Please answer this correctly without making mistakes

Please Answer This Correctly Without Making Mistakes

Answers

Answer 1

Answer:

so first convert to fraction so

9 3/4 = 39/4

so it was spread among 3

so this is division so you do 39/4 divided by 3

so you keep switch flip

which is  39/4 *1/3

answer is 13/4

Answer 2

Answer:

3 1/4 bags

Step-by-step explanation:

[tex]9\frac{3}{4}= \frac{(4 \times 9)+3}{4}= \frac{39}{4} \\\\\frac{39}{4} = 3 \:vegetable \: beds\\x \:\:\:= 1 \: vegetable \:bed\\\\3x = \frac{39}{4} \\\\\frac{3x}{3} = \frac{\frac{39}{4} }{3} \\\\x = \frac{13}{4} \\\\x = 3\frac{1}{4}[/tex]


Related Questions

PLS HELP:Find all the missing elements:

Answers

Answer:

b = 9.5 , c = 15

Step-by-step explanation:

For b

To find side b we use the sine rule

[tex] \frac{ |a| }{ \sin(A) } = \frac{ |b| }{ \sin(B) } [/tex]

a = 7

A = 23°

B = 32°

b = ?

Substitute the values into the above formula

That's

[tex] \frac{7}{ \sin(23) } = \frac{ |b| }{ \sin(32) } [/tex]

[tex] |b| \sin(23) = 7 \sin(32) [/tex]

Divide both sides by sin 23°

[tex] |b| = \frac{7 \sin(32) }{ \sin(23) } [/tex]

b = 9.493573

b = 9.5 to the nearest tenth

For c

To find side c we use sine rule

[tex] \frac{ |a| }{ \sin(A) } = \frac{ |c| }{ \sin(C) } [/tex]

C = 125°

So we have

[tex] \frac{7}{ \sin(23) } = \frac{ |c| }{ \sin(125) } [/tex]

[tex] |c| \sin(23) = 7 \sin(125) [/tex]

Divide both sides by sin 23°

[tex] |c| = \frac{7 \sin(125) }{ \sin(23) } [/tex]

c = 14.67521

c = 15.0 to the nearest tenth

Hope this helps you

please help! algebra 2 work

Answers

Well, there are several possible answers.

One such answer is y=-2.1x, which when plugging in the corresponding values will give -8.4 for y.

Another one is y=x-12.4. It really depends on other values

which rate can you set 7 miles over 1 hour equal to in order to find the distance traveled in 49 hours at 7 miles per hour

Answers

Answer:

Step-by-step explanation:

time = 49 hours

speed =  7 miles/hour

speed = distance / time

∴ distance = speed × time

= 7 × 49

= 343 miles

According to a survey, typical American spends 154.8 minutes per day watching TV. A survey of 50 Internet users results in a mean time watching TV per day of 128.7 minutes, with a standard deviation of 46.5 minutes. Which appropriate test we should use to determine if Internet users spend less time watching TV

Answers

Answer:

Z > ± 1.645

z= 3.968

Step-by-step explanation:

We formulate the null and alternate hypotheses as

H0 =μ2 ≥ μ1   Ha: μ2  <μ1  one sided

Let α= 0.05

Since the sample sizes are large therefore the test statistic used under H0 is

The critical region for α= 0.05 for a one tailed test Z > ± 1.645

Z = (x`2- x`1) /s/ √n

Z= 154.8-128.746.5/√50

z= 26.1/6.577

z= 3.968

Since the calculated value of z lies in the critical region we reject H0 that internet users spend more time  or equal time.

Given a dataset with the following properties:

mean = 50

median = 40

standard deviation = 5

What is the shape of the distribution?

Answers

Answer:

The distribution is positively skewed.

Step-by-step explanation:

A measure of skewness is defined in such a way that the measure should always be zero when the distribution is symmetric and measure should be a pure number i.e independent of origin and units of measurement.

The shape of the distribution can be found by finding the coefficient of skewness.

The coefficient of skewness can be found by  

Sk= 3(Mean-Median)/ Standard Deviation

Sk= 3( 50-40)5= 30/5=6

The shape will be positively skewed.

In a positively skewed distribution the mean > median > mode. It has a long right tail.

Using the skewness formula, it is found that the distribution is right-skewed.

------------------

The skewness of a data-set with mean M, median [tex]M_e[/tex] and standard deviation s is given by:

[tex]S = \frac{3(M - M_e)}{s}[/tex]

If |S| < 0.5, the distribution is said to be symmetric.If S <-0.5, the distribution is left-skewed.If S > 0.5, the distribution is right-skewed.

------------------

Mean of 50, thus, [tex]M = 50[/tex]Median of 40, thus [tex]M_e = 40[/tex]Standard deviation of 5, thus, [tex]s = 5[/tex]

The coefficient is:

[tex]S = \frac{3(M - M_e)}{s} = \frac{3(50 - 40)}{5} = \frac{30}{5} = 6[/tex]

Thus, the distribution is right-skewed.

A similar problem is given at https://brainly.com/question/24415645

Factor 13ab3 + 39a2b5.

Answers

[tex]13ab^3+39a^2b^5\\\\\boxed{\boxed{\boxed{13ab^3(1+3ab^2)}}}\\\\[/tex]

Brazil number one.

Answer:

there's no answer for that equation

What is the value of the mean from the following set of data: 12,10, 11, 8, 6, 5, 3, 7, 9. Round to the nearest hundredth.

Answers

Answer:

7.88 or 7.9

Step-by-step explanation:

To find the mean, we need to do:

=> (12 + 10 + 11 + 8 + 6 + 5 + 3 + 7 + 9) / 9

=> 71/9

=> 7.88 or 7.9

I divided the sum of all numbers by 9 because we added 9 numbers.

A bike wheel. A bike wheel is 26 inches in diameter. What is the bike wheel's diameter in millimeters (1 inch = 25.4 millimeters)?

Answers

Answer:

its multiple choice

A. 26inches (1inch/25.4mm)

B. 26inches (25.4mm/1inch)

C. 25.4inches (1mm/26inch)

D. 26inches (1mm/25.4inch)

and its b

Which of the following statements are true? Select all that apply.
If the equation were graphed, it would be a horizontal line.
Both functions have the same slope.
The origin is the y-intercept for the function expressed in the table.
The linear equation does not have a y-intercept.
The table and the graph express an equivalent function.

Answers

Answer:

Both functions have the same slope.The origin is the y-intercept for the function expressed in the table.The table and the graph express an equivalent function.

Step-by-step explanation:

Both functions have the same slope

The slope is m in the equation; y =mx+c which is the formula for a straight line.

m = change in Y/change in x

Using 2 points: (1,3/4) and ( 4,3) from the table;

= (3 - 3/4) / ( 4 - 1)

= 2.25/3

= 0.75 which is 3/4 which is the same as the slope of the function in the equation.

The origin is the y-intercept for the function expressed in the table.

Slope of function in table is known to be 0.75. Find c to complete equation.

3 = 0.75 ( 4) + c

3 = 3 + c

c = 0

c is the y-intercept. The origin of a line is 0 so if c is 0 then the origin is the y intercept.

The table and the graph express an equivalent function.

The function for the table as calculated is;

y = 0.75x + 0

y = 0.75x

This is the same as the function for the equation for the graph which is y = 3/4x.

Answer:Both functions have the same slope.

The origin is the y-intercept for the function expressed in the table.

The table and the graph express an equivalent function.

Step-by-step explanation:

Compare the linear functions expressed below by data in a table and by an equation.

A 2-column table with 4 rows. Column 1 is labeled x with entries negative 6, negative four-thirds, 1, 4. Column 2 is labeled y with entries negative StartFraction 9 Over 2 EndFraction, negative 1, three-fourths, 3. y = three-fourths x.

Which of the following statements are true?  Select all that apply.

If the equation were graphed, it would be a horizontal line.

Both functions have the same slope.

The origin is the y-intercept for the function expressed in the table.

The linear equation does not have a y-intercept.

The table and the graph express an equivalent function.

how do you figure out ratios? the problem is 12 quarters to 34 dollars. thanks

Answers

Step-by-step explanation:

When you have a ratio, you put one number as the numerator and than one number as the denominator.

so it would be (12/34)=(x/68)

In this example I made the ratio you are comparing it to have 68 dollars, so when you solve for the amount of quarters you need it should be 24, since all of the numbers in this example are just being doubled.

To solve for x, you multiply 68 on both sides of the equation, 68×(12/34)=x

24=x

So this proves that this is how ratios, are used. It also does not matter what number you place on the numerator or denominator.

How many petals are on the graph? Find the trigonometric form of a given function.

Answers

Answer:

Attachment 1 : Option A,

Attachment 2 : Option C

Step-by-step explanation:

( 1 ) Here we know that " n " is 6. Now remember if n is odd, the number of petals on the graph will be n. However if n is even, the number of petals on the graph will be 2n.

6 is even, and hence the number of petals will be 2(6) = 12 petals. Solution : 12 petals

( 2 ) To solve such problems we tend to use the equation [tex]z = x + y * i = r(cos\theta +isin\theta)[/tex] where [tex]r = \sqrt{x^2+y^2}[/tex] etc. Here I find it simpler to see each option, and convert each into it's standard complex form. It might seem hard, but it is easy if you know the value of (cos(5π / 3)) etc...

The answer here will be option c, but let's prove it,

cos(5π / 3) = 1 / 2,

sin(5π / 3) = [tex]-\frac{\sqrt{3}}{2}[/tex]

Plugging those values in for " [tex]8\left(\cos \left(\frac{5\pi }{3}\right)+i\sin \left(\frac{5\pi }{3}\right)\right)[/tex] "

[tex]8\left(-\frac{\sqrt{3}i}{2}+\frac{1}{2}\right)[/tex]

= [tex]8\cdot \frac{1}{2}-8\cdot \frac{\sqrt{3}i}{2}[/tex] = [tex]4-4\sqrt{3}i[/tex]

Hence proved that your solution is option c.

Multiple-Choice Questions
1. In 1995, Diana read 10 English books and 7 French books. In 1996, she read twice as many French books as English books. If 60% of the books that she read during the 2 years were French, how many English and French books did she read in 1996?
(A) 16
(B) 26
(0) 32
(D) 48​

Answers

Answer:

(D) 48​

Step-by-step explanation:

Let English book = x

Let french book = y

In 1995 x= 10

Y= 7

In 1996

Y = 2x

Total book read in the two years

0.6(Total) = y

0.4(total) = x

We don't know the exact amount of books read in 1996.

Total = 10 + 7 +x +2x

Total = 17+3x

0.6(total) = 7+2x

0.6(17+3x) = 7+2x

10.2 +1.8x= 7+2x

10.2-7= 2x-1.8x

3.2= 0.2x

3.2/0.2= x

16= x

So she read 16 English book

And 16*2 = 32 french book Making it a total of 16+32= 48 books in 1996

I am performing a before and after evaluation on 30 students who have taken a keyboarding class. I want to see if the course improved their words per minute keyed.

Required:
a. State the Null and Alternate Hypothesis.
b. The statistic that I would use is:_________
c. What would my t critical be for this calculation at a 0.10 level of significance?
d. If my t calculated = 1.62, would I reject or fail to reject the null hypothesis?

Answers

Answer:

a)

H₀ : µd = 0  

H₁ : µd < 0  

b)

The test statistic is

tₙ₋₁ = α / s√n

c)

at 0.10 level of significance,

tₙ₋₁ , ₐ

t₃₀₋₁ , ₀.₁₀ = t₂₉, ₀.₁₀ = 1.311

d)

given that  T(critical) = 1.62

∴ T(critical) = 1.62 > t₂₉, ₀.₁₀ = 1.311

at 10% level of significance,

REJECT H₀

Since 1.62 > 1.311, we can reject the null hypothesis.

Su Jean is driving from phoenix to houston. A distance of 1185 miles. After driving for 4 hours she calculates that she has driven 237 miles. What portion of the distance does she have left to drive?

Answers

Answer:

4/5

Step-by-step explanation:

237/1185 = .2 = 1/5

meaning there's 4/5 left

The solution system to 3y-2x=-9 and y=-2x+5

Answers

Answer:

[tex]\boxed{(3,-1)}[/tex]

Step-by-step explanation:

Hey there!

Well to find the solution the the given system,

3y - 2x = -9

y = -2x + 5

So to find x lets plug in -2x + 5 for y in 3y - 2x = -9.

3(-2x + 5) - 2x = -9

Distribute

-6x + 15 - 2x = -9

-8x + 15 = -9

-15 to both sides

-8x = -24

Divide -8 to both sides

x = 3

Now that we have x which is 3, we can plug in 3 for x in y = -2x + 5.

y = -2(3) + 5

y = -6 + 5

y = -1

So the solution is (3,-1).

Hope this helps :)

A population has a mean and a standard deviation . Find the mean and standard deviation of a sampling distribution of sample means with sample size n. nothing ​(Simplify your​ answer.) nothing ​(Type an integer or decimal rounded to three decimal places as​ needed.)

Answers

Complete Question

A population has a mean mu μ equals = 77 and a standard deviation σ = 14. Find the mean and standard deviation of a sampling distribution of sample means with sample size n equals = 26

Answer:

The mean of sampling distribution of the sample mean ( [tex]\= x[/tex]) is [tex]\mu_{\= x } = 77[/tex]

The standard deviation of sampling distribution of the sample mean ( [tex]\= x[/tex]) is  

    [tex]\sigma _{\= x} = 2.746[/tex]

Step-by-step explanation:

From the question we are told that

    The population mean is  [tex]\mu = 77[/tex]

     The  standard deviation is  [tex]\sigma = 14[/tex]

     The sample size is  [tex]n = 26[/tex]

     

Generally the standard deviation of sampling distribution of the sample mean ( [tex]\= x[/tex]) is  mathematically represented as

           [tex]\sigma _{\= x} = \frac{ \sigma }{ \sqrt{n} }[/tex]

substituting values  

          [tex]\sigma _{\= x} = \frac{ 14}{ \sqrt{26} }[/tex]

          [tex]\sigma _{\= x} = 2.746[/tex]

Generally the mean of sampling distribution of the sample mean ( [tex]\= x[/tex]) is  equivalent to the population mean i.e  

      [tex]\mu_{\= x } = \mu[/tex]

      [tex]\mu_{\= x } = 77[/tex]

Among a simple random sample of 331 American adults who do not have a four-year college degree and are not currently enrolled in school, 48% said they decided not to go to college because they could not afford school.

Part II: Exercise 6.16 presents the results of a poll where 48% of 331 Americans who decide to not go to college do so because they cannot afford it.

#1: Calculate a 90% confidence interval for the proportion of Americans who decide to not go to college because they cannot afford it, and interpret the interval in context.
(a) lower bound: ______ (please round to four decimal places)
(b) upper bound: _____ (please round to four decimal places)

#2: Interpret the confidence interval in context:

(A) We can be 90% confident that our confidence interval contains the sample proportion of Americans who choose not to go to college because they cannot afford it

(B) 90% of Americans choose not to go to college because they cannot afford it

(C) We can be 90% confident that the proportion of Americans who choose not to go to college because they cannot afford it is contained within our confidence interval

#3: Suppose we wanted the margin of error for the 90% confidence level to be about 1.5%. How large of a survey would you recommend?
(a) A survey should include at least ________ people.

Answers

Answer:

(1) Therefore, a 90% confidence interval for the proportion of Americans who decide to not go to college because they cannot afford it is [0.4348, 0.5252].

(2) We can be 90% confident that the proportion of Americans who choose not to go to college because they cannot afford it is contained within our confidence interval

(3) A survey should include at least 3002 people if we wanted the margin of error for the 90% confidence level to be about 1.5%.

Step-by-step explanation:

We are given that a simple random sample of 331 American adults who do not have a four-year college degree and are not currently enrolled in school, 48% said they decided not to go to college because they could not afford school.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                         P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of Americans who decide to not go to college = 48%

           n = sample of American adults = 331

           p = population proportion of Americans who decide to not go to

                 college because they cannot afford it

Here for constructing a 90% confidence interval we have used a One-sample z-test for proportions.

So, 90% confidence interval for the population proportion, p is ;

P(-1.645 < N(0,1) < 1.645) = 0.90  {As the critical value of z at 5% level

                                                        of significance are -1.645 & 1.645}  

P(-1.645 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.645) = 0.90

P( [tex]-1.645 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]\hat p-p[/tex] < [tex]1.645 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.90

P( [tex]\hat p-1.645 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.645 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.90

90% confidence interval for p = [ [tex]\hat p-1.645 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.645 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]

 = [ [tex]0.48 -1.96 \times {\sqrt{\frac{0.48(1-0.48)}{331} } }[/tex] , [tex]0.48 +1.96 \times {\sqrt{\frac{0.48(1-0.48)}{331} } }[/tex] ]

 = [0.4348, 0.5252]

(1) Therefore, a 90% confidence interval for the proportion of Americans who decide to not go to college because they cannot afford it is [0.4348, 0.5252].

(2) The interpretation of the above confidence interval is that we can be 90% confident that the proportion of Americans who choose not to go to college because they cannot afford it is contained within our confidence interval.

3) Now, it is given that we wanted the margin of error for the 90% confidence level to be about 1.5%.

So, the margin of error =  [tex]Z_(_\frac{\alpha}{2}_) \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]

              [tex]0.015 = 1.645 \times \sqrt{\frac{0.48(1-0.48)}{n} }[/tex]

              [tex]\sqrt{n} = \frac{1.645 \times \sqrt{0.48 \times 0.52} }{0.015}[/tex]

              [tex]\sqrt{n}[/tex] = 54.79

               n = [tex]54.79^{2}[/tex]

               n = 3001.88 ≈ 3002

Hence, a survey should include at least 3002 people if we wanted the margin of error for the 90% confidence level to be about 1.5%.

Determine whether each equation has one solution, no solution or infinitely many solutions. 4x + 10 = 2(2x + 5) 4x - 5 = 4x + 10 4x - 5 = -5

Answers

Answer:

see below

Step-by-step explanation:

4x + 10 = 2(2x + 5)

Distribute

4x+10 = 4x+10

Since the left side is identical to the right side, there are infinite solutions

4x - 5 = 4x + 10

Subtract 4x from each side

-5 = 10

This is never true, so there are no solutions

4x-5 = -5

Add 5 to each side

4x = 0

x=0

There is one solutions

A household survey of 10 families was conducted by students of 4th year MBBS. In the collected data, the ages of heads of families were: 32, 34, 35, 36, 36, 42, 44, 46, 48, and 52. The mean age of heads of families is
a. 36
b. 38.5
c. 40
d. 40.5
e. 42

Answers

Answer:

Which polynomial is prime?

7x2 – 35x + 2x – 10

9x3 + 11x2 + 3x – 33  

10x3 – 15x2 + 8x – 12  

12x4 + 42x2 + 4x2 + 14

Step-by-step explanation:

Which polynomial is prime?

7x2 – 35x + 2x – 10

9x3 + 11x2 + 3x – 33  

10x3 – 15x2 + 8x – 12  

12x4 + 42x2 + 4x2 + 14 SO IT IS RIGHT

Simple math! What is the issue with my work? I got it wrong.

Answers

Answer:

x = 6

Step-by-step explanation:

In the third line of the solution on right side of the equal sign, middle term should be 8x instead of 4x.

The final value of x will be 6.

[tex] PQ^2 + QO^2 = PO^2 \\

x^2 + 8^2 = (4+x)^2 \\

x^2 + 64 = 16 + 8x + x^2 \\

64 = 16 + 8x \\

64 - 16 = 8x \\

48 = 8x \\

6 = x\\[/tex]

. One sample has M = 18 and a second sample has M = 14. If the pooled variance for the two samples is 16, what is the value of Cohen’s d?

Answers

Answer:

Cohen's d : 1.00

Step-by-step explanation:

We know that M₁ = 18, and M₂ = 14. Given that the pooled variance for the these two samples are 16, S²Pooled = 16, and therefore S - pooled = 4.

The formula to solve for the value of Cohen's d is as follows,

d = M₁ - M₂ / S - pooled,

d = 18 - 14 / 4 = 4 / 4 = 1

Therefore the value of Cohen's d = 1

Which point slope form equations could be produced with the points (3,2) and (4,6)

Answers

Step-by-step explanation:

Equation of a line is y = mx + c

where

m is the slope

c is the y intercept

To find the equation of a line given two points first find the slope of the line and use the formula

y - y1 = m( x - x1) to find the Equation of the line using any of the points given

Slope of the line using points

(3,2) and (4,6) is

[tex]m = \frac{6 - 2}{4 - 3} = \frac{4}{1} = 4[/tex]

So the equation of the line using point

( 3 , 2 ) and slope 4 is

y - 2 = 4( x - 3)

Hope this helps you

If the sum of the daily unpaid balances is $7,812 over a 31-day billing cycle, what is the average daily balance?

Answers

Answer:

252

Step-by-step explanation:

Divide 7812 by 31 and we get the average daily answer... Hope this helps!!

Question 1 (5 points)
The line segment AB with endpoints A(-3, 6) and B(9, 12) is dilated with a scale
factor 2/3 about the origin. Find the endpoints of the dilated line segment.
OA) (-2, 4), (6,8)
B) (2, 4). (6,8)
OC) (4, -2), (6,8)
OD) (-2,4), (8,6)​

Answers

Answer: A) (-2, 4), (6,8)

Step-by-step explanation:

When a point (x,y) is dilated by a scale factor of k , then the new points is given by (kx,ky).

Given: The line segment AB with endpoints A(-3, 6) and B(9, 12) is dilated with a scale factor [tex]\dfrac23[/tex] about the origin.

Let A' and B' b the endpoints of the dilated line segment.

Then, [tex]A'(\dfrac{2}{3}(-3), \dfrac23(6))=A'(-2,4)[/tex]

[tex]B'(\dfrac{2}{3}(9), \dfrac23(12))=B'(6,8)[/tex]

Hence, the correct option is A) (-2, 4), (6,8)

Evaluate the integral using integration by parts with the indicated choices of u and dv. (Use C for the constant of integration.) ∫4x2 lnx dx ; u= lnx , dv=4x 2dx

Answers

Take

[tex]u=\ln x\implies\mathrm du=\dfrac{\mathrm dx}x[/tex]

[tex]\mathrm dv=4x^2\,\mathrm dx\implies v=\dfrac43x^3[/tex]

Then

[tex]\displaystyle\int4x^2\ln x\,\mathrm dx=\frac43x^3\ln x-\frac43\int x^2\,\mathrm dx=\frac43x^3\ln x-\frac49x^3+C[/tex]

[tex]=\boxed{\dfrac49x^3(3\ln x-1)+C}[/tex]

The required integration is,

∫4x² lnx dx = (lnx) [(4/3)x³ + C₁] - (4/9)x³ + C

The given integral is,

∫4x² lnx dx

Using integration by parts, choose u and dv.

In this case, we choose u = lnx and dv = 4x²dx.

Using the formula for integration by parts, we have:

∫ u dv = uv - ∫ v du

Substituting the values of u and dv, we get:

∫4x² lnx dx = (lnx) (∫ 4x² dx) - ∫ [(d/dx)lnx] (∫4x² dx) dx

Simplifying the first term using the power rule of integration, we get:

∫ 4x² dx = (4/3)x³ + C₁

For the second term, we need to evaluate (d/dx)lnx,

Which is simply 1/x. Substituting this value, we get:

∫ [(d/dx)lnx] (∫4x² dx) dx = ∫ [(1/x) ((4/3)x³ + C₁)] dx

Simplifying this expression, we get:

∫4x² lnx dx = (lnx) [(4/3)x³ + C₁] - ∫ [(4/3)x³/x] dx

Using the power rule of integration again, we get:

∫4x² lnx dx = (lnx) [(4/3)x³ + C₁] - (4/9)x³ + C

Where C is the constant of integration.

To learn more about integration visit:

https://brainly.com/question/31744185

#SPJ2

22)
Subtract (4 - 21) - (3 - 51)
A)
1+3i
B)
1-71
7+3i
D)
7-7i

Answers

Answer:

1 +3i

Step-by-step explanation:

(4 - 2i) - (3 - 5i)

Subtract the reals

4 - 3 =1

Subtract the imaginary

-2i - -5i

-2i + 5i = 3i

1 +3i

Answer:

A

Step-by-step explanation:

Subtract all real numbers

4 - 3 = 1

Subtract all imaginary numbers

-2i - (-5i) = 3i

Put back together

1 + 3i

Best of Luck!

The scores for all the Algebra 1 students at Miller High on a test are normally distributed with a mean of 82 and a standard deviation of 7. What percent of students made scores above 89?

Answers

Answer:

15.7% of students made above an 89.

Step-by-step explanation:

If the data is normally distributed, the standard deviation is 7, and the mean is 82, then about 68.2% of students made between 75 and 89. 13.6% made between 90 and 96, and 2.1% made over 96. 13.6+2.1=15.7%

In recent years, the interest rates on home mortgages have declined to less than 6%. However, a
recent study shows that the rate charged on credit card debt is more than 14%. A sample of 10 credit
cards showed that the mean rate charged is 15.64% with a standard deviation of 1.561%. At 1% level
of significance, is it reasonable to conclude the mean rate charged is greater than 14%?

Answers

Answer:

Yes it is reasonable to conclude the mean rate charged is greater than 14%

Step-by-step explanation:

From the question we are told that

    The  population mean is  [tex]\mu = 0.14[/tex]

    The sample size is  [tex]n = 10[/tex]

    The  sample mean is  [tex]\= x = 0.1564[/tex]

     The  standard deviation is  [tex]\sigma = 0.01561[/tex]

     The level of significance is  [tex]\alpha = 0.01[/tex]

The null hypothesis is    [tex]H_o: \mu = 0.14[/tex]

The  alternative hypothesis is  [tex]H_a : \mu > 0.14[/tex]

 Generally the test statistic is mathematically represented as

              [tex]t = \frac{ \= x - \mu }{ \frac{\sigma }{\sqrt{n} } }[/tex]

substituting values

              [tex]t = \frac{ 0.1564 - 0.14 }{ \frac{0.01561 }{\sqrt{10} } }[/tex]

              [tex]t = 3.322[/tex]

Now the p-value obtained from the z-table is

        [tex]p-value = P(t > 3.322) = 0.00044687[/tex]

Since the [tex]p-value < \alpha[/tex] then we reject the null hypothesis, hence we can conclude that  the mean rate charged is greater than 14%

 

Which rule describes this transformation? (Zoom in to see it clearly)

Answers

Answer:

(x,y) -> (x+6, y-3)

Step-by-step explanation:

I followed c and it translated like the  last ans choice.

My town has two cell phone providers. The provider Don’tTalkMuch charge is $80 per month plus 1 dollar per hour the provider TalkLots charges $20 per month plus 4 dollars per hour how much do you have to use your phone in a month in order for Don’tTalkMuch’s much is a deal to be better for you?

Answers

Answer:

The author have to use his/her phone less than 20 hours in a month in order for Don’tTalkMuch's is a deal to be better than TalkLots's is.

Step-by-step explanation:

Call X is the number of hours that the author uses on monthly basis.

Total bill value if the author uses Don’tTalkMuch service is $80 + $1 X.

Total bill value if the author uses TalkLots service is $20 + $4X

The total fees between 2 providers equal as:

$80 + $1 X = $20 + $4X => 3X = $60 => X = 20

Hence: The author have to use his/her phone less than 20 hours in a month in order for Don’tTalkMuch's is a deal to be better than TalkLots's is.

Other Questions
What is the complete ionic equation for this reaction?2KOH(aq) + H2SO4(aq) 2H20(1) + K2SO4(aq)O A. 2K+ + OH + H2SO4 OH + 2H+ + K2SO4B. OH + 2H+ + 2H20()C. 2KOH + H2SO4 2H20 + K2SO4D. 2K+ + OH + 2H+ + SO42- 2H20() + 2K+ + SO42-SUBMIT BRAINLIEST Given that 104 = 10,000, write this in logarithm form. Akeem cut his finger during an investigation, and it is bleeding slightly. Before helping him bandage the wound,which precaution should the teacher take?O Tell someone to call 911,O Put on protective gloves.O Wash Akeem's finger in the shower.O Apply disinfectant before cleaning. A professor decides to perform an experiment with two of his classes. He believes that students in a hot classroom do not learn well. In one class, he leaves the room temperature at 70 degrees (normal room temperature). In another class, he turns the temperature up to 85 degrees. At the end of the semester he gives the same final exam to students from each classroom to see if one group has learned significantly more than the other. (Overall, a highly unethical study.) In this experiment, who would be the experimental group? A) The 70-degree class. B) Because of ethics, there was no experimental group. C) The 85-degree class. D) Both groups are experimental groups. Need help please will give you 5 stars and good rating Projectized organizations are especially effective at helping team members to maintain their discipline-specific competencies. Group of answer choices acid-catalyzed hydration of 1-methylcyclohexene gives two alcohols. The major product does not undergo oxidation, while the minor product will undergo oxidation. Explain A vehicle has a will 15 inches in diameter. If the vehicle travels 2 miles, how many revolutions does the wheel make? This is Applications of unit conversions answer it answer it it Two angles are adjacent and form an angle of 160. Their difference is 34. Find the angles kind of urgent!! Please describe a real-world scenario in which it would be important to know how to apply scale factors. What can we gain from knowing history? In the Vaughn Manufacturing, indirect labor is budgeted for $108000 and factory supervision is budgeted for $36000 at normal capacity of 160000 direct labor hours. If 170000 direct labor hours are worked, flexible budget total for these costs is: A Japan-based company, Sumo Gyms, Inc., issues a 35-year, semi-annual coupon bond, with a 300 million par value. The coupon rate is given as 5.90%, and the yield to maturity is 6.70. a. What is the value of the semi-annual coupon on the bond? On Tuesday, Dec. 3, I began drinking a glass of cola every day except Saturday and Sunday. I drank my 22nd glass of cold on A) Dec. 24 B) Dec. 25 C) Dec. 31 D) Jan. 1 Assume that females have pulse rates that are normally distributed with a mean of =73.0 beats per minute and a standard deviation of =12.5 beats per minute. Complete parts (a) through (c) below.a. If 1 adult female is randomly selected, find the probability that her pulse rate is less than 76 beats per minute.b. If 25 adult females are randomly selected, find the probability that they have pulse rates with a mean less than 76 beats per minute.c. Why can the normal distribution be used in part (b), even though the sample size does not exceed 30?A. Since the mean pulse rate exceeds 30, the distribution of sample means is a normal distribution for any sample size.B. Since the distribution is of individuals, not sample means, the distribution is a normal distribution for any sample size.C. Since the distribution is of sample means, not individuals, the distribution is a normal distribution for any sample size.D. Since the original population has a normal distribution, the distribution of sample means is a normal distribution for any sample size. x/t+m=b need to make x the subject Evaluate 3h(2) + 2k(3) = The parent council is in charge of making lemonade for field day.They purchased 19 bags of lemon.each bag has 24 lemons.The recipe says that a gallon of lemonade will require 8 lemons.they will be able to pour 12 cups of lemonade from each gallon that they make.How many cups of lemonade will the parent council be able to serve? Make up an expression of your own that satisfies the following:Must have at least: 4 terms, 1 constant, 2 variables with coefficients and appropriateoperation signs.