Answer:
0.9995
Step-by-step explanation:
10% = 0.10
1 - 0.10 = 0.9
n = number of light bulbs = 7
we calculate this using binomial distribution.
p(x) = nCx × p^x(1-p)^n-x
our question says at most 4 is defective
= (7C0 × 0.1⁰ × 0.9⁷) + (7C1 × 0.1¹ × 0.9⁶) + (7C2 × 0.1² × 0.9⁵) + (7C3 × 0.1³ × 0.9⁴) + (7C4 × 0.1⁴ × 0.9³)
= 0.478 + 0.372 + 0.1239 + 0.023 + 0.0026
= 0.9995
we have 0.9995 probability that at most 4 light bulbs are defective.
I have a circle that has a radius of 8 in. What is the circumference of the circle? What is the area of the circle? ( use 3.14 for pi).Explain your steps. Please Give A clear explanation The best answer gets brainliest.
Answer:
The circumference is 50.24 in. and the area is 200.96 in².
Step-by-step explanation:
The circumference formula is C = 2πr where C = Circumference, π = pi and r = radius. We know that r = 8 and π = 3.14 and that we're solving for C, so we can substitute those values into the equation to get C = 2 * 3.14 * 8 = 50.24 in.
The area formula is A = πr² where A = Area, π = pi and r = radius. Again, we're solving for A and we know that r = 8 and π = 3.14 so A = 3.14 * 8² = 3.14 * 64 = 200.96 in².
Answer:
The circumference is 50.24 in. and the area is 200.96 in².
Step-by-step explanation:
MARK SNOG AS BRAINLIEST
An escalator moves at the rate of 2 feet per second. At what rate does the escalator move in miles per hour? 5280 feet=1 mile
Answer:
7200ft/per Hour divide it by mile ( 5280) makes 1.363 so maybe 1.4 Miles
Step-by-step explanation:
Work Shown:
1 mile = 5280 feet
1 hour = 3600 seconds (since 60*60 = 3600)
[tex]2 \text{ ft per sec} = \frac{2 \text{ ft}}{1 \text{ sec}}\\\\2 \text{ ft per sec} = \frac{2 \text{ ft}}{1 \text{ sec}}*\frac{1 \text{ mi}}{5280 \text{ ft}}*\frac{3600 \text{ sec}}{1 \text{ hr}}\\\\2 \text{ ft per sec} = \frac{2*1*3600}{1*5280*1} \text{ mph}\\\\2 \text{ ft per sec} = \frac{7200}{5280} \text{ mph}\\\\2 \text{ ft per sec} \approx 1.363636 \text{ mph}\\\\[/tex]
The result is approximate and the "36" portion repeats forever.
A dice is rolled twice. What is the probability of rolling a 3 followed by a 2?
The two rolls of the number cube are independent events because
the result of 1 roll does not affect the result of the other roll.
To find the probability of two independent events, we first find
the probability of each event, then we multiply the probabilities.
We can find the probability of an event using the following ratio:
number of favorable outcomes/total number of outcomes
Since there is only one way to roll a 3 and there are six
possible outcomes, 1, 2, 3, 4, 5, and 6, the probability of rolling a 3 is 1/6.
Since there is also only one way to roll a 2 and there are
six possible outcomes, the probability of rolling a 2 would be 1/6.
Now we multiply the probabilities.
1/6 x 1/6 is 1/36.
So the probability of rolling a 3 and a 2 is 1/36.
Answer:
1/36
Step-by-step explanation:
Probability of rolling 3 in a dice = 1/6.
Probability of rolling 2 = 1/6
Since, 2 should be followed after 3; we multiply 1/6 and 1/6
1/6 x 1/6 = 1/36.
Which of the following is not a real number?
Answer:
im pretty sure its the -3 one
Step-by-step explanation:
Answer:
The answer is A, Square root of -3 is not a real number.
Step-by-step explanation: You can take the square root of positive numbers, so we can eliminate choices C and D. We can take the square root of 0, which would equal 0, so B is incorrect. However, We cannot take the square root of negative numbers, so choice A is the answer for this question.
A manufacturing company regularly conducts quality control checks at specified periods on the products it manufactures. Historically, the failure rate for LED light bulbs that the company manufactures is 3%. Suppose a random sample of 10 LED light bulbs is selected. What is the probability that
Answer:
The probability that none of the LED light bulbs are defective is 0.7374.
Step-by-step explanation:
The complete question is:
What is the probability that none of the LED light bulbs are defective?
Solution:
Let the random variable X represent the number of defective LED light bulbs.
The probability of a LED light bulb being defective is, P (X) = p = 0.03.
A random sample of n = 10 LED light bulbs is selected.
The event of a specific LED light bulb being defective is independent of the other bulbs.
The random variable X thus follows a Binomial distribution with parameters n = 10 and p = 0.03.
The probability mass function of X is:
[tex]P(X=x)={10\choose x}(0.03)^{x}(1-0.03)^{10-x};\ x=0,1,2,3...[/tex]
Compute the probability that none of the LED light bulbs are defective as follows:
[tex]P(X=0)={10\choose 0}(0.03)^{0}(1-0.03)^{10-0}[/tex]
[tex]=1\times 1\times 0.737424\\=0.737424\\\approx 0.7374[/tex]
Thus, the probability that none of the LED light bulbs are defective is 0.7374.
The lines below are parallel. If the slope of the green line is -4, what is the slope of the red line?
Answer:
-4
Step-by-step explanation:
Hey there!
Well the slopes of 2 parallel lines have the same slope,
meaning if the green line has a slope of -4 then the slope of the red line has a slope of -4.
Hope this helps :)
What is the value of (–7 + 3i) + (2 – 6i)?
a. –9 – 3i
b. –9 + 9i
c. –5 + 9i
d. –5 – 3i
Answer:
d
Step-by-step explanation:
(-7 + 3i) + (2-6i)
=-7 + 3i + 2 -6i
=(-7+2) + (3i -6i)
=-5 -3i
Answer:
(-7+3I)+(2-6I)
= -7+3i+2-6i
= -5-3I
so answer is d ie -5-3i
Identify the equivalent expressions of 4(2x + x-3) - 3x + 3 by substituting x = 2 and x = 3.
9x - 9
9x - 1
9x + X-9
9(x - 1)
4(3x - 3) + 3 - 3x
Answer:
9x -9
9(x - 1)
4(3x-3) - 3x + 3
Step-by-step explanation:
4(2x + x-3) - 3x + 3
Combine like terms
4(3x-3) - 3x + 3
Distribute
12x -12 -3x+3
Combine like terms
9x -9
Factor out 9
9(x-1)
Answer:
9
18
Step-by-step explanation:
x = 2:
4(4 + 2 - 3) - 6 + 3 = 12 - 6 + 3 = 9
x = 3:
4(6 + 3 - 3) - 9 + 3 = 24 - 9 + 3 = 18
find the slope of the line that passes through the two points (0,1) and (-8, -7)
Answer:
The slope of the line is 1Step-by-step explanation:
The slope of a line is found by using the formula
[tex]m = \frac{y2 - y1}{x2 - x1} [/tex]
where
m is the slope and
(x1 , y1) and ( x2 , y2) are the points
Substituting the above values into the above formula we have
Slope of the line that passes through
(0,1) and (-8, -7) is
[tex]m = \frac{ - 7 - 1}{ - 8 - 0} = \frac{ - 8}{ - 8} = 1[/tex]
The slope of the line is 1Hope this helps you
10-
What is the equation of the line that is perpendicular to
the given line and passes through the point (2, 6)?
8-
(2,6)
-6
O x = 2
4
O x = 6
-2
-10 -3 -6 -22
2
4
B
8
10
X
O y = 2
O y = 6
(-34)
(814)
8
WO
Answer:
x = 2
Step-by-step explanation:
This blue line seems to be horizontal, and so a line perpendicular would have to be vertical. The only vertical line that passes through (2, 6) would be x = 2.
The equation of the line perpendicular to the given line and passes through the point (2, 6) is x = 2.
What is the Equation of line in Slope Intercept form?Equation of a line in slope intercept form is y = mx + b, where m is the slope of the line and b is the y intercept, which is the y coordinate of the point where it touches the Y axis.
Given is a line that passes through the points (-8, -4) and (8, -4).
This line is parallel to the X axis.
A line parallel to X axis has the equation y = b.
The y coordinate is -4 throughout the line.
So equation of the line is y = -4.
A line perpendicular to the given line will be parallel to Y axis.
Parallel lines to Y axis has the equation of the form x = a.
Line passes through the point (2, 6).
x coordinate will be 2 throughout.
So the equation of the perpendicular line is x = 2.
Hence the required equation is x = 2.
Learn more about Equations of Lines here :
https://brainly.com/question/21511618
#SPJ7
Can someone help? This hard
Answer:
The expression = [tex] \frac{40}{y - 16} [/tex]
Value of the expression = 4 (when y is 20)
Step-by-step explanation:
Quotient simply means the result you get when you divide two numbers. Thus, dividend (the numerator) ÷ divisor (the denominator) = quotient.
From the information given to us here,
the dividend = 40
the divisor = y - 16
The quotient = [tex] \frac{40}{y - 16} [/tex]
There, the expression would be [tex] \frac{40}{y - 16} [/tex]
Find the value of the expression when y = 20.
Plug in 20 for y in the expression and evaluate.
[tex] \frac{40}{y - 16} [/tex]
[tex] = \frac{40}{20 - 16} [/tex]
[tex] = \frac{40}{4} = 10 [/tex]
The value of the expression, when y is 20, is 4.
In the morning, Sophie goes to the church then goes to the school. In the afternoon she goes to school to home. The map shows the distance between school and home as 5 cm. If every 4 cm on the scale drawing equals 8 kilometers, how far apart are the school and home?
Answer:
10 km
Step-by-step explanation:
Distance = 5 cm
4 cm = 8 km
In km, how far apart is school and home?
Cross Multiply
[tex]\frac{4cm}{8km}[/tex] · [tex]\frac{5cm}{1}[/tex]
Cancel centimeters
[tex]\frac{40(km)(cm)}{4cm}[/tex]
Divide
= [tex]\frac{40km}{4}[/tex]
= 10 km
I dont understand this please help Which expression represents the area of the shaded region
Answer:
I'm gonna say C
prove that if f is a continuous and positive function on [0,1], there exists δ > 0 such that f(x) > δ for any x E [0,1] g
Answer:
I dont Know
Step-by-step explanation:
Use A = -h(a + b) to find the area A of a
2
be trapezium when a = 15, b = 9 and h = 7
Step-by-step explanation:
Putting values
A = - 7(15 + 9)
A = - 7(24)
A = - 168
Jessica is at a charity fundraiser and has a chance of receiving a gift. The odds in favor of receiving a gift are 5/12. Find the probability of Jessica receiving a gift.
Answer:
5/17
Step-by-step explanation:
This is a question to calculate probability from odds. The formula is given as:
A formula for calculating probability from odds is P = Odds / (Odds + 1)
From the question , we are told that the odds of receiving a gift is
= 5:12
The probability of Jessica receiving a gift =
Probability = Odds / (Odds + 1)
P = 5/12 / ( 5/12 + 1)
P = (5/12)/ (17/12)
P = 5/12 × 12/17
= 5/17
Therefore, the probability of Jessica. receiving a gift is 5/17.
Help me please thank you
Answer:
x = 7
Step-by-step explanation:
The angles are alternate interior angles, so for the lines to be parallel, the angle measures must be equal.
7x - 7 = 4x + 14
3x = 21
x = 7
#1: Simplify the expression below. Type your answer as an integer.
7 + 1 - 18 : 6
Answer:
5
Step-by-step explanation:
Steps of calculation:
7 + 1 - 18 : 6 = 7 + 1 - 3 = 8 - 3 =5Answer is 5
Multiple Choice The opposite of –4 is A. 4. B. –4. C. –(–(–4)). D. –|4|.
Answer:
a. 4
Step-by-step explanation:
-1(-4) = 4
Answer:
A 4
Step-by-step explanation:
opposite of –4 = 4
Can I have somebody answer a few more of the questions that I need please and this one too?
Answer:
x > 22
Step-by-step explanation:
Hey there!
Well to solve,
52 - 3x < -14
we need to single out x
52 - 3x < -14
-52 to both sides
-3x < -66
Divide both sides by -3
x > 22
The < changes to > because the variable number is a - being divided.
Hope this helps :)
Answer:
x > 22
Step-by-step explanation:
First, rearrange the equation
52 - 3 × x - (-14) < 0Then, pull out the like terms:
66 - 3xNext, apply algebra to the equation by dividing each side by -3. It should now look like this: x > 22.
Therefore, the solution set of the inequality would be x > 22.
In a local university, 10% of the students live in the dormitories. A random sample of 100 students is selected for a particular study. Carry answer to the nearest ten-thousandths. (Bonus Question)
a. What is the probability that the sample proportion (the proportion living in the dormitories) is between 0.172 and 0.178?
b. What is the probability that the sample proportion (the proportion living in the dormitories) is greater than 0.025?
Answer:
a
[tex]P( 0.172 < X < 0.178 ) = 0.00354[/tex]
b
[tex]P( X >0.025 ) = 0.99379[/tex]
Step-by-step explanation:
From the question we are told that
The population proportion is [tex]p = 0.10[/tex]
The sample size is [tex]n = 100[/tex]
Generally the standard error is mathematically represented as
[tex]SE = \sqrt{\frac{ p (1 - p )}{n} }[/tex]
=> [tex]SE = \sqrt{\frac{ 0.10 (1 - 0.10 )}{100} }[/tex]
=> [tex]SE =0.03[/tex]
The sample proportion (the proportion living in the dormitories) is between 0.172 and 0.178
[tex]P( 0.172 < X < 0.178 ) = P (\frac{ 0.172 - 0.10}{0.03} < \frac{ X - 0.10}{SE} < \frac{ 0.178 - 0.10}{0.03} )[/tex]
Generally [tex]\frac{ X - 0.10}{SE} = Z (The \ standardized \ value \ of X )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P (\frac{ 0.172 - 0.10}{0.03} <Z < \frac{ 0.178 - 0.10}{0.03} )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P (2.4 <Z < 2.6 )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P(Z < 2.6 ) - P (Z < 2.4 )[/tex]
From the z-table
[tex]P(Z < 2.6 ) = 0.99534[/tex]
[tex]P(Z < 2.4 ) = 0.9918[/tex]
[tex]P( 0.172 < X < 0.178 ) =0.99534 - 0.9918[/tex]
[tex]P( 0.172 < X < 0.178 ) = 0.00354[/tex]
the probability that the sample proportion (the proportion living in the dormitories) is greater than 0.025 is mathematically evaluated as
[tex]P( X >0.025 ) = P (\frac{ X - 0.10}{SE} > \frac{ 0.0025- 0.10}{0.03} )[/tex]
[tex]P( X >0.025 ) = P (Z > -2.5 )[/tex]
From the z-table
[tex]P (Z > -2.5 ) = 0.99379[/tex]
Thus
[tex]P( X >0.025 ) = P (Z > -2.5 ) = 0.99379[/tex]
A bag contains 12 blue marbles, 5 red marbles, and 3 green marbles. Jonas selects a marble and then returns it to the bag before selecting a marble again. If Jonas selects a blue marble 4 out of 20 times, what is the experimental probability that the next marble he selects will be blue? A. .02% B. 2% C. 20% D. 200% Please show ALL work! <3
Answer:
20 %
Step-by-step explanation:
The experimental probability is 4/20 = 1/5 = .2 = 20 %
PLEASE HELP!! (1/5) -50 POINTS-
Answer:
[tex]X=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]
Step-by-step explanation:
We are given the following matrix equation, from which we have to isolate X and simplify this value.
[tex]\begin{bmatrix}2&4\\ \:\:\:5&4\end{bmatrix}X\:+\:\begin{bmatrix}-8&-8\\ \:\:\:12&1\end{bmatrix}=\:\begin{bmatrix}-10&6\\ \:\:\:25&24\end{bmatrix}[/tex]
To isolate X, let us first subtract the second matrix, as demonstrated below, from either side. Further simplifying this equation we can multiply either side by the inverse of the matrix being the co - efficient of X, isolating it in the doing.
[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}[/tex] (Simplify second side of equation)
[tex]\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}=\begin{bmatrix}\left(-10\right)-\left(-8\right)&6-\left(-8\right)\\ 25-12&24-1\end{bmatrix}=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] ,
[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] (Multiply either side by inverse of matrix 1)
[tex]X=\begin{bmatrix}2&4\\ 5&4\end{bmatrix}^{-1}\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]
Our solution is hence option c
If a person earns $8.74 per hour, estimate how much the person would earn per year. Assume a person works 40 hours per week and 50 weeks per year.
Answer:
$17,480 per year.
Step-by-step explanation:
Amount earned per hour = $8.74
If a person works for 40 hours every week for 50 weeks in a year, number of hours worked in a year = [tex] 40hrs*50weeks = 2000 hrs [/tex]
Estimated amount earned per year by the person = [tex] 2000hrs * 8.74 dollars [/tex]
= $17,480 per year.
Justin is married with one child. He works 40 hours each week at a rate of $16 per hour. His wife began working part time
after their daughter was born, but still contributes about $350 to the cash inflow each month. Their monthly cash outflow
is generally about $3,000. They have a balance of $2,000 in their savings account. Justin has retirement contributions
taken out of his paycheck at work. They have renter's, car and life insurance coverage.
Based on this information, what part of their financial plan should Justin and his wife work on?
managing income
b. managing liquidity
c. protecting assets
d. retirement
a.
Please select the best answer from the choices provided
Answer:
THe answer is A
Step-by-step explanation:
A box contain 12 balls in which 4 are white 3 are blue and 5 are red.3 balls are drawn at random from the box.find the chance that all three are selected
Answer:
3/11
Step-by-step explanation:
In the above question, we have the following information
Total number of balls = 12
White balls = 4
Blue balls = 3
Red balls = 5
We are to find the chance of probability that if we select 3 balls, all the three are selected.
Hence,
Probability ( all the three balls are selected) = P(White ball) × P(Blue ball) × P( Red ball)
Probability ( all the three balls are selected) = 4/12 × 3/11 × 5/10
= 60/1320
= 1/22
The number of ways by which we can selected all the three balls is a total of 6 ways:
WBR = White, Blue, Red
WRB = White, Red, Blue
RBW = Red, Blue, White
RWB = Red, White, Blue
BRW = Blue, Red, White
BWR = Blue, White, Red
Therefore, the chance that all three are selected :
1/22 × 6 ways = 6/22 = 3/11
Calculate how many different sequences can be formed that use the letters of the given word. Leave your answer as a product of terms of the form C(n, r). HINT [Decide where, for example, all the s's will go, rather than what will go in each position.]
georgianna
A) C(10, 7)
B) C(2, 10)C(1, 8)C(1, 7)C(1, 6)C(1, 5)C(2, 4)C(2, 2)
C) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 1)C(3, 1)C(2, 1)C(1, 1)
D) 10 · C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Answer: E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Step-by-step explanation:
According to the combinations: Number of ways to choose r things out of n things = C(n,r)
Given word: "georgianna"
It is a sequence of 10 letters with 2 a's , 2 g's , 2 n's , and one of each e, o,r, i.
If we think 10 blank spaces, then in a sequence we need 2 spaces for each of g.
Number of ways = C(10,2)
Similarly,
1 space for 'e' → C(8,1)
1 space for 'o' → C(7,1)
1 space for 'r' → C(6,1)
1 space for 'i' → C(5,1)
1 space for 'a' → C(4,2)
1 space for 'n' → C(2,2)
Required number of different sequences = C(10,2) ×C(8,1)× C(7,1)× C(6,1)×C(5,1)×C(2,2).
Hence, the correct option is E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
sorry to keep asking questions
Answer:
y = [tex]\sqrt[3]{x-5}[/tex]
Step-by-step explanation:
To find the inverse of any function you basically switch x and y.
function = y = x^3 + 5
Now we switch x and y
x = y^3 +5
Solve for y,
x - 5 = y^3
switch sides,
y^3 = x-5
y = [tex]\sqrt[3]{x-5}[/tex]
Answer:
[tex]\Large \boxed{{f^{-1}(x)=\sqrt[3]{x-5}}}[/tex]
Step-by-step explanation:
The function is given,
[tex]f(x)=x^3 +5[/tex]
The inverse of a function reverses the original function.
Replace f(x) with y.
[tex]y=x^3 +5[/tex]
Switch variables.
[tex]x=y^3 +5[/tex]
Solve for y to find the inverse.
Subtract 5 from both sides.
[tex]x-5=y^3[/tex]
Take the cube root of both sides.
[tex]\sqrt[3]{x-5} =y[/tex]
32 to 34 Directions: Given the following set of
numbers find the mean, median, and mode.
12, 13, 15, 15, 16, 19, 19, 19, 20, 21, 25
39.
32. Mean =
a. 17.64
b. 19
c. 15
40. 1
33. Median
a. 17.64
b. 19
c. 15
Answer:
32. A
33. B
Step-by-step explanation:
32. Mean: In order to find the mean, add all of the #up which is 194 then divide by how many # there is
33. Start by crossing out the beginning # and the end # all the way till you get the # without another pair in the end
Find the union and interesection of each of the following A={3,6,9,12}, B ={6,8,9}
Answer:
Hello,
The answer would be,
A union B = {3,6,9,12}
and A intersection B= {6,9}
Answer:
[tex]\huge\boxed{ A\ union \ B = \{3,6,8,9,12\}}[/tex]
[tex]\huge\boxed{A\ intersection \ B = \{6,9\}}[/tex]
Step-by-step explanation:
A = {3,6,9,12}
B = {6,8,9}
A∪B = {3,6,9,12} ∪ { 6,8,9} [Union means all of the elements should be included in the set of A∪B]
=> A∪B = {3,6,8,9,12}
Now,
A∩B = {3,6,9,12} ∩ {6,8,9} [Intersection means common elements of the set]
=> A∩B = {6,9}