Answer:
H(s) = 20 / [ 1 + s / 10^5 ]^2
Explanation:
Given data:
cutoff frequency = 100 kHz
stopband attenuation rate = 40 dB/decade
nominal passband gain = 20 dB
new nominal passband gain at cutoff = 14 dB
Represent the transfer function H(s)
The attenuation rate show that there are two(2) poles
H(s) = k / [ 1 + s/Wc ]^2 ----- ( 1 )
where : Wc = 100 kHz = 10^5 Hz , K = 20 log k = 20 dB ∴ k = 20
Input values into equation 1
H(s) = 20 / [ 1 + s / 10^5 ]^2
A flow inside a centrifuge can be approximated by a combination of a central cylinder and a radial line source flow, giving the following potential function:
Ø= a2/r -cosØ + aßlnr = r
Where a is the radius of the central base of the centrifuge and ß is a constant.
a) Provide expressions for the velocities Vr and vo .
b) Find the expression for the stream function.
Answer:
a) Vr = - a^2/r cosθ + aß / r
Vθ = 1/r [ -a^2/r * sinθ ]
b) attached below
Explanation:
potential function
Ø= a^2 /r cosØ + aßlnr ----- ( 1 )
a = radius , ß = constant
a) Expressions for Vr and Vθ
Vr = dØ / dr ----- ( 2 )
hence expression : Vr = - a^2/r cosθ + aß / r
Vθ = 1/r dØ / dθ ------ ( 3 )
back to equation 1
dØ / dr = - a^2/r sinθ + 0 --- ( 4 )
Resolving equations 3 and 4
Vθ = 1/r [ -a^2/r * sinθ ]
b) expression for stream function
attached below
An ideal neon sign transformer provides 9130 V at 51.0 mA with an input voltage of 240 V. Calculate the transformer's input power and current.
Answer:
Input power = 465.63 W
current = 1.94 A
Explanation:
we have the following data to answer this question
V = 9130
i = 0.051
the input power = VI
I = 51.0 mA = 0.051
= 9130 * 0.051
= 465.63 watts
the current = 465.63/240
= 1.94A
therefore the input power is 465.63 wwatts
while the current is 1.94A
the input power is the same thing as the output power.
Do you know who Candice is
Answer: Can these nuts fit in your mouth?
Explanation:
im just here for the points >:)
Draw a sinusoidal signal and illustrate how quantization and sampling is handled by
using relevant grids.