decreases, the volume will increase, as long as the temperature remains constant.
Statement 3: This claim was correct because, According to Boyle's law, the pressure and volume of a gas are inversely proportional to each other, which means that when the pressure of a gas increases, its volume will decrease and vice versa, as long as the temperature and the number of particles in the gas are kept constant. This relationship is expressed mathematically as P₁V₁ = P₂V₂, where P₁ and V₁ are the initial pressure and volume, and P₂ and V₂ are the final pressure and volume.
To find out more about gas laws, visit:
https://brainly.com/question/27009857
#SPJ1
match each substance correctly to the principal type(s) of intermolecular force(s) present, other than covalent bonding.
Substance intermolecular force
CH2OH ---> Hydrogen bonding
CH3F --> Dipole-dipole forces
C3H8 --> Dispersion forces
CaCL2 --> Ionic bonding
The intermolecular force present in CH2OH is hydrogen bonding. The intermolecular force present in CH3F is Dipole-dipole forces. Ionic bonding is defined as a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions or between two atoms with sharply different electronegativities. It is the primary interaction occurring in ionic compounds. Hydrogen bonding results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom and another very electronegative atom.
Dipole-dipole forces are defined as a attractive forces between the positive end of one polar molecule and the negative end of another polar molecule. Dispersion force is defined as a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
To learn more about Intermolecular forces
https://brainly.com/question/12243368
#SPJ4
The complete question is,
Match each substance correctly to the principal type(s) of intermolecular force(s) present, other than covalent bonding.
CH2OH Ionic bonding
CH3F Hydrogen bonding
C3H8 Dispersion forces
CaCL2 Dipole-dipole forces
Using C2H4 + 3 O2 -> 2 CO2 + 2 H2O. If 20 moles of fuel are combusted in the above equation, how many moles of CO2 are produced?
Identify each of the following orbitals, and determine the n and quantum numbers. Explain your answers.
(a) one radial node the Number of radial nodes = n - l - 1
And number of angular nodes = l
n = 3 and l = 1
Orbital is 3p.
(b) It has zero angular node hence s-orbital and there is 1 radial node . 1 = n - 0 - 1 ; n = 2 and l = 0
The orbital is 2s.
(c) the shape of the orbital is that of dz². There is two angular nodes and there is no radial node.
n = 3 and l = 2
Hence the orbital is 3dz².
What is radial node?In atomic physics, a radial node is a point in space where the probability density of finding an electron in an atom is zero. It is a type of nodal plane that occurs in atomic orbitals, which are regions of space where electrons are most likely to be found.
Radial nodes occur in the radial distribution function of an atomic orbital, which describes the probability density of finding an electron at a given distance from the nucleus. The number of radial nodes in an atomic orbital is equal to n - l - 1, where n is the principal quantum number and l is the azimuthal quantum number.
Radial nodes represent regions of space where the radial wave function of the electron changes sign.
To know more about electrons, visit:
https://brainly.com/question/12001116
#SPJ1