Answer:
7.6×10¹⁰
Explanation:
7.296×10²÷9.6×10⁻⁹
To solve such problem,
We group the whole number ans solved seperately and also group the indices and solve the seperately
Step1 : 7.296/9.6 = 0.76
Step 2: applying the law of indices,
10²÷10⁻⁹ = 10⁽²⁺⁹⁾ = 10¹¹
Therefore,
7.296×10²÷9.6×10⁻⁹ = 0.76×10¹¹ = 7.6×10¹⁰
If atom X had 3 valence electrons and atom Y had 7 valence electrons, the correct chemical formula for the ionic compound they would form is Choices: A) XY3 B) X3Y6 C) X2Y3 D) X3Y7
Answer:
A) XY3
In both of the atom, they want to have 8 valence electrons on the outer shell so they can become stable.
Ggggggggggggggggg666666666666666
What volume of 6.9 M NaOH is needed to completely titrate 0.42 L of 2.39 M phosphoric acid according to
the equation:
H3PO4(aq) + 3NaOH(aq) + Na3PO4(aq) + 3H2O(aq)
A) O 0.05 L
B) O6.93 L
C) O0.44 L
D) 03.01 L
E) 436.43 L
Taking into account the definition of molarity and the stoichiometry of the reaction, the correct option is option C) 0.44 L of 6.9 M NaOH is needed to completely titrate 0.42 L of 2.39 M phosphoric acid.
The balanced reaction is:
H₃PO₄ (aq) + 3 NaOH (aq) → Na₃PO₄ (aq) + 3 H₂O(aq)
Then, by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
H₃PO₄: 1 mole NaOH: 3 moles Na₃PO₄: 1 mole H₂O: 3 molesMolarity is the number of moles of solute that are dissolved in a given volume.
Molarity is determined by:
[tex]Molarity=\frac{number of moles of solute}{volume}[/tex]
Molarity is expressed in units [tex]\frac{moles}{liter}[/tex].
In this case, 0.42 L of 2.39 M phosphoric acid reacts. So, by definition of molarity, the number of moles that participate in the reaction is calculated as:
[tex]2.39 \frac{moles}{liter}=\frac{number of moles of phosphiric acid}{0.42 liters}[/tex]
Solving:
number of moles of phosphiric acid= 2.39 [tex]\frac{moles}{liter}[/tex]* 0.42 liters
number of moles of phosphiric acid= 1.0038 moles ≅ 1 mole
Approaching 1 mole of the amount of phosphoric acid required, then by stoichiometry of the reaction, 3 moles of NaOH are necessary to react with 1 mole of the acid.
Then by definition of molarity and knowing that 6.9 M NaOH is needed, you can calculate the necessary volume amount of NaOH by:
[tex]6.9 \frac{moles}{liter} =\frac{3 moles}{volume}[/tex]
Solving:
6.9 [tex]\frac{moles}{liter}[/tex]* volume= 3 moles
[tex]volume=\frac{3 moles}{6.9\frac{moles}{liter} }[/tex]
volume= 0.44 L
The correct option is option C) 0.44 L of 6.9 M NaOH is needed to completely titrate 0.42 L of 2.39 M phosphoric acid.
Learn more about molarity with this example: https://brainly.com/question/15406534?referrer=searchResults
3. (07.05 LC)
When zinc reacts with hydrochloric acid, it produces hydrogen gas. As the reaction proceeds, why does the rate of production of hydrogen gas decrease? (3 points)
the rate would decrease because the reactants are being depleted.
draw styrene
draw the structure of cyrene
How would the Sun look from Neptune compared to Earth?
A.It would look smaller
and brighter
B. It would look bigger
and less bright
C. It would look bigger
and brighter
D. It would look smaller
and less bright
Answer:
It would look bigger and brighter
Explanation:
It would look bright as sunlight
3 attempts left Be sure to answer all parts. Which indicators that would be suitable for each of the following titrations: (a) CH3NH2 with HBr thymol blue bromophenol blue methyl orange methyl red chlorophenol blue bromothymol blue cresol red phenolphthalein (b) HNO3 with NaOH thymol blue bromophenol blue methyl orange methyl red chlorophenol blue bromothymol blue cresol red phenolphthalein (c) HNO2 with KOH thymol blue bromophenol blue methyl orange methyl red chlorophenol blue bromothymol blue cresol red phenolphthalein
An indicator usually signals the endpoint of a neutralization reaction by undergoing a color change. They aid in discovering the point of equivalence of a titration.
The kind of indicator used depends on the nature of acid/base reacted.
In the case of CH3NH2 with HBr which strong acid and weak base titration, suitable indicators include; bromophenol blue, methyl orange, methyl red, and chlorophenol blue.
In the case of HNO3 with NaOH, this is a strong acid, strong base titration hence phenolphthalein, methyl red, chlorophenol, and bromothymol blue cresol red blue are suitable indicators.
In the case of HNO2 with KOH, this a weak acid, strong base titration and the suitable indicators are cresol red and phenolphthalein.
For more information on titration see
https://brainly.com/question/22536636
What mass of oxygen is needed for the complete combustion of 1.60-10^-3
g
of methane?
Express your answer with the appropriate units.
Answer:
6.4×10¯³ g of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CH₄ + 2O₂ —> CO₂ + 2H₂O
Next, we shall determine the masses of CH₄ and O₂ that reacted from the balanced equation. This can be obtained as follow:
Molar mass of CH₄ = 12 + (4×1)
= 12 + 4
= 16 g/mol
Mass of CH₄ from the balanced equation = 1 × 16 = 16 g
Molar mass of O₂ = 2 × 16 = 32 g/mol
Mass of O₂ from the balanced equation = 2 × 32 = 64 g
SUMMARY:
From the balanced equation above,
16 g of CH₄ reacted with 64 g of O₂.
Finally, we shall determine the mass of O₂ needed to react with 1.6×10¯³ g of CH₄. This can be obtained as illustrated below:
From the balanced equation above,
16 g of CH₄ reacted with 64 g of O₂.
Therefore, 1.6×10¯³ g of CH₄ will react with = (1.6×10¯³ × 64) / 16 = 6.4×10¯³ g of O₂
Thus, 6.4×10¯³ g of O₂ is needed for the reaction.
Carbonic acid (H₂CO₃) is a polyprotic acid. When carbonic acid dissolves in water, which is higher, the concentration of HCO₃- ions or the concentration of CO₃²- ions?
Please explain!
The concentration of CO₃²⁻ ions will be higher
To explain, I want you to imagine H₂CO₃ in water.
we know that it will lose 2 of it's protons, and form 2 ions
The ion which is more stable will have a higher concentration because that ion will refuse to react with anything else, so once something turns into that specific ion, it's not going back... unless there's a more stabler ion possible
In this case, the 2 ions formed are: HCO₃⁻ and CO₃⁽²⁻⁾, drawing the structures of both the ions tells us that both of them have resonance, but the CO₃⁽²⁻⁾ ion has more resonance structures and hence is more stable
Name the following alkane molecule:
CH3
CH3CCH3
CH3
A. 2-ethylpropane
B. 2-dimethylpropane
C. 2,2-dimethylpropane
not 100% sure but I think its C
The correct name for the given alkane molecule is 2,2-dimethylpropane. (Option C)
The given alkane molecule is composed of three carbon atoms. The central carbon atom is bonded to two methyl groups (CH₃) on either side. This results in a branched structure where the methyl groups are attached to the same carbon atom.
According to the rules of IUPAC nomenclature, the prefix "2,2-" indicates that the methyl groups are attached to the second carbon atom in the main chain. The parent chain, which consists of three carbon atoms, is named propane. Since there are two identical methyl groups attached to the second carbon atom, the compound is named 2,2-dimethylpropane.
Hence, the name of the given alkane molecule is 2,2-dimethylpropane.
Learn more about IUPAC here:
https://brainly.com/question/16631447
#SPJ 6
Balance the following skeleton reaction and identify the oxidizing and reducing agents: Include the states of all reactants and products in your balanced equation. You do not need to include the states with the identities of the oxidizing and reducing agents.
NO_2(g) rightarrow NO_3^-(aq) +NO_2^- (aq) [basic]
The oxidizing agent is:______.
The reducing agent is:_______.
Answer:
a. 2NO₂ (g) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻ (aq) + H₂O (l)
b. i. NO₂⁻ is the oxidizing agent
ii. NO₃⁻ is the reducing agent.
Explanation:
a. Balance the following skeleton reaction
The reaction is
NO₂ (g) → NO₃⁻ (aq) + NO₂⁻ (aq)
The half reactions are
NO₂ (g) → NO₃⁻ (aq) (1) and
NO₂ (g) → NO₂⁻ (aq) (2)
We balance the number of oxygen atoms in equation(1) by adding one H₂O molecule to the left side.
So, NO₂ (g) + H₂O (l) → NO₃⁻ (aq)
We now add two hydrogen ions 2H⁺ on the right hand side to balance the number of hydrogen atoms
NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + 2H⁺ (aq)
The charge on the left hand side is zero while the total charge on the right hand side is -1 + 2 = +1. To balance the charge on both sides, we add one electron to the right hand side.
So, NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + 2H⁺ (aq) + e⁻ (4)
Since the number of atoms in equation two are balanced, we balance the charge since the charge on the left hand side is zero and that on the right hand side is -1. So, we add one electron to the left hand side.
So, NO₂ (g) + e⁻ → NO₂⁻ (aq) (5)
We now add equation (4) and (5)
So, NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + 2H⁺ (aq) + e⁻ (4)
+ NO₂ (g) + e⁻ → NO₂⁻ (aq) (5)
2NO₂ (g) + H₂O (l) + e⁻ → NO₃⁻ (aq) + NO₂⁻ (aq) + 2H⁺ (aq) + e⁻ (4)
2NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + NO₂⁻ (aq) + 2H⁺ (aq)
We now add two hydroxide ions to both sides of the equation.
So, 2NO₂ (g) + H₂O (l) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻ (aq) + 2H⁺ (aq) + 2OH⁻ (aq)
The hydrogen ion and the hydroxide ion become a water molecule
2NO₂ (g) + H₂O (l) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻ (aq) + 2H₂O (l)
2NO₂ (g) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻ (aq) + H₂O (l)
So, the required reaction is
2NO₂ (g) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻ (aq) + H₂O (l)
b. Identify the oxidizing agent and reducing agent
Since the oxidation number of oxygen in NO₂ is -2. Since the oxidation number of NO₂ is zero, we let x be the oxidation number of N.
So, x + 2 × (oxidation number of oxygen) = 0
x + 2(-2) = 0
x - 4 = 0
x = 4
Since the oxidation number of oxygen in NO₂⁻ is -1. Since the oxidation number of NO₂⁻ is -1, we let x be the oxidation number of N.
So, x + 2 × (oxidation number of oxygen) = 0
x + 2(-2) = -1
x - 4 = -1
x = 4 - 1
x = 3
Also, the oxidation number of oxygen in NO₃⁻ is -1. Since the oxidation number of NO₃⁻ is -1, we let x be the oxidation number of N.
So, x + 2 × (oxidation number of oxygen) = -1
x + 3(-2) = -1
x - 6 = -1
x = 6 - 1
x = 5
i. The oxidizing agent
The oxidation number of N changes from +4 in NO₂ to +3 in NO₂⁻. So, Nitrogen is reduced and thus NO₂⁻ is the oxidizing agent
ii. The reducing agent
The oxidation number of N changes from +4 in NO₂ to +5 in NO₃⁻. So, Nitrogen is oxidized and thus and NO₃⁻ is the reducing agent.
Which of the following is used in EBRT?
O Silver tube
O Gold tube
O Copper tube
O Iron tube
Copper tube is used in EBRT.
What is meant by EBRT?External Beam Radiation. Therapy (EBRT) is a type of radiation therapy that directs a beam of radiation from outside the body, toward cancerous tissues inside the body.External beam radiation therapy (EBRT) is the most common type of radiation therapy. It directs high-energy radiation beams at the cancer.Copper tube is used in EBRT.
To learn more about External Beam Radiation. Therapy (EBRT) refer:https://brainly.com/question/1889767
#SPJ2
how do we use the circle of fifths
Explanation:
in the terms of interval,thats a major sixth up or a minor third using the circle of fifths simply move three position clock wise around the to find the relative minor! so starting from C,count one( G),two( D)and then three:A is related to minor key.
Calculate the no. of moles in 15g of CaCl2
Answer:
[tex]\boxed {\boxed {\sf 0.14 \ mol \ CaCl_2}}[/tex]
Explanation:
We are asked to calculate the number of moles of 15 grams of calcium chloride (CaCl₂).
To convert from grams to moles, we use the molar mass, or the mass of 1 mole of a substance. Molar masses are found on the Periodic Table because they are equivalent to the atomic masses, but the units are grams per mole instead of atomic mass units.
Look up the individual elements in the compound: calcium and chloride.
Ca: 40.08 g/mol Cl: 35.45 g/molNotice the chemical formula has a subscript of 2 after Cl or chlorine. There are 2 moles of chlorine in every 1 mole of calcium chloride. We must multiply chlorine's molar mass by 2 before adding calcium's molar mass.
Cl₂: 35.45 * 2 = 70.9 g/mol CaCl₂= 40.08 + 70.9 = 110.98 g/molWe will convert using dimensional analysis, so we must create a ratio using the molar mass.
[tex]\frac {110.98 \ g \ CaCl_2}{ 1 \ mol \ CaCl_2}[/tex]
We are converting 15 grams of calcium chloride to moles, so we must multiply the ratio by this value.
[tex]15 \ g \ CaCl_2 *\frac {110.98 \ g \ CaCl_2}{ 1 \ mol \ CaCl_2}[/tex]
Flip the ratio so the units of grams of calcium chloride cancel.
[tex]15 \ g \ CaCl_2 *\frac { 1 \ mol \ CaCl_2}{110.98 \ g \ CaCl_2}[/tex]
[tex]15 *\frac { 1 \ mol \ CaCl_2}{110.98}[/tex]
[tex]\frac { 15}{110.98} \ mol \ CaCl_2[/tex]
[tex]0.1351594882\ mol \ CaCl_2[/tex]
The original measurement of grams (15) has 2 significant figures, so our answer must have the same. For the number we calculated, that is the hundredth place. The 5 in the thousandth place tells us to round the 3 up to a 4.
[tex]0.14 \ mol \ CaCl_2[/tex]
15 grams of calcium chloride is approximately 0.14 moles of calcium chloride.
During a reaction with solids generally the _______ the size of each piece, the larger the total surface area. This means _______ collisions and a greater chance of reaction.
A. smaller, more
B. larger, more
C. larger, less
D. smaller, less
Answer:
A
Explanation:
I'm assuming this question implies that the surface area is in relation to the volume of the pieces. In that case, the SMALLER the size of each piece, the larger the surface area. This is because more particles are able to fit into the container if they are smaller, leading to more surface area. Since more pieces can fit into the container, MORE collisions happen according to collision theory. I cannot add a link, but for a helpful analogy, look up "How To Speed Up Chemical Reactions (and get a date) - Aaron Sams.
Answer: A. smaller, more
Explanation: Founders Educere answer
a leaking tap drops water at the rate of 3 drops every second.each drop is approximately 1 ml. how many liters of water will leak from the tap during a day?
a. 5 liters
b. 50 liters
c.500 liters
d.15 liters
A leaking tap that drops water at the rate of 3 drops every second, will leak 259.2 L in a day.
We know that a leaking tap drops water at the rate of 3 drops every second and that each drop is approximately 1 ml. The milliliters of water dropped every second are:
[tex]\frac{3drop}{1s} \times \frac{1mL}{1drop} = \frac{3mL}{1s}[/tex]
We want to know the number of seconds in 1 day. We will use the following conversion factors:
1 day = 24 h1 h = 60 min1 min = 60 s[tex]1day \times \frac{24h}{1day} \times \frac{60min}{1h} \times \frac{60s}{1min} = 86400 s[/tex]
3 mL of water are dropped every second. The mL of water dropped in 86400 s are:
[tex]86400 s \times \frac{3mL}{1s} = 259200 mL[/tex]
Finally, we will convert mL to L using the conversion factor 1 L = 1000 mL.
[tex]259200 mL \times \frac{1L}{1000 mL} = 259.2 L[/tex]
Approximately 259.2 L of water will be dropped in 1 day.
You can learn more about unit conversions here: https://brainly.com/question/19420601
You find a clean 100-ml beaker, label it "#1", and place it on a tared electronic balance. You add small amount of unknown solid and place the
beaker with its contents on the balance. The recorded data is:
mass of the empty, clean beaker #1: 74.605 g
mass of the beaker #1 with the white solid: 74.896 g
Using the Law of Conservation of Mass, what is the mass of the unknown solid you placed in beaker #1?
Answer:
the mas is .291 g
Explanation:
the mass of a object does not change. so when added the substance the beaker. you had the mass of both objects together. you know the mass of the beaker and you know the mass of both. since mass does not change. the beakers mass is still 74.605g. the mass of both objects is 74.896. all you have to do is subtract the mass of the beaker from the total mass. 74.896 - 74.605 equals .291g. so the mass of the unknown substance Is .291g
How many chromosomes do we not understand?
Answer:
we don't understand why humans have only 46 chromosomes
Answer:
46 chromosomes is what we don't understand
the water in a glass does not contain any other substance.what kind of water is it
Answer:
natural mineral water.
In the reaction A + B + C + D, what are the reactants?
O A. Just B
B. Cand D
O c. A and B
O D. A and C
Answer:
C.
Explanation:
I believe that it should be A and B.
A alkaloid compound contains 74.02% C, 8.710% H and 17.27% N. The empirical formula of the compound is___.
If 40.57 grams of it contains 0.2500 moles, then it's molecular formula will be:______.
C₁₀H₁₄N₂ is the empirical formula of the compound whose mass is 40.57 present in 0.2500 moles.
What are alkaloid compounds?Alkaloid compounds are those naturally present organic compounds in which nitrogen is present.
First we calculate the molecular mass of wanted compound by using the below formula:
n = W/M, where
n = no. of moles = 0.2500 moles (given)
W = given mass = 40.57 grams (given)
M = molar mass = 40.57 grams/= 0.2500 moles = 162.28 g/mole
In the question, given that:
% composition of carbon = 74.02%
% composition of hydrogen = 8.710%
% composition of nitrogen = 17.27%
Now we calculate the mass of these composition by using the below formula:
Composition mass = compound mass * % composition / 100
Mass of carbon = 162.28 * 74.02 / 100 = 120.11g
Mass of hydrogen = 162.28 * 8.710 / 100 = 14.13g
Mass of nitrogen = 162.28 * 17.27 / 100 = 28.02g
Now we calculate the moles of these composition to made empirical formula as:
Moles of carbon = 120.11 / 12 = 10
Moles of hydrogen = 14.13 / 1 = 14
Moles of nitrogen = 28.02 / 14 = 2
Thus, the empirical formula of the compound is C₁₀H₁₄N₂.
To know more about empirical formula, visit the below link:
https://brainly.com/question/1603500
Question 9 of 10
Which statement correctly describes magnetic field lines?
O A. They cross each other at right angles.
B. They always point away from a south pole.
C. They show the direction a south pole will point.
D. They join north pole to south pole..
A chemist dissolves 14.0 g of calcium hydroxide in one beaker of water, and 17.0 g of iron(III) chloride
in a second beaker of water. Everything dissolves.
When the two solutions are poured together, solid iron(III) hydroxide precipitates.
1. Write a balanced molecular equation.
2. Determine the identity of the limiting reactant.
3. Predict the mass of iron(III) hydroxide product.
Answer:
See detailed explanation.
Explanation:
Hello there!
In this case, for the given scenario, we will proceed as follows:
1. Here, we infer that the products are iron (III) hydroxide (precipitate) and calcium chloride:
[tex]3Ca(OH)_2+2FeCl_3\rightarrow 3CaCl_2+2Fe(OH)_3[/tex]
2. In this step we firstly calculate the moles of both reactants, by using their molar masses 74.093 and 162.2 g/mol respectively:
[tex]14.0gCa(OH)_2*\frac{1molCa(OH)_2}{74.093gCa(OH)_2}=0.189molCa(OH)_2 \\\\17.0gFeCl_3*\frac{1molFeCl_3}{162.2gFeCl_3}=0.105molFeCl_3[/tex]
Now, we calculate the moles of calcium hydroxide consumed by 0.105 moles of iron (III) chloride by using the 3:2 mole ratio between them:
[tex]0.105molFeCl_3*\frac{3molCa(OH)_2}{2molFeCl_3} =0.157molCa(OH)_2[/tex]
Thus, we infer that calcium hydroxide is in excess as 0.189 moles are available for it but just 0.157 moles react and therefore, iron (III) chloride is the limiting reactant.
3. Here, we use the moles of iron (III) chloride we've just computed, the 2:2 mole ratio with iron (III) hydroxide and its molar mass (106.867 g/mol) as shown below:
[tex]0.105molFeCl_3*\frac{2molFe(OH)_3}{2molFeCl_3} *\frac{106.867gFe(OH)_3}{1molFe(OH)_3} \\\\=11.2gFe(OH)_3[/tex]
Regards!
All of the following statements concerning real cases is correct EXCEPT Group of answer choices molecules of real gases are attracted to each other. molecules of real gases occupy no volume. nonideal gas behavior is described by the Van der Waals Equation. the pressure of a real gas is due to collisions with the container. the pressure of a real gas at low temperatures is lower than for ideal gases.
Answer:
molecules of real gases occupy no volume.
Explanation:
As all the real gases are composed of particles that occupy the non-zero volume that is the excluded volume. If the gas is behaving in an ideal manner. The correction becomes negatable and is relative to the total volume. The extended volume is volume that is taken by the non ideal gas particles.World leaders met in Copenhagen, Denmark in December 2009, to try to come up with an agreement that
would lead to reducing greenhouse gas emissions. They agreed that we need to reduce carbon dioxide
emissions 80% by the year 2050. How does Lester Brown feel about that?
Select one:
O a. He thinks it is a great achievement.
b. He thinks it is not fast enough
O c. He thinks that we do not need international cooperation
d. He thinks that greenhouse gas emissions are not the most important factor.
Clear my choice
Lester Brown thinks reducing carbon dioxide emissions 80% by 2050 is not fast enough.
Lester Brown is an American environmentalist who has focused on studying the environment and its protection. In recent years, he has made alerts for world leaders and large industries to strive to stop CO2 emissions because this greenhouse gas has a massive influence on global warming.
Therefore, Lester Brown considers that the projections of reduction of greenhouse gases (especially CO2) made by the world powers for the year 2050, ignore the reality because he considers that CO2 emissions must decrease by at least one 80% in 2020 to avoid drastic consequences in current living conditions. Therefore, the answer is B.
Learn more in: https://brainly.com/question/1577730?referrer=searchResults
Based on the reaction below:
[tex]N_2 + 3H_2[/tex] ↔ [tex]2NH_3 + heat[/tex]
If we decrease the temperature, equilibrium will shift towards the...
Please explain!
N₂ + 3H₂ ⇄ 2NH₃ + heat
In the given equilibrium, we notice that the heat is on the right. which means that if the heat requirements don't meet, the reactants on the right will no longer react due to the lack of heat
but because the reactants on the left don't have such weaknesses, they will keep reacting hence producing more and more ammonia until a new equilibrium is reached
where there will be more ammonia and less nitrogen and hydrogen as compared to the equilibrium we had initially
Answer:
Explanation:
heat is given out as 1 of the products, along w/ NH3 in the forward reaction. so its an exothermic reaction
decreasing temperature favors exothermic reaction as more heat can be absorbed by the environment
so equilibrium will shift towards the products
Which of the following chemical reactions is reversible?
A. The neutralization of an acid.
B. The burning of wood.
C. The freezing of water into ice
D. The dehydration of copper sulfate (CuSO4).
The freezing of water into ice and the dehydration of copper sulfate are both reversible. The correct options are C and D.
What are reversible reactions?They are reactions in which the reverse can occur.
The freezing of water into ice can be undone. That is, the ice can be thawed back to water.
The dehydration of copper sulfate involves the removal of water molecules. As soon as water becomes available again, the reaction is reversed.
More on reversible reactions can be found here: https://brainly.com/question/16614705
#SPJ1
what surface phenomenon s
The special properties of surface layers, that is, the thin layers of a substance at the boundary of contiguous bodies, mediums, or phases. These properties result from the excess free energy of the surface layer and from the special features of the layer's structure and composition.
HOPE IT'S HELPFUL FOR U MATE...
Nitric acid and nitrogen monoxide react to form nitrogen dioxide and water, like this: At a certain temperature, a chemist finds that a 7.7 L reaction vessel containing a mixture of nitric acid, nitrogen monoxide, nitrogen dioxide, and water at equilibrium has the following composition: compound amount
HNO 16.2 g 11.0 g 18.6 g H20 236.7 g 3 NO NO
Calculate the value of the equilibrium constant K for this reaction. Round your answer to 2 significant digits.
Answer:
K = 3.3
Explanation:
Nitric acid, HNO3, reacts with nitrogen monoxide, NO, to produce nitrogen dioxide, NO2 and water H2O as follows:
2HNO3(g) + NO(g) → 3NO2(g) + H2O(g)
Where equilibrium constant, K, is:
K = [NO2]³[H2O] / [HNO3]²[NO]
[] is the molar concentration of each species at equilibrium.
To solve this question we need to find molarity of each gas and replace these in the equation as follows:
[NO2] -Molar mass NO2-46.0g/mol-
18.6g * (1mol/46.0g) = 0.404mol / 7.7L = 0.0525M
[H2O] -Molar mass:18.01g/mol-
236.7g * (1mol/18.01g) = 13.14 moles / 7.7L = 1.707M
[HNO3] -Molar mass:53.01g/mol-
16.2g * (1mol/53.01g) = 0.3056 moles / 7.7L = 0.0397M
[NO] -Molar mass: 30.0g/mol-
11.0g * (1mol/30.0g) = 0.367 moles / 7.7L = 0.0476M
Replacing:
K = [NO2]³[H2O] / [HNO3]²[NO]
K = [0.0525M]³[1.707M] / [0.0397M]²[0.0476M]
K = 3.3
Question 1 of 10
What is the correct orientation of the bar magnet, based on the magnetic field
lines shown?
A. North pole on the left end and south pole on the right end
B. South pole on the top edge and north pole on the bottom edge.
C. South pole on the left end and north pole on the right end
D. North pole on the top edge and south pole on the bottom edge
Answer:
d. north pole on the top edge and south pole on the bottom edge
Explanation: