Answer:
The author have to use his/her phone less than 20 hours in a month in order for Don’tTalkMuch's is a deal to be better than TalkLots's is.
Step-by-step explanation:
Call X is the number of hours that the author uses on monthly basis.
Total bill value if the author uses Don’tTalkMuch service is $80 + $1 X.
Total bill value if the author uses TalkLots service is $20 + $4X
The total fees between 2 providers equal as:
$80 + $1 X = $20 + $4X => 3X = $60 => X = 20
Hence: The author have to use his/her phone less than 20 hours in a month in order for Don’tTalkMuch's is a deal to be better than TalkLots's is.
1. (a) Find the probability that a 90% free-throw shooter makes 10 consecutive free-throws, assuming that individual shots are independent.
Answer:
[tex]Probability = 0.35[/tex]
Step-by-step explanation:
Given
Probability of success free throw = 90%
Number of throw = 10
Required
Determine the probability of 10 consecutive free throws
Let p represents the given probability
[tex]p = 90\%[/tex]
Convert to decimal
[tex]p = 0.9[/tex]
Let n represents the number of throw
[tex]n = 10[/tex]
Provided that each throw is independent;
The probability of n consecutive free throw is
[tex]p^n[/tex]
Substitute 0.9 for p and 10 for n
[tex]Probability = 0.9^{10}[/tex]
[tex]Probability = 0.3486784401[/tex]
[tex]Probability = 0.35[/tex] (Approximated)
What will be the effect on the graph of y = Ixl if x is replaced with -x?
Answer:
If x is replaced with -x the graph will stay the same because the absolute value makes 2 values so a negative number and a positive one.
Step-by-step explanation:
Go search it up on desmos.
In the last 10 years, the population of Indonesia has grown at a rate of 1.12% per year to 258,316,051. If this rate continues, what will be the population in 10 more years? Round your answer to the nearest whole number.
Answer:
Final population after 10 years
= 288911718
Step-by-step explanation:
Present population p = 258,316,051
Rate of growth R%= 1.12%
Number of years t= 10 years
Number of times calculated n = 10
Final population A
= P(1+r/n)^(nt)
A= 258,316,051(1+0.0112/10)^(10*10)
A= 258,316,051(1+0.00112)^(100)
A= 258,316,051(1.00112)^100
A= 258,316,051(1.118442762)
A= 288911717.6
Approximately A= 288911718
Final population after 10 years
= 288911718
Simplify using calculator.. I'm not sure if i am putting it in the calculator right
You would type in
32^(6/5)
Or you could type in
32^(1.2)
since 6/5 = 1.2
Either way, the final result is 64
Suppose that the function g is defined, for all real numbers, as follows.
find g(-5) g(1) g(4)
=================================================
Explanation:
The piecewise function shows that we have two cases. Either x = 1 or [tex]x \ne 1[/tex].
If x = 1, then g(x) = 3 as shown in the bottom row. This is why g(1) = 3.
If [tex]x \ne 1[/tex], then g(x) = (1/4)x^2-4
Plug x = -5 into this second definition
g(x) = (1/4)x^2-4
g(-5) = (1/4)(-5)^2-4
g(-5) = (1/4)(25)-4
g(-5) = 25/4 - 4
g(-5) = 25/4 - 16/4
g(-5) = 9/4
Repeat for x = 4
g(x) = (1/4)x^2-4
g(4) = (1/4)(4)^2-4
g(4) = (1/4)(16)-4
g(4) = 4-4
g(4) = 0
The value of the function at x = -5, x = 1, and x = 4 will be 2.25, 3, and 0, respectively.
What is a function?A function is an assertion, concept, or principle that establishes an association between two variables. Functions may be found throughout mathematics and are essential for the development of significant links.
The functions are given below.
g(x) = (1/4)x² - 4, x ≠ 1
g(x) = 3, x = 1
The value of the function at x = -5 will be given as,
g(-5) = (1/4)(-5)² - 4
g(-5) = 25 / 4 - 4
g(-5) = 6.25 - 4
g(-5) = 2.25
The value of the function at x = 4 will be given as,
g(4) = (1/4)(4)² - 4
g(4) = 16 / 4 - 4
g(4) = 4 - 4
g(4) = 0
The value of the function at x = 1 will be given as,
g(1) = 3
The value of the function at x = -5, x = 1, and x = 4 will be 2.25, 3, and 0, respectively.
More about the function link is given below.
https://brainly.com/question/5245372
#SPJ5
HELP ASAP ROCKY!!! will get branliest.
Answer:
y = 8x + 70
Step-by-step explanation:
Start with the third line.
x = 3, y = 94
Subtract 1 from x and 8 from y:
x = 2, y = 86; this is the second line
Subtract 1 from x and 8 from y:
x = 1, y = 78; this is the first line
Subtract 1 from x and 8 from y:
x = 0; y = 70
For selling 0 games, she earns $70.
y = mx + b
y = mx + 70
For each game she sells, her commission is $8.
y = 8x + 70
If f(x)=ax+b/x and f(1)=1 and f(2)=5, what is the value of A and B?
Answer:
[tex]\huge\boxed{a=9 ; b = -8}[/tex]
Step-by-step explanation:
[tex]f(x) = \frac{ax+b}{x}[/tex]
Putting x = 1
=> [tex]f(1) = \frac{a(1)+b}{1}[/tex]
Given that f(1) = 1
=> [tex]1 = a + b[/tex]
=> [tex]a+b = 1[/tex] -------------------(1)
Now,
Putting x = 2
=> [tex]f(2) = \frac{a(2)+b}{2}[/tex]
Given that f(2) = 5
=> [tex]5 = \frac{2a+b}{2}[/tex]
=> [tex]2a+b = 5*2[/tex]
=> [tex]2a+b = 10[/tex] ----------------(2)
Subtracting (2) from (1)
[tex]a+b-(2a+b) = 1-10\\a+b-2a-b = -9\\a-2a = -9\\-a = -9\\a = 9[/tex]
For b , Put a = 9 in equation (1)
[tex]9+b = 1\\Subtracting \ both \ sides \ by \ 9\\b = 1-9\\b = -8[/tex]
The ages of some lectures are 42,54,50,54,50,42,46,46,48 and 48.Calculate the:
(a)Mean Age.
(b)Standard deviation.
Answer:
The mean age is 48
The standard deviation is 4
Step-by-step explanation:
The answer is, (a) mean age is 48.
(b) standard deviation is 4.
What is a mean age?Average age of the population calculated as the arithmetic mean.Another parameter determining the average age of the population is the median age.What does standard deviation of age mean?In general, the standard deviation tells us how far from the average the rest of the numbers tend to be, and it will have the same units as the numbers themselves. If, for example, the group {0, 6, 8, 14} is the ages of a group of four brothers in years, the average is 7 years and the standard deviation is 5 years.How do you find the mean age?To find the mean add all the ages together and divide by the total number of children.
Learn more about mean age and standard deviation here:
https://brainly.com/question/475676
#SPJ2
Construct a polynomial function with the following properties: fifth degree, 4 is a zero of multiplicity 3, −2 is the only other zero, leading coefficient is 2.
Answer:
[tex]\Large \boxed{\sf \bf \ \ 2(x-4)^3(x+2)^2 \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
Construct a polynomial function with the following properties...
... fifth degree
It means that the polynomial can be written as below.
[tex]a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0 \ \text{ with }a_5\text{ different from 0}\\\\\text{ or } k(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5) \\\\ \text{ with k different from 0 and } (x_i)_{1\leqi\leq 5 } \text { are the roots.}[/tex]
... 4 is a zero of multiplicity 3
We can write the polynomial as below.
[tex]k(x-4)(x-4)(x-4)(x-x_4)(x-x_5)=k(x-4)^3(x-x_4)(x-x_5)[/tex]
... −2 is the only other zero
Because this is the only other zero, we can deduce that -2 is a zero of multiplicity 2.
[tex]k(x-4)(x-4)(x-4)(x-x_4)(x-x_5)\\\\=k(x-4)^3(x-(-2))(x-(-2))\\\\=k(x-4)^3(x+2)^2[/tex]
... leading coefficient is 2.
Finally, it means that k = 2 and then the polynomial function is:
[tex]\large \boxed{2(x-4)^3(x+2)^2}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
A nutrition laboratory tested 25 "reduced sodium" hotdogs of a certain brand, finding that the mean sodium content is 310 mg with a standard deviation of 36 mg.
Construct a 95% confidence interval for the mean sodium content of this brand of hot dog and interpret a 95% level of confidence. Show all work
Answer:
The 95% confidence interval is [tex]295.9 < \mu< 324.1[/tex]
A 95% level of confidence mean that there is 95% chance that the true population mean will be in this interval
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 25[/tex]
The mean is [tex]\= x = 310 \ mg[/tex]
The standard deviation is [tex]\sigma = 36 \ mg[/tex]
Given that the confidence level is 95% then the level of significance is mathematically represented as
[tex]\alpha = 100 - 95[/tex]
=> [tex]\alpha = 5\%[/tex]
=> [tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table , the value is
[tex]Z_{\frac{\alpha }{2} } =Z_{\frac{0.05 }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 1.96 * \frac{36 }{\sqrt{25} }[/tex]
[tex]E = 14.1[/tex]
The 95% level of confidence interval is mathematically represented as
[tex]\= x - E < \mu<\ \= x - E[/tex]
substituting values
[tex]310- 14.1 < \mu< 310+ 14.1[/tex]
[tex]295.9 < \mu< 324.1[/tex]
The 95% level of confidence mean that there is 95% chance that the true population mean will be in this interval
An architect is designing a gym for a new elementary
school. The gym will be 116 feet long and have an area of
6,960 square feet. What will be the width of the gym?
The width of the gym will be W=60 feet for the area of 6,960 square feet.
What is area?Area is defines as the space covered by a surface in the two dimensional plane.
It is given that
Area of the gym =6960 square feet
Width of the gym = ?
Length of the gym=116 feet
The width of the gym will be calculated as
[tex]A=\L\times W\\\\\\6960=116\times W\\\\\\w=\dfrac{6960}{116}=60\ \ Feet[/tex]
hence the width of the gym will be W=60 feet for the area of 6,960 square feet.
To know more about Area follow
https://brainly.com/question/3948796
#SPJ2
Multiply the following complex numbers:
(7+2i)(2+3i)
Please don’t guess
Answer:
14 + 25l + 6l^2
Step-by-step explanation:
(7 + 2i) (2 + 3i)
=> 14 + 4l + 21l + 6l^2
=> 14 + 25l + 6l^2
This is the correct answer
The Airline Passenger Association studied the relationship between the number of passengers on a particular flight and the cost of the flight. It seems logical that more passengers on the flight will result in more weight and more luggage, which in turn will result in higher fuel costs. For a sample of 21 flights, the correlation between the number of passengers and total fuel cost was 0.668.
(1)
State the decision rule for 0.10 significance level: H0: Ï â‰¤ 0; H1: Ï > 0 (Round your answer to 3 decimal places.)
Reject H0 if t >
(2)
Compute the value of the test statistic. (Round your answer to 3 decimal places.)
Value of the test statistic
Answer:
Decision Rule: To reject the null hypothesis if t > 1.328
t = 3.913
Step-by-step explanation:
The summary of the given statistics include:
sample size n = 21
the correlation between the number of passengers and total fuel cost r = 0.668
(1) We are tasked to state the decision rule for 0.10 significance level
The degree of freedom df = n - 1
degree of freedom df = 21 - 1
degree of freedom df = 19
The null and the alternative hypothesis can be computed as:
[tex]H_o : \rho < 0\\ \\ Ha : \rho > 0[/tex]
The critical value for [tex]t_{\alpha, df}[/tex] is [tex]t_{010, 19}[/tex] = 1.328
Decision Rule: To reject the null hypothesis if t > 1.328
The test statistics can be computed as follows by using the formula for t-test for Pearson Correlation:
[tex]t = r*\sqrt{ \dfrac{(n-2)}{(1-r^2)}[/tex]
[tex]t = 0.668*\sqrt{ \dfrac{(21-2)}{(1-0.668^2)}[/tex]
[tex]t = 0.668*\sqrt{ \dfrac{(19)}{(1-0.446224)}[/tex]
[tex]t = 0.668*\sqrt{ \dfrac{(19)}{(0.553776)}[/tex]
[tex]t = 0.668*5.858[/tex]
t = 3.913144
t = 3.913 to 3 decimal places
Find the product of
the sum of
3/5 and 1%
and
Answer:
3/500
Step-by-step explanation:
3/5 x 1%
=> 3/5 x 1/100
=> 3/500
Hope it helps you
4. The general population (Population 2) has a mean of 30 and a standard deviation of 5, and the cutoff Z score for significance in a study involving one participant is 1.96. If the raw score obtained by the participant is 45, what decisions should be made about the null and research hypotheses?
Answer:
The null hypothesis is rejected and research hypotheses is supported
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 30[/tex]
The standard deviation is [tex]\sigma = 5[/tex]
The sample size is n = 1
The cutoff Z score for significance is [tex]Z_{\alpha } = 1.96[/tex]
The mean score is [tex]\= x = 45[/tex]
Generally the test hypothesis is mathematically represented as
[tex]t = \frac{\= x - \mu }{ \frac{ \sigma }{\sqrt{n} } }[/tex]
=> [tex]t = \frac{45 - 30 }{ \frac{ 5}{\sqrt{1} } }[/tex]
=> [tex]t = 3[/tex]
From the obtained value we can see that [tex]t > Z_{\alpha }[/tex]
Hence the null hypothesis is rejected and research hypotheses is supported
Please answer this correctly without making mistakes
Answer:
so first convert to fraction so
9 3/4 = 39/4
so it was spread among 3
so this is division so you do 39/4 divided by 3
so you keep switch flip
which is 39/4 *1/3
answer is 13/4
Answer:
3 1/4 bagsStep-by-step explanation:
[tex]9\frac{3}{4}= \frac{(4 \times 9)+3}{4}= \frac{39}{4} \\\\\frac{39}{4} = 3 \:vegetable \: beds\\x \:\:\:= 1 \: vegetable \:bed\\\\3x = \frac{39}{4} \\\\\frac{3x}{3} = \frac{\frac{39}{4} }{3} \\\\x = \frac{13}{4} \\\\x = 3\frac{1}{4}[/tex]
The heights of North American women are nor-mally distributed with a mean of 64 inches and a standard deviation of 2 inches. a. b. c. What is the probability that a randomly selected woman is taller than 66 inches
Answer:
0.1587
Step-by-step explanation:
Given the following :
Mean (m) of distribution = 64 inches
Standard deviation (sd) of distribution = 2 inches
Probability that a randomly selected woman is taller than 66 inches
For a normal distribution :
Z - score = (x - mean) / standard deviation
Where x = 66
P(X > 66) = P( Z > (66 - 64) / 2)
P(X > 66) = P(Z > (2 /2)
P(X > 66) = P(Z > 1)
P(Z > 1) = 1 - P(Z ≤ 1)
P(Z ≤ 1) = 0.8413 ( from z distribution table)
1 - P(Z ≤ 1) = 1 - 0.8413
= 0.1587
Algebra Review
Write an algebraic expression for each verbal expression.
1. the sum of one-third of a number and 27
2. the product of a number squared and 4
3. Write a verbal expression for 5n^3 +9.
Answer:
Step-by-step explanation:
1. The sum of one-third of a number and 27
= [tex]\frac{1}{3}\times x +27\\= 1/3x +27[/tex]
2. The product of a number squared and 4
[tex]Let\:the\:unknown\: number\: be \:x\\\\x^2\times4\\\\= 4x^2[/tex]
3.Write a verbal expression for 5n^3 +9.
The sum of the product and of 5 and a cubed number and 9
Write the function in terms of unit step functions. Find the Laplace transform of the given function. f(t) = 5, 0 ≤ t < 7 −3, t ≥ 7
Rewrite f in terms of the unit step function:
[tex]f(t)=\begin{cases}5&\text{for }0\le t<7\\-3&\text{for }t\ge7\end{cases}[/tex]
[tex]\implies f(t)=5(u(t)-u(t-7))-3u(t-7)=5u(t)-8u(t-7)[/tex]
where
[tex]u(t)=\begin{cases}1&\text{for }t\ge0\\0&\text{for }t<0\end{cases}[/tex]
Recall the time-shifting property of the Laplace transform:
[tex]L[u(t-c)f(t-c)]=e^{-cs}L[f(t)][/tex]
and the Laplace transform of a constant function,
[tex]L[k]=\dfrac ks[/tex]
So we have
[tex]L[f(t)]=L[5u(t)-8u(t-7)]=5L[1]-8e^{-7s}L[1]=\boxed{\dfrac{5-8e^{-7s}}s}[/tex]
In this exercise you have to find the laplace transform:
[tex]L[f(t)]=\frac{5-8e^{-7s}}{s}[/tex]
Rewrite f in terms of the unit step function:
[tex]f(t)=\left \{ {{5, for 0\leq t\leq 7} \atop {-3, for t\geq 7}} \right. \\f(t)= 5(u(t)-u(t-7)-3u(t-7)=5u(t)-8u(t-7)[/tex]
Where:
[tex]u(t)= \left \{ {{1, t\geq 0} \atop {0, t<0}} \right.[/tex]
Recall the time-shifting property of the Laplace transform:
[tex]L[u(t-c)f(t-c)]= e^{-cs}L[f(t)][/tex]
and the Laplace transform of a constant function,
[tex]L[k]=\frac{k}{s}[/tex]
So we have:
[tex]L[f(t)]= L[5u(t)-8u(t-7)]= 5L[1]-8e^{-7s}L[1]= \frac{5-8e^{-7s}}{s}[/tex]
See more about Laplace transform at : brainly.com/question/2088771
Use the following recursive formula to answer the question.
A1=-3/2
an=an-1+1/2
what’s is a9?
Step-by-step explanation:
a2=a1+1/2=-1
a3=a2+1/2=-1/2, then we have common difference 0.5
a9=a1+(n-1)d
a9=-3/2+(8)0.5=5/2
If 2 x 2 + 13 x − 7 = 0 , then x could equal which of the following?
Hi there! :)
Answer:
x = 1/2 or -7.
Step-by-step explanation:
(I'm assuming the expression is 2x² + 13x - 7 = 0)
Factor the equation to solve for the possible values of "x":
2x² + 13x - 7 = 0
When factored, we get:
(2x - 1) ( x + 7) = 0
Use the Zero-Product property to solve for the roots:
2x - 1 = 0
2x = 1
x = 1/2.
-----------
x + 7 = 0
x = -7.
Therefore, possible values of x are x = -1/2, 7.
Answer:
x = 1/2 x=-7
Step-by-step explanation:
2 x^2 + 13 x − 7 = 0
Factor
(2x-1)(x+7)=0
Using the zero product property
2x-1 =0 x+7=0
2x=1 x =-7
x = 1/2 x=-7
Identify the inverse function of f(x) = VX - 2 + 3.
Answer:
[tex]\huge\boxed{f^{-1}(x) = (x-3)^2+2}[/tex]
Step-by-step explanation:
[tex]f(x) = \sqrt{x-2} + 3[/tex]
Replace y = f(x)
[tex]y = \sqrt{x-2} + 3[/tex]
Exchange x and y
[tex]x = \sqrt{y-2}+3[/tex]
Solve for y
[tex]x = \sqrt{y-2}+3[/tex]
Subtracting both sides by 3
[tex]x - 3 = \sqrt{y-2}[/tex]
Taking square on both sides
[tex](x-3)^2 = y -2[/tex]
Adding 2 to both sides
[tex]y = (x-3)^2+2[/tex]
Substitute y = [tex]f^{-1}(x)[/tex]
[tex]f^{-1}(x) = (x-3)^2+2[/tex]
Answer:
[tex] \boxed{ {f}^{ - 1} (x) = {(x - 3)}^{2} + 2}[/tex]Option D is the correct option
Step-by-step explanation:
[tex] \mathsf{f(x) = \sqrt{x - 2} + 3}[/tex]
Replace f(x) with y
[tex] \mathsf{y = \sqrt{x - 2} + 3}[/tex]
Interchange variables
[tex] \mathsf{x = \sqrt{y - 2} + 3}[/tex]
[tex] \mathsf{{(x - 3)}^{2} = {( \sqrt{y - 2)} }^{2} }[/tex]
[tex] \mathsf{ {(x - 3)}^{2} = y - 2}[/tex]
[tex] \mathsf{ y = {(x - 3)}^{2} + 2}[/tex]
Replace y with f ⁻¹( x )
[tex] \mathsf{ {f}^{ - 1} (x) = {(x - 3)}^{2} + 2}[/tex]
Hope I helped!
Best regards!
23.24 divided by 2.8
Answer:
It's 8.3
Step-by-step explanation:
Answer:
8.3
Step-by-step explanation:
Evaluate the expression for q = -2. 8q=
Answer:
-16
Step-by-step explanation:
8q
Let q = -2
8*-2
-16
Can somebody explain how trigonometric form polar equations are divided/multiplied?
Answer:
Attachment 1 : Option C
Attachment 2 : Option A
Step-by-step explanation:
( 1 ) Expressing the product of z1 and z2 would be as follows,
[tex]14\left[\cos \left(\frac{\pi \:}{5}\right)+i\sin \left(\frac{\pi \:\:}{5}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{3\pi \:}{2}\right)+i\sin \left(\frac{3\pi \:\:}{2}\right)\right][/tex]
Now to solve such problems, you will need to know what cos(π / 5) is, sin(π / 5) etc. If you don't know their exact value, I would recommend you use a calculator,
cos(π / 5) = [tex]\frac{\sqrt{5}+1}{4}[/tex],
sin(π / 5) = [tex]\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}[/tex]
cos(3π / 2) = 0,
sin(3π / 2) = - 1
Let's substitute those values in our expression,
[tex]14\left[\frac{\sqrt{5}+1}{4}+i\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}\right]\cdot \:2\sqrt{2}\left[0-i\right][/tex]
And now simplify the expression,
[tex]14\sqrt{5-\sqrt{5}}+i\left(-7\sqrt{10}-7\sqrt{2}\right)[/tex]
The exact value of [tex]14\sqrt{5-\sqrt{5}}[/tex] = [tex]23.27510\dots[/tex] and [tex](-7\sqrt{10}-7\sqrt{2}\right))[/tex] = [tex]-32.03543\dots[/tex] Therefore we have the expression [tex]23.27510 - 32.03543i[/tex], which is close to option c. As you can see they approximated the solution.
( 2 ) Here we will apply the following trivial identities,
cos(π / 3) = [tex]\frac{1}{2}[/tex],
sin(π / 3) = [tex]\frac{\sqrt{3}}{2}[/tex],
cos(- π / 6) = [tex]\frac{\sqrt{3}}{2}[/tex],
sin(- π / 6) = [tex]-\frac{1}{2}[/tex]
Substitute into the following expression, representing the quotient of the given values of z1 and z2,
[tex]15\left[cos\left(\frac{\pi \:}{3}\right)+isin\left(\frac{\pi \:\:}{3}\right)\right] \div \:3\sqrt{2}\left[cos\left(\frac{-\pi \:}{6}\right)+isin\left(\frac{-\pi \:\:}{6}\right)\right][/tex] ⇒
[tex]15\left[\frac{1}{2}+\frac{\sqrt{3}}{2}\right]\div \:3\sqrt{2}\left[\frac{\sqrt{3}}{2}+-\frac{1}{2}\right][/tex]
The simplified expression will be the following,
[tex]i\frac{5\sqrt{2}}{2}[/tex] or in other words [tex]\frac{5\sqrt{2}}{2}i[/tex] or [tex]\frac{5i\sqrt{2}}{2}[/tex]
The solution will be option a, as you can see.
To the nearest tenth, what is the value of P(C|Y)? 0.4 0.5 0.7 0.8
Answer:
P(C|Y) = 0.5.
Step-by-step explanation:
We are given the following table below;
X Y Z Total
A 32 10 28 70
B 6 5 25 36
C 18 15 7 40
Total 56 30 60 146
Now, we have to find the probability of P(C/Y).
As we know that the conditional probability formula of P(A/B) is given by;
P(A/B) = [tex]\frac{P(A \bigcap B)}{P(B)}[/tex]
So, according to our question;
P(C/Y) = [tex]\frac{P(C \bigcap Y)}{P(Y)}[/tex]
Here, P(Y) = [tex]\frac{30}{146}[/tex] and P(C [tex]\bigcap[/tex] Y) = [tex]\frac{15}{146}[/tex] {by seeing third row and second column}
Hence, P(C/Y) = [tex]\frac{\frac{15}{146} }{\frac{30}{146} }[/tex]
= [tex]\frac{15}{30}[/tex] = 0.5.
Answer: 0.5
Step-by-step explanation:
edge
G={3,7,8,9} h={2,5,7,8} what is the intersection of the sets
Answer:
The answer is { 7 , 8 }Step-by-step explanation:
G = { 3 , 7 , 8 , 9 }
H = { 2 , 5 , 7 , 8 }
The intersection of any two or more sets are the members that occur in both sets.
To find the intersection of G and H look for the members that occur in both sets
From the question , the members that occur in both G and H are 7 and 8
So the intersection of the sets is
{ 7 , 8 }Hope this helps you
i will rate you brainliest// What is the interquartile range (IQR) of {5.8, 8.5, 9.9, -0.8, -1.3, 2.3, 7.4, -1.9}?
Answer
arrange the element in increasing order
-1.9, -1.3, -0.8, 2.3, 5.8, 7.4, 8.5, 9.9
interquatile = Q3 - Q1
[tex] = \frac{7.4 + 8.5}{2} - \frac{ - 1.3 - 0.8}{2} [/tex]
[tex] = 7.95 + 1.05[/tex]
[tex] = 9[/tex]
Answer:
9.0
Step-by-step explanation:
i took the quiz
find the value of each variable and the measure of each angle
Answer:
y = 90x = 302x° = 60°(y+x)° = 120°(y-x)° = 60°Step-by-step explanation:
Adjacent angles are supplementary, so ...
(y +x) +(y -x) = 180
2y = 180 . . . . . . . . . simplify
y = 90 . . . . . . . . . . . divide by 2
__
2x +(y +x) = 180
3x +90 = 180 . . . . substitute for y
x + 30 = 60 . . . . . . divide by 3
x = 30 . . . . . . . . . . subtract 30
__
With these values of x and y, the angle measures are ...
2x° = 2(30)° = 60°
(y+x)° = (90+30)° = 120°
(y-x)° = (90-30)° = 60°
The Tran family and the Green family each used their sprinklers last summer. The water output rate for the Tran family's sprinkler was 35L per hour. The water output rate for the Green family's sprinkler was 40L per hour. The families used their sprinklers for a combined total of 50 hours, resulting in a total water output of 1900L. How long was each sprinkler used?
Answer:
Tran family's sprinkler was used for 20 hours
Green's family's sprinkler was used for 30 hours
Step-by-step explanation:
Let the hours for which Tran family's sprinkler used is x hours
water output rate for the Tran family's sprinkler = 35L per hour
water output from Tran family's sprinkler in x hours = 35*x L = 35x
Let the hours for which Green family's sprinkler used is y hours
water output rate for the Green family's sprinkler = 40L per hour
water output from Green family's sprinkler in x hours = 40*y L = 40y
Given
The families used their sprinklers for a combined total of 50 hours
thus
x + y = 50 -------------------equation 1
y = 50-x
total water output of 1900L
35x+40y = 1900 -------------------equation 1
using y = 50-x in equation 2, we have
35x + 40(50-x) = 1900
35x + 2000 - 40x = 1900
=> -5x = 1900 - 2000 = -100
=> x = -100/-5 = 20
y = 50-20 = 30
Thus,
Tran family's sprinkler was used for 20 hours
Green's family's sprinkler was used for 30 hours