Answer: You are correct. The answer is choice C.
The sum of the vectors is the resultant vector, which is where the net force is directed.
An example would be if you had a ball rolling on a table and you bumped the ball perpendicular to its initial velocity, then the ball would move at a diagonal angle rather than move straight in the direction where you bumped it.
Acceleration is the change in velocity over time, so the acceleration vector tells us how the velocity's direction is changing.
The direction of the acceleration on a body upon which multiple forces are applied depends on the direction of the netforce acting on the body.
When multiple forces acts on a body, such that the different forces acts in different directions. The acceleration will be in the direction of the netforce. This is the direction where the Cummulative sum of the forces is greatest. Acceleration due to gravity is always acting downward, if the upward force is greater than the Gravitational force, then the acceleration won't be in that direction.Therefore, acceleration will be due in the direction of the netforce.
Learn more :https://brainly.com/question/17858024?referrer=searchResults
Given the two functions, which statement is true?
fx = 3^4, g(x) = 3^x + 5
Answer:
third option
Step-by-step explanation:
Given f(x) then f(x) + c represents a vertical translation of f(x)
• If c > 0 then shift up by c units
• If c < 0 then shift down by c units
Given
g(x) = [tex]3^{x}[/tex] + 5 ← this represents a shift up of 5 units
Thus g(x) is the graph of f(x) translated up by 5 units
Answer:
[tex]\boxed{\sf{Option \: 3}}[/tex]
Step-by-step explanation:
g(x) is translated up 5 units compared to f(x). In a vertical translation, when the graph is moved 5 units up, 5 is added to the function. When the graph is moved 5 units down, 5 is subtracted from the function. The graphs are shifted in the direction of the y-axis.
On dividing polynomial p(x) by a linear binomial, X - a, we get a quotien
statements must be proven true for the remainder theorem to be true
Answer:
Step-by-step explanation:
Hello, we can write
(1) p(x)=(x-a)q(x)+r
[tex]\boxed{\sf v}[/tex] True
It means that p(a)=0 * q(a) + r = r
so the first one is true.
[tex]\boxed{}[/tex] False
The second one is not to be proven true from the remainder theorem.
[tex]\boxed{\sf v}[/tex] True
For x different from a we can divide the equation (1) by (x-a).
[tex]\boxed{}[/tex] False
We cannot say anything on q(a).
[tex]\boxed{\sf v}[/tex] True
If the rest is 0 then it means that p(a) = 0
[tex]\boxed{\sf v}[/tex] True
If p(a) = 0 it means that the rest r = 0 and then p(x)=q(x)(x-a)
Thank you
Find the work done by the force field F(x,y,z)=6xi+6yj+6k on a particle that moves along the helix r(t)=3 cos(t)i+3sin(t)j+2 tk,0≤t≤2π.
Answer:
the work done by the force field = 24 π
Step-by-step explanation:
From the information given:
r(t) = 3 cos (t)i + 3 sin (t) j + 2 tk
= xi + yj + zk
∴
x = 3 cos (t)
y = 3 sin (t)
z = 2t
dr = (-3 sin (t)i + 3 cos (t) j + 2 k ) dt
Also F(x,y,z) = 6xi + 6yj + 6k
∴ F(t) = 18 cos (t) i + 18 sin (t) j +6 k
Workdone = 0 to 2π ∫ F(t) dr
[tex]\mathbf{= \int \limits ^{2 \pi} _{0} (18 cos (t) i + 18 sin (t) j +6k)(-3 sin (t)i+3cos (t) j +2k)\ dt}[/tex]
[tex]\mathbf{= \int \limits ^{2 \pi} _{0} (-54 \ cos (t).sin(t) + 54 \ sin (t).cos (t) + 12 ) \ dt}[/tex]
[tex]\mathbf{= \int \limits ^{2 \pi} _{0} 12 \ dt}[/tex]
[tex]\mathbf{= 12 \times 2 \pi}[/tex]
= 24 π
I really need help i will rate you branliest
Work Shown:
A = P*(1+r)^t
A = 21450*(1+(-0.08))^5
A = 21450*(1-0.08)^5
A = 21450*(0.92)^5
A = 21450*0.6590815232
A = 14137.29867264
A = 14,137.30
Notice how I used a negative r value to indicate depreciation rather than growth.
more math questions if you would
Answer:
A.
Step-by-step explanation:
So we are given the function:
[tex]f(x)=7x+8[/tex]
To find the inverse of the function, we simply need to flip f(x) and x and then solve for f(x). Thus:
[tex]x=7f^{-1}(x)+8\\x-8=7f^{-1}(x)\\f^{-1}(x)=\frac{x-8}{7}[/tex]
So the answer is A.
Answer:
[tex]\large \boxed{\mathrm{Option \ A}}[/tex]
Step-by-step explanation:
f(x) = 7x+8
Write f(x) as y.
y = 7x + 8
Switch variables.
x = 7y + 8
Solve for y to find the inverse.
x - 8 = 7y
[tex]\frac{x-8}{7}[/tex] = y
What is the solution to this ?
Answer:
[tex]\boxed{\sf C. \ x\geq -4}[/tex]
Step-by-step explanation:
[tex]-8x+4\leq 36[/tex]
[tex]\sf Subtract \ 4 \ from \ both \ sides.[/tex]
[tex]-8x+4-4 \leq 36-4[/tex]
[tex]-8x\leq 32[/tex]
[tex]\sf Divide \ both \ sides \ by \ -8.[/tex]
[tex]\frac{-8x}{-8} \leq \frac{32}{-8}[/tex]
[tex]x\geq -4[/tex]
-x + 3y = 3
x - 3y = 3
Does this system have a solution?
Answer:
No solution
Step-by-step explanation:
Slope-Intercept Form: y = mx + b
Step 1: Write out systems of equations
-x + 3y = 3
x - 3y = 3
Step 2: Rewrite equations into slope-intercept form
3y = 3 + x
y = 1 + x/3
-3y = 3 - x
y = -1 + x/3
Step 3: Rewrite systems of equations
y = x/3 + 1
y = x/3 - 1
Since we have the same slope for both equations but different y-intercepts, we know that both lines are parallel. If that is the case, they will never touch or intersect each other. Therefore, we have no solution.
Find the missing length.
A. 25
B. 12
C. 20
D. 100
Answer:
25 Answer A
Step-by-step explanation:
Use similar triangles, and the proportion derived from the quotient of a leg to the hypotenuse:
[tex]\frac{15}{9} =\frac{x}{15} \\x=\frac{15^2}{9} \\x=25[/tex]
PLEASE HELP!!!
Evaluate the expression when b=4 and y= -3
-b+2y
Answer: -10
Step-by-step explanation: All you have to do is plug the values into the equation. -4+2(-3). Then you solve the equation using PEDMAS.
1. -4+2(-3)
2. -4+(-6)
3.-4-6
4.-10
Answer:
8
Step-by-step explanation:
-b + 2y
if
b = 4
and
y = 3
then:
-b + 2y = -4 + 2*6 = -4 + 12
= 8
se pueden calcular las edades de Juanita y de su madre si se sabe que:
1) actualmente la suma de sus edades es 44 años
2) dentro de 11 años la edad de juanita será la mitad de la edad de su mamá
Responder:
Juanita = 11, madre = 33
Explicación paso a paso:
Dado lo siguiente:
Suma de sus edades = 44
En 11 años, Juanita tendrá la mitad de la edad de su madre
Sea la edad de la madre = my la edad de juanita = j
m + j = 44 - - - - (1)
(j + 11) = 1/2 (m + 11)
j + 11 = 1/2 m + 5,5; j - 1/2 m = - 5,5; 2j - m = - 11
2j - m = - 11 - - - - (2)
Desde (1): m = 44 - j
Sustituyendo m = 44- j en (2)
2j - (44 - j) = - 11
2j - 44 + j = - 11
3j = - 11 + 44
3j = 33
j = 11
De 1)
m + j = 44
m + 11 = 44
m = 44 - 11
m = 33
A baseball player has a batting average (probability of getting on base per time at bat) of 0.215. Based on this: What is the probability that they will get on base more than 6 of the next 15 at bats
Answer:
[tex]\mathbf{P(x>6) = 0.0265}[/tex]
Step-by-step explanation:
Given that:
A baseball player has a batting average (probability of getting on base per time at bat) of 0.215
i.e
let x to be the random variable,
consider [tex]x_1 = \left \{ {{1} \atop {0}} \right.[/tex] to be if the baseball player has a batting average or otherwise.
Then
p(x₁ = 1) = 0.125
What is the probability that they will get on base more than 6 of the next 15 at bats
So
[tex]\mathtt{x_i \sim Binomial (n,p)}[/tex]
where; n = 15 and p = 0.125
P(x>6) = P(x ≥ 7)
[tex]P(x>6) = \sum \limits ^{15}_{x=7} ( ^{15 }_x ) \ (0.215)^x \ (1 - 0.215)^{15-x}[/tex]
[tex]P(x>6) = 1 - \sum \limits ^{6}_{x=7} ( ^{15 }_x ) \ (0.215)^x \ (1 - 0.215)^{15-x}[/tex]
[tex]P(x>6) = 1 - \sum \limits ^{6}_{x=0} ( ^{15 }_x ) \ (0.215)^x \ (1 - 0.215)^{15-x}[/tex]
[tex]P(x>6) = 1 -0.9735[/tex]
[tex]\mathbf{P(x>6) = 0.0265}[/tex]
Three 3.0 g balls are tied to 80-cm-long threads and hung from a single fixed point. Each of the balls is given the same charge q. At equilibrium, the three balls form an equilateral triangle in a horizontal plane with 20 cm sides. What is q?
Answer:
q = 0.105uC
Step-by-step explanation:
We can determine the force on one ball by assuming two balls are stationary, finding the E field at the lower right vertex and calculate q from that.
Considering the horizontal and vertical components.
First find the directions of the fields at the lower right vertex. From the lower left vertex the field will be at 0° and from the top vertex, the field will be at -60° or 300° because + charge fields point radially outward in all directions. The distances from both charges are the same since this is an equilateral triangle. The fields have the same magnitude:
E=kq/r²
Where r = 20cm
= 20/100
= 0.2m
K = 9.0×10^9
9.0×10^9 × q /0.2²
9.0×10^9/0.04
2.25×10^11 q
These are vector fields of course
Sum the horizontal components
Ecos0 + Ecos300 = E+0.5E
= 1.5E
Sum the vertical components
Esin0 + Esin300 = -E√3/2
Resultant = √3E at -30° or 330°
So the force on q at the lower right corner is q√3×E
The balls have two forces, horizontal = √3×E×q
and vertical = mg, therefore if θ is the angle the string makes with the vertical tanθ = q√3E/mg
mg×tanθ = q√3E.
..1
Then θ will be...
Since the hypotenuse = 80cm
80cm/100
= 0.8m
The distance from the centroid to the lower right vertex is 0.1/cos30 =
0.1/0.866
= 0.1155m
Hence,
0.8×sinθ = 0.1155
Sinθ = 0.1155/0.8
Sin θ = 0.144375
θ = arch sin 0.144375
θ = 8.3°
From equation 1
mg×tanθ = q√3E
g = 9.8m/s^2
m = 3.0g = 0.003kg
0.003×9.8×tan(8.3)
0.00428 = q√3E
0.00428 = q×1.7320×E
Where E=kq/r²
Where r = 0.2m
0.0428 = kq^2/r² × 1.7320
K = 9.0×10^9
0.0428/1.7320 = 9.0×10^9 × q² / 0.2²
0.02471×0.04 = 9.0×10^9 × q²
0.0009884 = 9.0×10^9 × q²
0.0009884/9.0×10^9 = q²
q² = 109822.223
q = √109822.223
q = 0.105uC
Your friend Iggy tells you that the product of 80 and 70 will have four zeroes. Explain to Iggy why his estimation is incorrect, and how to fix it.
4 zeroes basically means [tex]10^4[/tex]
$80=2^3\cdot 10$ and $70=7\cdot10$
there will be $10^2$ when you take the product not $10^4$
hence it will have 2 zeroes not 4
Based on this plot, which one of the following statements is not correct? The median room rate is $150 per night. There is one outlier in this data set. The 25th percentile in this data set is $130 per night. The second quartile in the data set is $160 per night.
Answer:
The second quartile in the data set is $130 per night.
Step-by-step explanation:
Quartile is a type of quantile which divides the number of data set into even numbered sub groups. The second quartile is median of data set. This means that 5% of data lies within this point. The middle value between the median and highest value of data set. The second quartile in the data set must be 50% so the statement is not correct.
Can anyone help me please??
Answer:
-20x / (x-12) = y
Step-by-step explanation:
3/x - 5/y = 1/4
Multiply each side by 4xy to clear the fractions
4xy ( 3/x - 5/y = 1/4)
Distribute
12y - 20x = xy
Subtract 12y from each side
-20x = xy -12y
Factor out y
-20x = y(x-12)
Divide each side by (x-12)
-20x / (x-12) = y
PLEASE HELP IM SO LOST
1. Ted is working on his financial plan and lists all of his income and expenses in the spreadsheet below.
А
B
Net Pay
$5,000
2
Interest on Deposits $0
3 Income from Investments $225
4 Rent
$3,000
5 Utilities
$250
6 Satellite Dish
$175
7 Cell Phone Plan
$135
8 Car Payment
$385
9 Groceries
$200
10 Insurance
$380
11 Recreation
$400
What is Ted's net cash flow?
2. Tamara earns $8 an hour at her job working 25 hours per week. If her net pay is 78% of her paycheck
and she has no other sources of income, what is Tamara's monthly cash inflow? (Assume there are 4
pays per month.)
Answer: 1) $300 2) $624
Step-by-step explanation:
[tex]\begin{array}{l||l|l}\underline{\quad \text{Item}\qquad \qquad \qquad \qquad}&\underline{\text{Income} }&\underline{\text{Expense}}\\\text{Net Pay}&5000&\\\text{Interest on Deposits}&0&\\\text{Income from Investments}&225&\\\text{Rent}&&3000\\\text{Utilities}&&250\\\text{Satellite Dish}&&175\\\text{Cell Phone Plan}&&135\\\text{Car Payment}&&385\\\text{Groceries}&&200\\\text{Insurance}&&380\\\underline{\text{Recreation}\qquad \qquad \qquad}&\underline{\qquad \quad }&\underline{400\qquad}\\\end{array}[/tex]
TOTALS 5225 4925
Net Cash Flow = Income - Expenses
= 5225 - 4925
= 300
*************************************************************************************
[tex]\dfrac{25\ hours}{week}\times \dfrac{\$8}{hour}\times 4\ weeks\times 78\%\\\\\\=25\times \$8 \times 0.78\\\\= \$624[/tex]
janice is buying paint to paint her new apartment
Answer:
I canot answer this
Step-by-step explanation:
The average price of a college math textbook is $158 and the standard deviation is $26. Suppose that 40 textbooks are randomly chosen. Round all answers to 4 decimal places where possible.
What is the distribution of ¯xx¯? ¯xx¯ ~ N(,)
For the group of 48, find the probability that the average price is between $153 and $155.
Find the first quartile for the average textbook price for this sample size. $ (round to the nearest cent)
For part b), is the assumption that the distribution is normal necessary? Yes No
Please only answer if you are able to answer correctly and entirely.
The probability that the average price is between $153 and $155 is 0.04.
What is the probability?Probability refers to a possibility that deals with the occurrence of random events.
The probability of all the events occurring need to be 1.
The average price of a math textbook =$158
The standard deviation =$26
The mean= 158
n =number of textbooks randomly chosen which is 40
n=10
Then
σ = 26
σₓ = σₓ/√n
= 26/√40
Therefore. σₓ² = 16.90
For the group of 48, find the probability that the average price is between $153 and $155.
The probability that the average price is between $153 and $155
= 0.04
Learn more about probability here;
https://brainly.com/question/11234923
#SPJ1
Find the area of the triangle.
[? ] ft2
Don't round
Step-by-step explanation:
[tex]Area = \: \frac{bh}{2} \\ : b = 16.9 \: h = 10.4 \\ [/tex]
[tex]Area = \frac{16.9 \times 10.4}{2} = \frac{175.76}{2} = 87.88 {ft}^{2} [/tex]
Base = 16.9
height = 10.4
Area = ½b×h
A = ½(16.9×10.4)
A = ½(175.76)
Area = 175.76/2
A = 87.88ft²
Answer:
[tex]\Large \boxed{\mathrm{87.88 \ ft^2 }}[/tex]
Step-by-step explanation:
[tex]\displaystyle area \ of \ triangle \ = \ \frac{base \times height }{2}[/tex]
[tex]\displaystyle area \ of \ triangle \ = \ \frac{16.9 \times 10.4 }{2}[/tex]
[tex]\displaystyle area \ of \ triangle \ = \ \frac{175.76}{2}[/tex]
[tex]\displaystyle area \ of \ triangle \ = \ 87.88[/tex]
Using only four 4's and any operational sign find the value of 8
Answer:
The answer is 4 + 4 + 4 - 4 = 8
Step-by-step explanation:
The four fours problem is one of the problems given in the book "The Man Who Calculated" by Malba Tahan, a Brazilian-born professor of mathematical sciences.
There are many complicated problems in this book made with the intention of using logic to find a value.
The 4 fours problem is based on using these numbers and using any operation to result in the numbers 1 through 10.
The length of the sides of the triangle are in the ratio 3:4:5 and it’s perimeter is 144 cm find its area and height corresponding to the longest side
Find the sum. 1. -7+(-5)
O-12
O-2
0 2
0 12
Answer:
-12
Step-by-step explanation:
-7+(-5)=
-7-5=
-12
Why would a linear function be an appropriate model?
Answer:
I know the answer
Step-by-step explanation:
Linear functions are those whose graph is a straight line. A linear function has the following form. y = f(x) = a + bx. A linear function has one independent variable and one dependent variable. The independent variable is x and the dependent variable is y.
Given that a random variable X is normally distributed with a mean of 2 and a variance of 4, find the value of x such that P(X < x)
Given that a random variable X is normally distributed with a mean of 2 and a variance of 4, find the value of x such that P(X < x)=0.99 using the cumulative standard normal distribution table
Answer:
6.642
Step-by-step explanation:
Given that mean = 2
standard deviation = 2
Let X be the random Variable
Then X [tex]\sim[/tex] N(n,[tex]\sigma[/tex])
X [tex]\sim[/tex] N(2,2)
By Central limit theorem;
[tex]z = \dfrac{X - \mu}{\sigma} \sim N(0,1)[/tex]
[tex]z = \dfrac{X - 2}{2} \sim N(0,1)[/tex]
P(X<x) = 0.09
[tex]P(Z < \dfrac{X-\mu}{\sigma })= 0.99[/tex]
[tex]P(Z < \dfrac{X-2}{2})= 0.99[/tex]
P(X < x) = 0.99
[tex]P(\dfrac{X-2}{2}< \dfrac{X-2}{2})=0.99[/tex]
[tex]P(Z< \dfrac{X-2}{2})=0.99[/tex]
[tex]\phi ( \dfrac{X-2}{2})=0.99[/tex]
[tex]( \dfrac{X-2}{2})= \phi^{-1} (0.99)[/tex]
[tex]( \dfrac{X-2}{2})= 2.321[/tex]
X -2 = 2.321 × 2
X -2 = 4.642
X = 4.642 +2
X = 6.642
The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an newer 75-inch television whose screen has an aspect ratio of 16:9
Answer:
The Width = 65.44 inches
The Height = 36.81 inches
Step-by-step explanation:
We are told in the question that:
The width and height of an newer 75-inch television whose screen has an aspect ratio of 16:9
Using Pythagoras Theorem we known that:
Width² + Height² = Diagonal²
Since we known that the size of a television is the length of the diagonal of its screen in inches.
Hence, for this new TV
Width² + Height² = 75²
We are given ratio: 16:9 as aspect ratio
Width = 16x
Height = 9x
(16x)² +(9x)² = 75²
= 256x² + 81x² = 75²
337x² = 5625
x² = 5625/337
x² = 16.691394659
x = √16.691394659
x = 4.0855103303
Approximately x = 4.09
For the newer 75 inch tv set
The Height = 9x
= 9 × 4.09
= 36.81 inches
The Width = 16x
= 16 × 4.09
= 65.44 inches.
15 < −5x can someone please solve for x?
Answer:
x <-3
Step-by-step explanation:
15 <-5x
divide both sides by 5 but since the coefficient of x is negative after dividing the sign changes.
x <-3
Answer:
x < −3
I hope this helps!
Let x represent the number of times a student visits a gym in a one month period. Assume that the probability distribution of X is as follows:
x 0 1 2 3
p(x) 0.37 0.29 0.22 0.12
Find the mean, of this distribution. Report your answer to two decimal places.
Answer:
1.86
Step-by-step explanation:
Given the following :
X : - - - - 0 - - - - 1 - - - - 2 - - - - - 3 - - - - 4
P(x) - 0.37 - - 0.28 - - 0.22 - - 0.22 - - 0.12
The mean of the distribution can be calculated by evaluated by determining the expected value of the distribution given that the data above is a discrete random variable. The mean value can be deduced multiplying each possible outcome by the probability of it's occurrence.
Summation of [P(x) * X] :
(0.37 * 0) + (0.28 * 1) + (0.22 * 2) + (0.22 * 3) + (0.12 * 4)
= 0 + 0.28 + 0.44 + 0.66 + 0.48
= 1.86
what does 7g equal in like a verbal form
Answer:
see below
Step-by-step explanation:
7g can be "split" as 7 * g. The "*" means multiplication so a verbal form of this expression could be "7 times a number g" or "The product of 7 and a number g".
According to a study, the probability that a randomly selected teenagar shopped at a mall at least once during a week was 0.61. Let X be the number of students in a randomly selected group of 50 that will shop at a mall during the next week. (a) Compute the expected value and standard deviation of X. expected value standard deviation (b) Fill in the missing quantity. (Round your answer to the nearest whole number.)There is an approximately 2.5% chance that _____ or more teenagers in the group will shop at the mall during the next week.
Answer:
Step-by-step explanation:
Given that:
p = 0.61
If X is the the number of students in a randomly selected group of a sample size n = 50
The expected value and the standard deviation can be computed as follows:
The expected value E(X) = np
The expected value E(X) = 50 × 0.61
The expected value E(X) = 30.5
The required standard deviation = [tex]\sqrt{np(1-p)}[/tex]
The required standard deviation = [tex]\sqrt{30.5(1-0.61)}[/tex]
The required standard deviation = [tex]\sqrt{30.5(0.39)}[/tex]
The required standard deviation = [tex]\sqrt{11.895}[/tex]
The required standard deviation = 3.4489
The required standard deviation = 3.45
(b) Fill in the missing quantity. (Round your answer to the nearest whole number.)
There is an approximately 2.5% chance that _____ or more teenagers in the group will shop at the mall during the next week.
From the given information:
Now, we can deduce that:
the mean = 30.5
standard deviation = 3.45
Using the empirical rule:
At 95% confidence interval;
[μ - 2σ, μ + 2σ] = [ 30.5 - 2(3.45) , 30.5 + 2(3.45)]
[μ - 2σ, μ + 2σ] = [ 30.5 - 6.9 , 30.5 + 6.9]
[μ - 2σ, μ + 2σ] = [ 23.6, 37.4]
The 2.5% of the observations are less than 95% confidence interval and 2.5% observations are greater than 95% confidence interval.
The required number of teenagers is = the upper limit of the 95% confidence interval = 37
There is an approximately 2.5% chance that __37___ or more teenagers in the group will shop at the mall during the next week.
Please answer this correctly without making mistakes
Answer:
1,377/2 and 688 1/17
Step-by-step explanation: