Answer: I got you!
Step-by-step explanation:
a) Sophie's distance is given by the formula: distance = rate × time. Therefore, her distance yesterday is s × t miles.
b) Rana's time is given by the formula: time = distance ÷ rate. Therefore, her time yesterday is m ÷ r hours.
c) Sophie's time is given by the formula: time = distance ÷ rate. Let's call the time Sophie waits for Rana "w". Then we have two equations:
Sophie's distance: s × (w + t) = 20
Rana's distance: r × (w + t) = 20 - m
We can solve for "w" by substituting the second equation into the first equation:
s × (w + t) = 20 - r × (w + t) + m
(s + r) × (w + t) = 20 + m
w + t = (20 + m) ÷ (s + r)
w = (20 + m) ÷ (s + r) - t
Therefore, Sophie waits for Rana for (20 + m) ÷ (s + r) - t hours.
d) Sophie's distance tomorrow is s × 3 miles, and Rana's distance tomorrow is r × 3 miles. Therefore, the difference in distance is (s - r) × 3 miles.
Jenny took the car, the bus, and the train to get home in time.
What form of punctuation is missing?
O A. No punctuation is missing.
OB.
A period
OC.
A comma
OD. A semicolon
Last three times I have tried to take a picture of my question. Nothing comes up that resembles any of it. I don’t know what’s wrong with this app but it’s not helping.
According to the question. A. No punctuation is missing.
What is punctuation ?Punctuation is the use of symbols to indicate the structure and organization of written language. It is used to help make the meaning of sentences clearer and to make them easier to read and understand. Punctuation marks can also be used to indicate pauses in speech, to create emphasis, and to indicate the speaker’s attitude. There are many different types of punctuation marks, each with its own purpose. The most commonly used punctuation marks are the period, comma, question mark, exclamation mark, quotation marks, and the apostrophe.
Quotation marks are used to enclose quoted material, while the apostrophe is used to indicate possession or to replace missing letters in a word or phrase. By using punctuation correctly, writers can ensure that their messages are correctly understood by their readers.
To learn more about punctuation
https://brainly.com/question/30321693
#SPJ1
3.1 Mrs Gilfillan owns a coffee shop. She serves a mixed berry and almond polenta cake that is baked in espresso cups at her coffee shop. She uses the recipe below to make the cake. Mixed Berry and Almond Polenta Calce Makes 15 espresso cups Ingredients 140 g butter 140 g castor sugar 140 g ground almonds 250 g fat-free cottage cheese 75 g mixed frozen berries 25 g polenta 6 eggs separated (keep the yolks for mayonnaise or scrambled egg) Bake at 356 °F until light brown, 30 to 40 minutes. Fat-free cottage cheese is sold in quantities of 125g at R8,99. Calculate the cost of the fat-free cottage cheese required in the recipe.
The cost of the fat-free cottage cheese required in the recipe is R17.98.
How to determine the cost ?
To determine the cost, we first need to calculate the amount of fat-free cottage cheese required in the recipe. The recipe calls for 250g of fat-free cottage cheese, which can be obtained by using 2 units of 125g each. Knowing the cost of ingredients is important for Mrs Gilfillan to price the cake appropriately to cover her costs and make a profit.
What is the cost of the fat-free cottage cheese required to make the Mixed Berry and Almond Polenta Cake recipe that serves 15 espresso cups at Mrs Gilfillan's coffee shop?
The cost of 1 unit of 125g fat-free cottage cheese is R8.99.
Therefore, the cost of 2 units of 125g is calculated as:
R (2 x 8.99) =R 17.98
Hence, the cost of the fat-free cottage cheese required in the recipe is R 17.98.
This cost is in addition to the cost of the other ingredients, such as butter, sugar, ground almonds, mixed frozen berries, and polenta, as well as the cost of labor, overhead, and other expenses involved in making and selling the cake.
To know more about cost visit :
brainly.com/question/30045916
#SPJ1
find average speed that was traveled from city a to city p if trip took a half an hour to travel 23 miles
Step-by-step explanation:
Speed = distance / time
you are given distance = 23 miles and time = .5 hr
distance / time = 23 miles / .5 hr = 46 mph
Mr. Nkalle invested an amount of N$20,900 divided in two different schemes A and B at the simple interest
rate of 9% p.a. and 8% p.a, respectively. If the total amount of simple interest earned in 2 years is N$3508,
what was the amount invested in Scheme B?
Answer:
Let's assume that Mr. Nkalle invested an amount of x in Scheme A and (20900 - x) in Scheme B.
The simple interest earned on Scheme A in 2 years would be:
SI(A) = (x * 9 * 2)/100 = 0.18x
The simple interest earned on Scheme B in 2 years would be:
SI(B) = [(20900 - x) * 8 * 2]/100 = (3344 - 0.16x)
The total simple interest earned in 2 years is given as N$3508:
SI(A) + SI(B) = 0.18x + (3344 - 0.16x) = 3508
0.02x = 164
x = 8200
Therefore, Mr. Nkalle invested N$8200 in Scheme A and N$12700 (20900 - 8200) in Scheme B. So the amount invested in Scheme B was N$12700.
6th grade math, is this correct?
Answer:
No, it is y = - 3x + 7
( negative 3x not positive )
Hope this helps!
Step-by-step explanation:
1. Subtract both sides by 3x
3x + y - ( 3x ) = 7 - ( 3x )
2. Combine like terms
( 3x - 3x ) + y = 7 - ( 3x )
0 + y = 7 - ( 3x )
y = 7 - ( 3x )
y = -3x + 7
Find the closed formula for each of the following sequences by relating them to a well known sequence. Assume the first term given is a1.
(a) 2, 5, 10, 17, 26, . . .
(b) 0, 2, 5, 9, 14, 20, . . .
(c) 8, 12, 17, 23, 30, . . .
(d) 1, 5, 23, 119, 719, . . .
The final closed formula answers for each part,
(a) an = n^2 + 1
(b) an = n(n + 1)(n + 2)/6
(c) an = 2n + 6
(d) an = n! + (n-1)! + ... + 2! + 1!
(a) The given sequence can be seen as the sequence of partial sums of the sequence of odd numbers: 1, 3, 5, 7, 9, . . . . That is, the nth term of the given sequence is the sum of the first n odd numbers, which is n^2. Therefore, the closed formula for the given sequence is an = n^2 + 1.
(b) The given sequence can be seen as the sequence of partial sums of the sequence of triangular numbers: 1, 3, 6, 10, 15, . . . . That is, the nth term of the given sequence is the sum of the first n triangular numbers, which is n(n + 1)(n + 2)/6. Therefore, the closed formula for the given sequence is an = n(n + 1)(n + 2)/6.
(c) The given sequence can be seen as the sequence of differences between consecutive squares: 1, 5, 9, 16, 21, . . . . That is, the nth term of the given sequence is the difference between the (n+1)th square and the nth square, which is (n + 1)^2 - n^2 = 2n + 1. Therefore, the closed formula for the given sequence is an = 2n + 6.
(d) The given sequence can be seen as the sequence of partial sums of the sequence defined recursively by a1 = 1 and an+1 = an(n + 1) for n ≥ 1. That is, the nth term of the given sequence is the sum of the first n terms of the recursive sequence. It can be shown that the nth term of the recursive sequence is n! (n factorial), and therefore the nth term of the given sequence is the sum of the first n factorials. That is, an = 1 + 1! + 2! + ... + (n-1)! + n!. Therefore, the closed formula for the given sequence is an = n! + (n-1)! + ... + 2! + 1!.
Learn more about closed formula here
brainly.com/question/29029062
#SPJ4
Can someone actually see if I got this correct for this answer please
Your total grade point average (GPA) for the semester is 2.67.
What is GPA ?GPA stands for Grade Point Average. It is a numerical calculation used to measure the academic success of a student. It is calculated by taking the average of all grades received by a student across all courses taken in a given semester or academic year. Each course is assigned a specific number of credit hours, and each grade is assigned a numerical value based on the school’s grading scale. The numerical value of each grade is then multiplied by the number of credit hours for the course, and the total of all courses is added together to determine a student’s GPA.
A higher GPA is generally indicative of higher academic performance while a lower GPA is generally indicative of lower academic performance. A student’s GPA is used by schools, employers, and other organizations to evaluate a student’s academic record.
To learn more about GPA
https://brainly.com/question/24276013
#SPJ1
This would give you a total of 29.0. Divide this by 10 credit hours and you get a GPA of 2.85 for the semester.
What is GPA?GPA stands for Grade Point Average. It is an academic measure of a student's performance in a course or program of study. It is calculated by dividing the total number of grade points earned by the total number of credit hours taken. A grade point average is typically expressed as a number on a 4.0 scale. A 4.0 GPA is considered to be the highest possible grade point average, while anything below a 2.0 GPA is usually considered to be failing.
This is calculated by adding up the total number of credit hours (10 credit hours) and then multiplying each grade by the respective number of credit hours. A=4.0, B=3.0, C=2.0.
So, you would multiply 4.0 by 3 for FYE 105, 3.0 by 3 for ENG 101, 2.0 by 3 for MAT 150, 2.0 by 3 for BIO 112, and 4.0 by 1 for BIO 113.
This would give you a total of 29.0.
Divide this by 10 credit hours and you get a GPA of 2.85 for the semester.
To learn more about GPA
https://brainly.com/question/24276013
#SPJ1
se spherical coordinates to evaluate the triple integral where is the region bounded by the spheres and .
The value of the triple integral[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex] by using spherical coordinates [tex]2\pi(e^{-1}-e^{-9})[/tex].
Given that the triple integral is-
[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex]
E is the region bounded by the spheres which are,
[tex]x^2+y^2+z^2=1\\\\x^2+y^2+z^2=9[/tex]
In spherical coordinates we have,
x = r cosθ sin ∅
y = r sinθ sin∅
z = r cos∅
dV = r²sin∅ dr dθ d∅
E contains two spheres of radius 1 and 3 () respectively, the bounds will be like this,
1 ≤ r ≤ 3
0 ≤ θ ≤ 2π
0 ≤ ∅ ≤ π
Then
[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex]
[tex]\int\int\int _{E} \frac{e^{-r^2}}{r}r^2Sin\phi drd\phi d\theta\\\\2\pi \int_{0}^{\pi} \int_1^3 re^{-r^2} dr d\phi\\\\2\pi \int_1^3 re^{-r^2} dr\\\\2\pi(e^{-1}-e^{-9})[/tex]
The complete question is-
Use spherical coordinates to evaluate the triple integral ∭ee−(x2 y2 z2)x2 y2 z2−−−−−−−−−−√dv, where e is the region bounded by the spheres x2 y2 z2=1 and x2 y2 z2=9.
learn more about triple integral,
https://brainly.com/question/30404807
#SPJ4
Find the volume of the solid generated by revolving the region enclosed by the following curves: a. y=4-2x², y = 0, x = 0, y = 2 through 360° about the y-axis. b. x = √y+9, x = 0, y =1 through 360° about the y-axis.
The volume of the solid generated by revolving the region enclosed by the curves y = 4 - 2x², y = 0, x = 0, and y = 2 through 360° about the y-axis is (16/3)π cubic units.
How to find the volume?To find the volume of the solid generated by revolving the region enclosed by the curves y = 4 - 2x², y = 0, x = 0, and y = 2 through 360° about the y-axis, we use the formula:
V = ∫[a,b] πr²dy
where a and b are the limits of integration in the y-direction, r is the radius of the circular cross-sections perpendicular to the y-axis, and V is the volume of the solid.
First, we need to find the equation of the curve that is generated when we rotate y = 4 - 2x² around the y-axis. To do this, we use the formula for the equation of a curve generated by revolving y = f(x) around the y-axis, which is:
x² + y² = r²
where r is the distance from the y-axis to the curve at any point (x, y).
Substituting y = 4 - 2x² into this formula, we get:
x² + (4 - 2x²) = r²
Simplifying, we get:
r² = 4 - x²
Therefore, the radius of the circular cross-sections perpendicular to the y-axis is given by:
r = √(4 - x²)
Now, we can integrate πr²dy from y = 0 to y = 2:
V = ∫[0,2] π(√(4 - x²))²dy
V = ∫[0,2] π(4 - x²)dy
V = π∫[0,2] (4y - y²)dy
V = π(2y² - (1/3)y³)∣[0,2]
V = π(8 - (8/3))
V = (16/3)π
Therefore, the volume of the solid generated by revolving the region enclosed by the curves y = 4 - 2x², y = 0, x = 0, and y = 2 through 360° about the y-axis is (16/3)π cubic units.
b. To find the volume of the solid generated by revolving the region enclosed by the curves x = √y+9, x = 0, and y = 1 through 360° about the y-axis, we use the same formula as in part (a):
V = ∫[a,b] πr²dy
where a and b are the limits of integration in the y-direction, r is the radius of the circular cross-sections perpendicular to the y-axis, and V is the volume of the solid.
First, we need to solve the equation x = √y+9 for y in terms of x:
x = √y+9
x² = y + 9
y = x² - 9
Next, we need to find the equation of the curve that is generated when we rotate y = x² - 9 around the y-axis. Using the same formula as in part (a), we get:
r = x
Now, we can integrate πr²dy from y = 1 to y = 10 (since x = 0 when y = 1 and x = 3 when y = 10):
V = ∫[1,10] π(x²)²dy
V = π∫[1,10] x⁴dy
V = π(1/5)x⁵∣[0,3]
V = π(243/5)
Therefore, the volume of the solid generated by revolving the region.
To know more about radius visit:
https://brainly.com/question/13449316
SPJ1
Solve please geometry, solve for x
Answer: The answer is D
Step-by-step explanation:
Pythagorean theorem: a²+b²=c²
x²+x²=14²
2x²=196
Evaluate...
x=7√2
Todd is traveling to Mexico and needs to exchange $390 into Mexican pesos. If each dollar is worth 12.29 pesos, how many pesos will he get for his trip?
need help with this angle question, please help
A. 7.5
B. 8.7
C. 13.0
D. 26.0
Answer:
8.7 m
Option B
Step-by-step explanation:
The tree, the shadow and the line of sight from the tip of the shadow to the top of the tree form a right triangle
The angle formed is 30°
Using the relationship
[tex]\tan 30 = \dfrac{h}{15}[/tex]
we get
[tex]h = 15 \times \tan 30[/tex]
[tex]h = 15 \times \dfrac{1}{\sqrt{3}}[/tex]
[tex]h = 8.66 m[/tex]
Rounded up this would be 8.7 m which is option B
- The table shows the number of
miles Michael ran each day over
the past four days. How many
more miles did he run on day 3
than on day 2? Determine if there
is extra or missing information.
By conducting subtraction we know that Michael ran 5 miles more on day 3 than on day 2.
What is subtraction?The four arithmetic operations are addition, multiplication, division, and subtraction.
Removal of items from a collection is represented by the operation of subtraction.
For instance, in the following image, there are 5 2 peaches, which means that 5 peaches have had 2 removed, leaving a total of 3 peaches.
The number that the other number is deducted from is known as a minuend.
Subtrahend: The amount that needs to be deducted from the minuend is known as a subtrahend.
Difference: A difference is an outcome obtained by deducting a subtractor from a minimum.
So, more miles Michael ran on day 3 than on day 2:
= 7 - 2
= 5 miles
Therefore, by conducting subtraction we know that Michael ran 5 miles more on day 3 than on day 2.
know more about subtraction here:
https://brainly.com/question/28467694
#SPJ1
Consider g(x) = {a sin x + b, if x 2pi .
A. Find the values of a and b such that g(x) is a differentiable function.
B. Write the equation of the tangent line to g(x) at x = 2pi.
C. Use the tangent line equation from part B to write an approximation for the value of g(6).
Do not simplify
Answer:
A. For g(x) to be differentiable, the derivative of g(x) must exist at every point in its domain. The derivative of a sin x + b is a cos x, which exists for all values of x. Therefore, any values of a and b will make g(x) a differentiable function.
B. To find the equation of the tangent line to g(x) at x = 2π, we need to find the slope of the tangent line, which is the derivative of g(x) evaluated at x = 2π.
g'(x) = a cos x, so g'(2π) = a cos(2π) = a
Therefore, the slope of the tangent line at x = 2π is a. To find the y-intercept of the tangent line, we can plug in x = 2π into g(x) and subtract a times 2π:
y = g(2π) - a(2π)
= (a sin 2π + b) - a(2π)
= b - 2aπ
So the equation of the tangent line is:
y = ax + (b - 2aπ)
C. We can use the tangent line equation to approximate g(6) by plugging in x = 6 and using the equation of the tangent line at x = 2π.
First, we need to find the value of a. Since g'(2π) = a, we can use the derivative of g(x) to find a:
g'(x) = a cos x
g'(2π) = a cos (2π) = a
g'(x) = a = 2
Now, we can plug in a = 2, b = any value, and x = 2π into the tangent line equation:
y = ax + (b - 2aπ)
g(2π) = 2πa + (b - 2aπ)
a sin 6 + b ≈ 12π + (b - 4π)
Since we don't know the value of b, we can't find the exact value of g(6), but we can use the approximation:
g(6) ≈ 12π + (b - 4π)
In a GP the 8th term is 8748 and the 4th
term is 108. Find the sum of the 1st 10 terms.
The first term of the GP is 4 and the common ratio is 3. We can now substitute these values into the formula for the sum of the first 10 terms to get 118096.
What is Geometric Progression?
A progression of numbers with a constant ratio between each number and the one before
Let the first term of the geometric progression be denoted by "a" and the common ratio be denoted by "r".
We know that the 4th term is 108, so we can use the formula for the nth term of a GP to write:
a*r³ = 108 .....(1)
We also know that the 8th term is 8748, so we can write:
a*r⁷ = 8748 .....(2)
To find the sum of the first 10 terms, we can use the formula for the sum of a finite geometric series:
S = a(1 - rⁿ)/(1 - r)
where S is the sum of the first n terms of the GP. We want to find the sum of the first 10 terms, so we plug in n = 10:
S = a(1 - r¹⁰)/(1 - r)
We now have two equations (1) and (2) with two unknowns (a and r). We can solve for a and r by dividing equation (2) by equation (1) to eliminate a:
(ar⁷)/(ar³) = 8748/108
r⁴ = 81
r = 3
Substituting r = 3 into equation (1) to solve for a, we have:
a*3³ = 108
a = 4
Therefore, the first term of the GP is 4 and the common ratio is 3. We can now substitute these values into the formula for the sum of the first 10 terms to get:
S = 4(1 - 3¹⁰)/(1 - 3)
S = 4(1 - 59049)/(-2)
S = 4(59048)/2
S = 118096
Therefore, the sum of the first 10 terms of the GP is 118096.
118096.
To learn more about Geometric Progression, click on the link:
https://brainly.com/question/14110171
#SPJ1
For the given functions f and g, complete parts (a)-(h). For parts (a)-(d), also find the domain. f(x) = 4x+9; g(x)=9x - 5
Answer:
(a) Find (f + g)(x)
To find (f + g)(x), we add the two functions f(x) and g(x):
(f + g)(x) = f(x) + g(x) = (4x + 9) + (9x - 5) = 13x + 4
The domain of (f + g)(x) is all real numbers, since there are no restrictions on x that would make (f + g)(x) undefined.
(b) Find (f - g)(x)
To find (f - g)(x), we subtract the function g(x) from f(x):
(f - g)(x) = f(x) - g(x) = (4x + 9) - (9x - 5) = -5x + 14
The domain of (f - g)(x) is all real numbers, since there are no restrictions on x that would make (f - g)(x) undefined.
(c) Find (f * g)(x)
To find (f * g)(x), we multiply the two functions f(x) and g(x):
(f * g)(x) = f(x) * g(x) = (4x + 9)(9x - 5) = 36x^2 + 11x - 45
The domain of (f * g)(x) is all real numbers, since there are no restrictions on x that would make (f * g)(x) undefined.
(d) Find (f / g)(x)
To find (f / g)(x), we divide the function f(x) by g(x):
(f / g)(x) = f(x) / g(x) = (4x + 9) / (9x - 5)
The domain of (f / g)(x) is all real numbers except x = 5/9, since this value would make the denominator of (f / g)(x) equal to zero, resulting in division by zero, which is undefined.
(e) Find f(g(x))
To find f(g(x)), we substitute g(x) into the expression for f(x):
f(g(x)) = 4g(x) + 9
Substituting the expression for g(x), we get:
f(g(x)) = 4(9x - 5) + 9 = 36x - 11
The domain of f(g(x)) is all real numbers, since there are no restrictions on x that would make f(g(x)) undefined.
(f) Find g(f(x))
To find g(f(x)), we substitute f(x) into the expression for g(x):
g(f(x)) = 9f(x) - 5
Substituting the expression for f(x), we get:
g(f(x)) = 9(4x + 9) - 5 = 36x + 76
The domain of g(f(x)) is all real numbers, since there are no restrictions on x that would make g(f(x)) undefined.
(g) Find f(f(x))
To find f(f(x)), we substitute f(x) into the expression for f(x):
f(f(x)) = 4f(x) + 9
Substituting the expression for f(x), we get:
f(f(x)) = 4(4x + 9) + 9 = 16x + 45
The domain of f(f(x)) is all real numbers, since there are no restrictions on x that would make f(f(x)) undefined.
(h) Find g(g(x))
To find g(g(x)), we substitute g(x) into the expression for g(x):
g(g(x)) = 9
Step-by-step explanation:
Answer:
Step-by-step explanation:
(a) Find f(g(x)).
To find f(g(x)), we first need to find g(x) and then substitute it into f(x).
g(x) = 9x - 5
f(g(x)) = f(9x - 5) = 4(9x - 5) + 9 = 36x - 11
Therefore, f(g(x)) = 36x - 11.
(b) Find g(f(x)).
To find g(f(x)), we first need to find f(x) and then substitute it into g(x).
f(x) = 4x + 9
g(f(x)) = g(4x + 9) = 9(4x + 9) - 5 = 36x + 76
Therefore, g(f(x)) = 36x + 76.
(c) Find f(f(x)).
To find f(f(x)), we need to substitute f(x) into f(x).
f(f(x)) = 4(4x + 9) + 9 = 16x + 45
Therefore, f(f(x)) = 16x + 45.
(d) Find g(g(x)).
To find g(g(x)), we need to substitute g(x) into g(x).
g(g(x)) = 9(9x - 5) - 5 = 81x - 50
Therefore, g(g(x)) = 81x - 50.
Domain of f(x) and g(x): Since both f(x) and g(x) are linear functions, their domains are all real numbers.
(e) Find the inverse of f(x).
To find the inverse of f(x), we need to switch the roles of x and f(x) and solve for f(x).
y = 4x + 9
x = 4y + 9
x - 9 = 4y
y = (x - 9) / 4
Therefore, the inverse of f(x) is f^(-1)(x) = (x - 9) / 4.
(f) Find the inverse of g(x).
To find the inverse of g(x), we need to switch the roles of x and g(x) and solve for g(x).
y = 9x - 5
x = 9y - 5
x + 5 = 9y
y = (x + 5) / 9
Therefore, the inverse of g(x) is g^(-1)(x) = (x + 5) / 9.
(g) Find the domain of f^(-1)(x).
The domain of f^(-1)(x) is the range of f(x). Since f(x) is a linear function, its range is all real numbers. Therefore, the domain of f^(-1)(x) is also all real numbers.
(h) Find the domain of g^(-1)(x).
The domain of g^(-1)(x) is the range of g(x). Since g(x) is a linear function, its range is all real numbers. Therefore, the domain of g^(-1)(x) is also all real numbers.
A, B, and C are mutually exclusive.
P(A) = .2, P(B) = .2, P(C) = .3. Find P(A ∪ B ∪ C).
P(A ∪ B ∪ C) =
The probability of the union of events A, B, and C is 0.7 where P(A)=0.2, P(B)=0.2 and P(C)=0.3.
What is union?In set theory, the union of two or more sets is a set that contains all the distinct elements of the sets being considered. Formally, the union of sets A and B, denoted as A ∪ B, is the set of all elements that are in either set A or set B, or in both.
According to question:When A, B, and C are mutually exclusive events, it means that they cannot happen at the same time. Therefore, the probability of the union of these events is equal to the sum of their individual probabilities.
In this case, we are given that:
P(A) = 0.2
P(B) = 0.2
P(C) = 0.3
To find the probability of the union of these events, we need to add their probabilities:
P(A ∪ B ∪ C) = P(A) + P(B) + P(C)
Substituting the given probabilities, we get:
P(A ∪ B ∪ C) = 0.2 + 0.2 + 0.3
P(A ∪ B ∪ C) = 0.7
Therefore, the probability of the union of events A, B, and C is 0.7.
To know more about union visit:
https://brainly.com/question/13264255
#SPJ1
The question is A, B, and C are mutually exclusive. P(A) = 0.2, P(B) = 0.2, P(C) = 0.3. Find P(A ∪ B ∪ C).
P(A ∪ B ∪ C) = ?
Write a sine function that has a midline of, y=5, an amplitude of 4 and a period of 2.
Answer:
y = 4 sin(π x) + 5
Step-by-step explanation:
A sine function with a midline of y=5, an amplitude of 4, and a period of 2 can be written in the following form:
y = A sin(2π/ x) +
where A is the amplitude, is the period, is the vertical shift (midline), and x is the independent variable (usually time).
Substituting the given values, we get:
y = 4 sin(2π/2 x) + 5
Simplifying this expression, we get:
y = 4 sin(π x) + 5
Therefore, the sine function with the desired characteristics is:
y = 4 sin(π x) + 5
Abbie wonders about college plans for all the students at her large high school (over 3000 students).
Specifically, she wants to know the proportion of students who are planning to go to college. Abbie wants her estimate to be within 5 percentage points (0.05) of the true proportion at a 90% confidence level.
How many students should she randomly select?
So Abbie was asked to randomly select at least 368 of her high school unitary method students to estimate the percentage of students planning to go to college. With a 90% confidence level and a 5% error rate.
What is unitary method ?The unit method is an approach to problem solving that first determines the value of a single unit and then multiplies that value to determine the required value. Simply put, the unit method is used to extract a single unit value from a given multiple. For example, 40 pens cost 400 rupees or pen price. This process can be standardized. single country. Something that has an identity element. (Mathematics, Algebra) (Linear Algebra, Mathematical Analysis, Matrix or Operator Mathematics) Adjoints and reciprocals are equivalent.
To determine the required sample size, the following formula should be used:
[tex]n = (Z^2 * p * (1-p)) / E^2[/tex]
where:
N:sample size required
Z:The Z-score corresponds to the desired confidence level and is 1.645 at the 90% confidence level.
Pa:Estimated Percentage of Students Planning to Go to College
1-p:Percentage of students not planning to go to college
E:Desired error margin of 0.05
Since we don't know the actual percentage of students who want to go on to college, we must use estimates based on past studies and surveys. Let's assume the estimated proportion is 0.6 (her 60% of students).
After plugging in the values it looks like this:
[tex]n = (1.645^2 * 0.6 * 0.4) / 0.05^2\\n = 368.03[/tex]
So Abbie was asked to randomly select at least 368 of her high school students to estimate the percentage of students planning to go to college. With a 90% confidence level and a 5% error rate.
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ1
Samir bought three pounds of strawberries for $12.00. What is the price, in dollars
per ounce of strawberries?
1 pound = 16 ounces
Before you try that problem, answer the question below.
How many ounces of strawberries did Samir buy?
Values of the Born exponents for Rb+ and l-are 10 and 12, respectively. The Born exponent for Rbl is therefore: O A. 2 O B.22 C. 1/11 OD. 11
The Born exponent or interatomic potential energy for Rbl is 11 ( approximately). The correct option is D).
The Born exponent for RbI can be calculated using the relationship between the Born exponent and the interionic distance. The Born exponent is defined as the ratio of the repulsive to attractive contributions to the interatomic potential energy, and it depends on the charges and sizes of the ions.
For Rb+ and I-, the Born exponents are 10 and 12, respectively. This means that the repulsive interaction between Rb+ and I- is weaker than the attractive interaction, as the repulsion is proportional to Rb+^10 and the attraction is proportional to I^-12. Therefore, the attractive interaction dominates.
For RbI, we can use the relationship between the Born exponent and the interionic distance to calculate the Born exponent. This relationship is given by:
B = (1/d) * ln[(l1 + l2)/|l1 - l2|]
where B is the Born exponent, d is the interionic distance, and l1 and l2 are the ionic radii of the cation and anion, respectively.
Assuming the ionic radii of Rb+ and I- are additive, we have:
l1 + l2 = l(RbI) = l(Rb+) + l(I-) = 1.52 + 1.81 = 3.33 Å
|l1 - l2| = |l(Rb+) - l(I-)| = |1.52 - 1.81| = 0.29 Å
Substituting these values into the equation for B, we get:
B = (1/d) * ln[(l1 + l2)/|l1 - l2|] = (1/d) * ln[3.33/0.29] ≈ 11.02
Therefore, the Born exponent for RbI is approximately 11.02.
The correct answer is D).
To know more about interatomic potential:
https://brainly.com/question/29557336
#SPJ4
Weekly CPU time used by an accounting firm has probability density
function (measured in hours) given by
f(x) = { 3/64 * x^2
(4 − x) 0 ≤ x ≤ 4
0 Otherwise }
(a) Find the F(x) for weekly CPU time.
(b) Find the probability that the of weekly CPU time will exceed two hours
for a selected week.
(c) Find the expected value and variance of weekly CPU time.
(d) Find the probability that the of weekly CPU time will be within half an
hour of the expected weekly CPU time.
(e) The CPU time costs the firm $200 per hour. Find the expected value
and variance of the weekly cost for CPU time.
Using probability, we can find that:
E(Y)= 2.4, Var (Y) = 0.64
E(Y) = 480, Var(Y) = 25,600
Define probability?The probability of an event is the proportion of favourable outcomes to all other potential outcomes. To determine how likely an event is, use the following formula:
Probability (Event) = Positive Results/Total Results = x/n
Given,
The weekly CPU time is as follows:
f(y) where, 0≤y≤4
Here, probability density function is 4-y is correct, or else we get negative expected values.
We have to find E(Y) and var(Y)
E(Y) = 2.4
var (Y) = E(Y²)-(E(Y)) ²
= 6.4 - (2.4) ²
= 0.64
The CPU time is costing the firm $200 per hour.
Now, we find E(Y) and var(Y) of the weekly cost for the CPU time.
Y = 200E
E(Y) = 200 × 2.4
= 480
var(Y) = 200V(Y)
= 200 × 0.64
= 25600
We can observe that the weekly cost is not exceeding $600 as weekly cost for CPU time = 480.
To know more about probability, visit:
https://brainly.com/question/30034780
#SPJ1
it looks as if the graphofr ~ tan 0, -'1r/2 < 0 < '1r/2, could be asymptotic to the lines x ~ i and x ~ -i. is it? give reasons for your answer.
No, the graph of tan 0, -1r/2 < 0 < 1r/2, is not asymptotic to the lines x = i and x = -i.
An asymptote is a line that a graph approaches but never crosses. The graph of tan 0, -1r/2 < 0 < 1r/2, has a period of π, meaning it repeats after every π, and will never cross the lines x = i and x = -i. This can be seen in the equation y = tan 0, where the x-values of -1r/2 and 1r/2 are replaced with the x-values of i and -i. The equation would be y = tan(i) and y = tan(-i), and the graphs of these equations would not be asymptotic to the lines x = i and x = -i.No, the graph of tan 0, -1r/2 < 0 < 1r/2, is not asymptotic to the lines x = i and x = -i.
Learn more about graph here:
https://brainly.com/question/29467965
#SPJ4
the given point is on the graph of y=f(x). Find a point on the graph of y=g(x).
g(x)=f(x−1)+3; (6,15)
The point (6, 15) on the graph of y = f(x) corresponds to the point (6, 18) on the graph of y = g(x).
What is graph?A graph is a visual representation of data, usually depicted as a set of points or lines plotted on a coordinate plane or a series of bars or other shapes displayed in a bar chart or pie chart. Graphs are used to show relationships between variables, trends over time, or comparisons between different data sets.
According to question:The problem asks us to find a point on the graph of y = g(x) given that (6, 15) is a point on the graph of y = f(x), and g(x) = f(x - 1) + 3.
To find a point on the graph of y = g(x), we need to substitute the given value of x = 6 into the formula for g(x):
g(6) = f(6 - 1) + 3
Simplifying the expression on the right-hand side, we have:
g(6) = f(5) + 3
Since (6, 15) is a point on the graph of y = f(x), we know that f(6) = 15.
g(6) = f(5) + 3
g(6) = 15 + 3
g(6) = 18
Therefore, the point (6, 15) on the graph of y = f(x) corresponds to the point (6, 18) on the graph of y = g(x).
To know more about graph visit:
https://brainly.com/question/24861666
#SPJ1
A line passes through points (5,3) and (-5,-2). Another line passes through points (-6,4) and (2,-4). Find the coordinates (ordered pairs) of the intersection of the two lines.
Step 1: Find the slope of each line
Step 2: Find the y-intercept of each line
Step 3: Write each line in slope-intercept form (y = mx + b)
Step 4: Solve for the system. Find the point of intersection for the system
Please help I will mark brainliest!!!
The point of intersection of the two lines is (-3.4, -1.2).
How to find the slope of each line?Step 1: The slope of a line passing through two points (x1,y1) and (x2,y2) can be found using the formula:
m = (y2-y1)/(x2-x1)
Using this formula, we can find the slope of the first line:
m1 = (−2−3)/(-5 -5) = −5/(-10) = 1/2
And the slope of the second line:
m2 = (−4−4)/(2 -(-6)) = -8/4 = -2
Step 2: Find the y-intercept of each line
The y-intercept of a line in slope-intercept form (y = mx + b) is the value of y when x=0. We can use one of the two given points on each line to find the y-intercept:
For the first line passing through points (5,3) and (−5,−2):
y = mx + b
3 = (1/2)(5) + b
b = 3 - 5/2
b = 1/2
So the first line can be written as y = 1/2x + 1/2
For the second line passing through points (−6,4) and (2,−4):
y = mx + b
4 = (-2)(−6) + b
b = 4 - 12
b = -8
So the second line can be written as y = -2x - 8
Step 3: Each line in slope-intercept form (y = mx + b):
First line: y = 1/2x + 1/2
Second line: y = -2x - 8
Step 4: To find the point of intersection of the two lines, we need to solve the system of equations. We can solve for x by setting the two right-hand sides equal to each other:
1/2x + 1/2 = -2x - 8
(x + 1)/2 = -2x - 8
x + 1 = -4x - 16
5x = -16 - 1
5x = -17
x = -17/5
x = -3.4
Now that we know x, we can find y by substituting x=10 into one of the two equations:
y = -2x - 8
y = -2(-3.4) - 8
y = - 1.2
Thus, the point of intersection of the two lines is (-3.4, -1.2).
Learn more about equation of a line on:
https://brainly.com/question/18831322
#SPJ1
are the ratios 2:1 and 20:10 equivalent
Yes, there is an analogous ratio between 2:1 and 20:10.
What ratio is similar to 2 to 1?We just cancel by a common factor. So 4:2=2:1 . The simplest representation of the ratio 4 to 2 is the ratio 2 to 1. Also, since each pair of numbers has the same relationship to one another, the ratios are equivalent.
By dividing the terms of each ratio by their greatest common factor, we may simplify both ratios to explain why.
As the greatest common factor for the ratio 2:1 is 1, additional simplification is not necessary.
The greatest common factor for the ratio 20:10 is 10. When we multiply both terms by 10, we get:
20 ÷ 10 : 10 ÷ 10
= 2 : 1
As a result, both ratios have the same reduced form, 2:1, making them equal.
To know more about ratio visit:-
https://brainly.com/question/13419413
#SPJ1
select a random integer from -200 to 200. which of the following pairs of events re mutualyle exclusive
The pairs of events of random integers are pairs of events are,
even and odd , negative and positive integers, zero and non-zero integers.
Two events are mutually exclusive if they cannot occur at the same time.
Selecting a random integer from -200 to 200,
Any two events that involve selecting a specific integer are mutually exclusive.
For example,
The events selecting the integer -100
And selecting the integer 50 are mutually exclusive
As they cannot both occur at the same time.
Any pair of events that involve selecting a specific integer are mutually exclusive.
Here are a few examples,
Selecting an even integer and selecting an odd integer.
Selecting a negative integer and selecting a positive integer
Selecting the integer 0 and selecting an integer that is not 0.
But,
Events such as selecting an even integer and selecting an integer between -100 and 100 are not mutually exclusive.
As there are even integers between -100 and 100.
Learn more about integer here
brainly.com/question/30099746
#SPJ4
Help i need this question solved
Answer: D. Square
Step-by-step explanation:
The shape created by the cross section of the cut through a square pyramid is a square.
To see why, imagine the pyramid sitting on a table with its square base flat against the surface. The cut goes through the vertex, which is the point at the top of the pyramid. Since the cut is perpendicular to the base, it divides the pyramid into two smaller pyramids with congruent, but not identical, bases. Each of these smaller pyramids has a triangular base that is an isosceles right triangle. The two triangles share a common hypotenuse, which is the line of the cut.
The cross section of the cut is the shape formed where the two triangles meet along the hypotenuse. Since both triangles are congruent and the hypotenuse is the same for both, the cross section is a square. The sides of the square are equal to the base of the original pyramid, which is one of the legs of the isosceles right triangles formed by the cut. Therefore, the answer is D, a square.
Create a trigonometric function that models the ocean tide..
Explain why you chose your function type. Show work for any values not already outlined above.
Answer:
One possible function that models the ocean tide is:
h(t) = A sin(ωt + φ) + B
where:
h(t) represents the height of the tide (in meters) at time t (in hours)
A is the amplitude of the tide (in meters)
ω is the angular frequency of the tide (in radians per hour)
φ is the phase shift of the tide (in radians)
B is the mean sea level (in meters)
This function is a sinusoidal function, which is a common type of function used to model periodic phenomena. The sine function has a natural connection to circles and periodic motion, making it a good choice for modeling the regular rise and fall of ocean tides.
The amplitude A represents the maximum height of the tide above the mean sea level, while B represents the mean sea level. The angular frequency ω determines the rate at which the tide oscillates, with one full cycle (i.e., a high tide and a low tide) occurring every 12 hours. The phase shift φ determines the starting point of the tide cycle, with a value of zero indicating that the tide is at its highest point at time t=0.
To determine specific values for A, ω, φ, and B, we would need to gather data on the tide height at various times and locations. However, typical values for these parameters might be:
1. A = 2 meters (representing a relatively large tidal range)
2. ω = π/6 radians per hour (corresponding to a 12-hour period)
3. φ = 0 radians (assuming that high tide occurs at t=0)
4. B = 0 meters (assuming a mean sea level of zero)
Using these values, we can write the equation for the tide as:
h(t) = 2 sin(π/6 t)
We can evaluate this equation for various values of t to get the height of the tide at different times. For example, at t=0 (the start of the cycle), we have:
h(0) = 2 sin(0) = 0
indicating that the tide is at its lowest point. At t=6 (halfway through the cycle), we have:
h(6) = 2 sin(π/2) = 2
indicating that the tide is at its highest point. We can also graph the function to visualize the rise and fall of the tide over time:
Tide Graph
Overall, this function provides a simple and effective way to model the ocean tide using trigonometric functions.
(please mark my answer as brainliest)
Mr. Brown's Thrift Shop
Quarter of 2012 Profit (in dollars)
1 $9,841.28
2 $8,957.67
3 $7,429.84
4 $11,095.67
How much total profit did Mr. Brown's store earn in the third and fourth quarters?
A.
$17,298.45
B.
$17,548.65
C.
$18,124.78
D.
$18,525.51
The correct option is D. $18,525.51. is the total profit made in the third as well as fourth quarters by Mr. Brown's store.
Explain about addition?In math, addition is the process of adding two or more integers together. The numbers having added are known as addends, while the outcome of the addition process, or the final response, is known as the sum. It is among the most fundamental mathematical operations we employ on a daily basis.
Quarterly profit for Mr. Brown's Goodwill Store in 2012 (in dollars)
1 $9,841.28
2 $8,957.67
3 $7,429.84
4 $11,095.67
Total profit = profit of 3rd quarter + profit of 4th quarter
Total profit = $7,429.84 + $11,095.67
Total profit = $18,525.51.
Thus, $18,525.51. is the total profit made in the third as well as fourth quarters by Mr. Brown's store.
Know more about addition
https://brainly.com/question/24536701
#SPJ1