Answer:
x=3
Step-by-step explanation:
● -3 (-4x+4) = 15 + 3x
Multiply -3 by (-4x+4) first
● (-3) × (-4x) + (-3)×(4) = 15 + 3x
● 12 x - 12 = 15 +3x
Add 12 to both sides
● 12x - 12 + 12 = 15 + 3x +12
● 12 x = 27 + 3x
Substract 3x from both sides
● 12x -3x = 27 + 3x - 3x
● 9x = 27
Dividr both sides by 9
● 9x/9 = 27/9
● x = 3
please solution this question now .thank you very much
Answer:
5/2
Step-by-step explanation:
Let u = sin(t). Then this is the integral ...
[tex]\displaystyle\int_0^{\frac{\pi}{2}}{5u}\,du=\left.\dfrac{5u^2}{2}\right|_0^{\frac{\pi}{2}}=\dfrac{5}{2}(\sin(\frac{\pi}{2})^2-\sin(0)^2)=\dfrac{5}{2}(1-0)=\boxed{\dfrac{5}{2}}[/tex]
find the value of each variable and the measure of each angle
Answer:
Left angle = 60°
Top angle = 120°
Right angle = 60°
Step-by-step explanation:
Use what you know about angle relationships to set up equations you can solve for each variable.
The top top angle, for example, added to one of the other angles must equal 180° because they are supplementary.
You have two variables, so you need at least two equations (I made three but only used two).
The work is in my attachment, comment of you have questions.
Jerry was given some birthday money He puts the money in an account Every month after that he deposits the same amount of money The equation that models this situation y=50x+75 where y is the amount of money int he account and x is the number of deposits What does the y- intercept means in this situation
Answer: He was given $75 for his birthday
Step-by-step explanation:
The y - intercept represents the rate of which the money is being deposited in the account.
What is linear equation in two variable ?"An equation is said to be linear equation in two variables if it is written in the form of ax + by + c=0, where a, b & c are real numbers and the coefficients of x and y, i.e a and b respectively, are not equal to zero."
"The solution of linear equations in two variables, ax+by = c, is a particular point in the graph, such that when x-coordinate is multiplied by a and y-coordinate is multiplied by b, then the sum of these two values will be equal to c.
Basically, for linear equation in two variables, there are infinitely many solutions."
The given equation is y = 50x + 75
The y intercept represents the amount of money to be deposited in account. The rate of change of money in the account with represent to the months.
Hence, y represents money deposited in the account.
To know more about linear equation in two variable here
https://brainly.com/question/11897796
#SPJ2
I need help will rate you brainliest 10
Answer:
It is option A
Step-by-step explanation:
A is correct option
Find the measure of the remote exterior angle. mZx = (4n – 18)º
m2y = (n+9)°
m2z = (151 – 5n)º
y
Х
Z
Answer:
71°
Step-by-step explanation:
The sum of two interior angles in a triangle is equal to an exterior angle
m<x + m<y = m<z
4n - 18 + n + 9 = 151 - 5n
5n - 9 = 151 - 5n add like terms
10n = 160
n = 16
Since m<z = 151 - 5n we replace n with 16 and 151 - 5×16 = 71
Answer:
A. 71
Step-by-step explanation:
x + y = z
4n - 18 + n + 9 = 151 - 5n
5n - 9 = 151 - 5n
10n = 160
n = 16
Z = 151 - 5(16) = 71
Can someone please help me ASAP:(
Answer:
3 =x
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
3x(x+1) = 4x*x
Divide each side by x
3(x+1) = 4x
Distribute
3x+3 = 4x
Subtract 3x from each side
3x-3x +3 = 4x-3x
3 =x
How many solutions does the following equation have?
-5(z+1)=-2z+10
Choose 1 answer:
A: No solutions
B: Exactly one solution
C: Infinitely many solutions
Answer:
B
Step-by-step explanation:
-5z +1 = -2z +10
-3z = 9
z=9/-3
Z= -3
Answer:
the answer is exactly one solution
Step-by-step explanation:
this is the answer because i just took this question on khan academy and the one solution is z = -5 for the equation
Policeman A and Policeman B hand out 70 speeding tickets in a month.
Policeman A hands out 4 times as many speeding tickets as Policeman B.
Policeman A handed out ? Speeding tickets.
Answer:
Policeman A = 56 tickets
Step-by-step explanation:
Policemen A + B = 70
If Policeman B hands out x no of tickets...
Then Policeman A hands out 4x no of tickets
meaning...
x + 4x = 70
5x = 70
x = 70/5
x = 14
Therefore Policeman A hands out..
4x = 4 × 14 = 56 tickets
Given g(x) = -x - 2, find g(3).
Answer:
g(3) = -5
Step-by-step explanation:
g(3) is basically the value of g(x) when x = 3. Therefore, g(3) = -3 - 2 = -5.
Answer:
[tex] \boxed{\sf g(3) = -5} [/tex]
Given:
g(x) = -x - 2
To Find:
g(3) i.e. g(x) where x = 3
Step-by-step explanation:
[tex]\sf Evaluate \ -x - 2 \ where \ x = 3:[/tex]
[tex] \sf \implies - x - 2 = - 3 - 2[/tex]
[tex] \sf - 3 - 2 = - (3 + 2) : [/tex]
[tex] \sf \implies - (3 + 2)[/tex]
[tex] \sf 3 + 2 = 5 : [/tex]
[tex] \sf \implies - 5[/tex]
If the sin of angle x is 4 over 5 and the triangle was dilated to be two times as big as the original, what would be the value of the sin of x for the dilated triangle? Hint—Use the slash symbol ( / ) to represent the fraction bar, and enter the fraction with no spaces. (4 points)
Answer:
Sin of x does not change
Step-by-step explanation:
Whenever a triangle is dilated, the angle remains the same as well as the ratio for sides of triangle. For smshapes with dimensions, when shapes are dilated the dimensions has increment with common factor.
From trigonometry,
Sin(x)=opposite/hypotenose
Where x=4/5
Sin(4/5)= opposite/hypotenose
But we were given the scale factor of 2 which means the dilation is to two times big.
Then we have
Sin(x)=(2×opposite)/(2×hypotenose)
Then,if we divide by 2 the numerator and denominator we still have
Sin(x)=opposite/hypotenose
Which means the two in numerator and denominator is cancelled out.
Then we still have the same sin of x. as sin(4/5)
Hence,Sin of x does not change
Answer:
Step-by-step explanation:
sin of angle x = [tex]\frac{4}{5}[/tex]
If the triangle is dilated 2 times - it becomes two time larger.
4 times 2 = 8 and 5 times 2 = 10
So the ratio would be [tex]\frac{8}{10}[/tex], which when reduced (divide numerator and denominator by 2) becomes [tex]\frac{4}{5}[/tex].
This is correct as dilation changes the size of an image - but not its angles or proportions, meaning ratios remain the same.
So the answer is 4/5.
helpppppppppppppppppppppppppppp give bralienst
Answer:
Brainliest! Hope I helped!
Step-by-step explanation:
you know its greater than 1cm and less than 2cm,
1 and 7hundreths cm is = 1.07 cm
thats not right because you know it is greater than that for sure!
so the only answer left is 1.7 cm
You answer is 1.7 cm
another way...
read the ruler and see the answer
Answer:
1.7 cm.
Step-by-step explanation:
The midpoint of 1 - 2 is 5 so count the lines after 5 and you get .7 to add to one cm.
Hope this helps, have a good day :)
how much would it cost to buy 100 shares in ODX group Inc and 300 shares
Complete Question
The complete question is shown on the first uploaded image
Answer:
The cost to buy 100 shares in ODX group Inc and 300 shares peer Comms Lts is
[tex]C = \$ 775[/tex]
Step-by-step explanation:
From the chat we that the cost of 100 ODX shares is [tex]\$175[/tex]
The cost of 100 peer Comms Lts is [tex]\$ 200[/tex]
Hence the cost 300 peer Comms Lts is [tex]k = 3 * 200 = \$ 600[/tex]
Now the cost of 100 shares in ODX group Inc and 300 shares of peer Comms Lts is mathematically evaluated as
[tex]C = 175 + 600[/tex]
[tex]C = \$ 775[/tex]
The cost to buy 100 shares in ODX group Inc and 300 shares in peer comm LTD is $775.
Given in question the graph here is missing.
We have to calculate the total cost of 100 shares in ODX group Inc and 300 shares in peer comms limited in year 5.
From the graph it is clear that, the x axis shows the no. of year and y axis shows the cost of 100 shares for each type.
From graph, the cost of 100 shares of ODX group in year 5 is $175.
And the cost of 100 shares of peer comm Ltd in year 5 is $ 200.
So the total cost of 300 shares of peer comm Ltd in 5 year is $([tex]200\times3[/tex]) or $600.
Now final cost of 100 shares in ODX group Inc and 300 share in peer comm Ltd is [tex]($600+$175)[/tex] dollars.
Hence the cost to buy 100 shares in ODX group Inc and 300 shares in peer comm LTD is $775.
For more details on graph follow the link:
https://brainly.com/question/14375099
A bag contains three red marbles, two green ones, one lavender one, two yellows, and two orange marbles. HINT [See Example 7.] How many sets of seven marbles include at least one yellow one but no green ones
Answer: 8
Step-by-step explanation:
Given: A bag contains three red marbles, two green ones, one lavender one, two yellows, and two orange marbles.
Total marbles other than green = 8
Total marbles other than green and yellow = 6
Then the number of sets of seven marbles include at least one yellow one but no green ones:-
[tex]^{2}C_1\times^{6}C_6+ ^2C_2\times^6C_5\\\\= 2\times 1+1\times6\\\\=2+6=8[/tex]
Number of sets of seven marbles include at least one yellow one but no green ones = 8
Write all the factors of 32
Matj
Answer
Answer: 1, 2, 4, 8, 16, and 32.
Step-by-step explanation:
Factors are what we can multiply to get the number.
Factors of 32:
1 x 32=32
2 x 16=32
4 x 8=32
Therefore, the factors of 32 are 1, 2, 4, 8, 16, and 32.
Which expression is equivalent to x12 + 5x6 – 14?
A line passes through (-5, -3) and is parallel to -3x - 7y = 10. The equation of the line in slope-intercept form is _____
Answer:
-3x - 7y = 36
Step-by-step explanation:
The given line -3x - 7y = 10 has an infinite number of parallel lines, all of the form -3x - 7y = C.
If we want the equation of a line parallel to -3x - 7y = 10 that passes through (-5, -3), we substitute -5 for x in -3x - 7y = 10 and substitute -3 for y in -3x - 7y = 10:
-3(-5) - 7(-3) = C, or
15 + 21 = C, or C = 36
Then the desired equation is -3x - 7y = 36.
A simple random sample of 60 households in city 1 is taken. In the sample, there are 45 households that decorate their houses with lights for the holidays. A simple random sample of 50 households is also taken from the neighboring city 2. In the sample, there are 40 households that decorate their houses. What is a 95% confidence interval for the difference in population proportions of households that decorate their houses with lights for the holidays
Answer:
The calculated value of z = - 0.197 falls in the critical region therefore we reject the null hypothesis and conclude that at the 5% significance level there is significant difference in population proportions of households that decorate their houses with lights for the holidays
Step-by-step explanation:
We formulate the null and alternative hypotheses as
H0: p1= p2 there is no difference in population proportions of households that decorate their houses with lights for the holidays
against Ha : p1≠ p2 (claim) ( two sided)
The significance level is set at ∝= 0.05
The critical value for two tailed test at alpha=0.05 is ± 1.96
or Z∝= 0.05/2= ± 1.96
The test statistic is
Z = p1-p2/√pq(1/n1 +1/n2)
p1= proportions of households decorating in city 1 = 45/60=0.75
p2= proportions of households decorating in city 2 = 40/50= 0.8
p = the common proportion on the assumption that the two proportion are same.
p = [tex]\frac{n_1p_1 +n_2p_2}{n_1+n_2}[/tex]
Calculating
p =60 (0.75) + 50 (0.8) / 110
p= 45+ 40/110= 85/110 = 0.772
so q = 1-p= 1- 0.772= 0.227
Putting the values in the test statistic and calculating
z= 0.75- 0.8/ √0.772*0.227( 1/60 + 1/50)
z= -0.05/√ 0.175244 ( 110/300)
z= -0.05/0.25348
z= -0.197
The calculated value of z = - 0.197 falls in the critical region therefore we reject the null hypothesis and conclude that at the 5% significance level there is significant difference in population proportions of households that decorate their houses with lights for the holidays
Which option is correct and how would one solve for it?
Answer:
28
Step-by-step explanation:
We need to find the value of [tex]\Sigma_{x=0}^3\ 2x^2[/tex]
We know that,
[tex]\Sigma n^2=\dfrac{n(n+1)(2n+1)}{6}[/tex]
Here, n = 3
So,
[tex]\Sigma n^2=\dfrac{3(3+1)(2(3)+1)}{6}\\\\\Sigma n^2=14[/tex]
So,
[tex]\Sigma_{x=0}^3\ 2x^2=2\times 14\\\\=28[/tex]
So, the value of [tex]\Sigma_{x=0}^3\ 2x^2[/tex] is 28. Hence, the correct option is (d).
A random sample of 10 single mothers was drawn from a Obstetrics Clinic. Their ages are as follows: 22 17 27 20 23 19 24 18 19 24 We want to determine at the 5% significance level that the population mean is not equal to 20. What is the rejection region?
Answer:
0.09
Step-by-step explanation:
Let x = ages of mother
x : 22 17 27 20 23 19 24 18 19 24
N = 10
Mean = ∑x/N = 218/10 = 21.8
Difference in mean = 21.8 - 20 = 1.8
If significance level = 5% or 0.05
∴ Rejection region = 1.8 X 0.05 = 0.09
n a genetics experiment on peas, one sample of offspring contained 372 green peas and 35 yellow peas. Based on those results, estimate the probability of getting an offspring pea that is green. Is the result reasonably close to the value of 3 4 that was expected?
Complete Question
In a genetics experiment on peas, one sample of offspring contained 372 green peas and 35 yellow peas. Based on those results, estimate the probability of getting an offspring pea that is green. Is the result reasonably close to the value of 3/4 that was expected?
Answer:
The probability is [tex]P(g) = 0.9140[/tex]
No it is not close to the probability expected
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 372 + 35= 407[/tex]
The number of green peas is [tex]n_g = 372[/tex]
The number of yellow peas is [tex]n_y = 35[/tex]
The probability of getting an offspring pea that is green is mathematically represented as
[tex]P(g) = \frac{n_g}{n}[/tex]
substituting values
[tex]P(g) = \frac{372}{ 407}[/tex]
[tex]P(g) = 0.9140[/tex]
The expected probability is [tex]\frac{3}{4} = 0.75[/tex]
But what we got is [tex]P(g) = 0.9140[/tex]
So we can say that the value obtained is not equal to the expected value
My town has two cell phone providers. The provider Don’tTalkMuch charge is $80 per month plus 1 dollar per hour the provider TalkLots charges $20 per month plus 4 dollars per hour how much do you have to use your phone in a month in order for Don’tTalkMuch’s much is a deal to be better for you?
Answer:
The author have to use his/her phone less than 20 hours in a month in order for Don’tTalkMuch's is a deal to be better than TalkLots's is.
Step-by-step explanation:
Call X is the number of hours that the author uses on monthly basis.
Total bill value if the author uses Don’tTalkMuch service is $80 + $1 X.
Total bill value if the author uses TalkLots service is $20 + $4X
The total fees between 2 providers equal as:
$80 + $1 X = $20 + $4X => 3X = $60 => X = 20
Hence: The author have to use his/her phone less than 20 hours in a month in order for Don’tTalkMuch's is a deal to be better than TalkLots's is.
Find the sum of the first 30 terms in the sequence in #2. (Sequence is 16, 7, -2, …) Just need sum of first 30 solved :)
The sequence is arithmetic, since the forward difference between consecutive terms is -9.
7 - 16 = -9
-2 - 7 = -9
etc.
This means the sequence has the formula
[tex]a_n=16-9(n-1)=25-9n[/tex]
The sum of the first 30 terms is
[tex]\displaystyle\sum_{n=1}^{30}a_n=25\sum_{n=1}^{30}1-9\sum_{n=1}^{30}n[/tex]
Recall the formulas,
[tex]\displaystyle\sum_{k=1}^n1=\underbrace{1+1+\cdots+1}_{n\text{ times}}=n[/tex]
[tex]\displaystyle\sum_{k=1}^nk=1+2+3+\cdots+n=\frac{n(n+1)}2[/tex]
Then the sum we want is
[tex]\displaystyle\sum_{n=1}^{30}a_n=25\cdot30-\frac{9\cdot30\cdot31}2=\boxed{-3435}[/tex]
Given the following computer printout for a set of sample data, which one of the following represents the value of the Interquartile Range?
Descriptive Statistics: Cycle Time
Variable N Mean StDev Variance Minimum Q1 Median Q3 Maximum
Cycle Time 52 31.808 5.333 28.436 21.700 27.825 31.000 36.075 44.000
A. 22.3
B. 3.175
C. 5.075
D. 8.25
Answer: D. 8.25
Step-by-step explanation: A data set can be divided into 4 equal parts, called Quartile. A quartile divides the data into three points:
Lower quartile: Q1;Median: Q2;Upper quartile: Q3;Interquartile Range (IQR) is a measure of variability based on data divided into quartiles or the measure of where the bulk of the values are.
To calculate interquartile range:
IQR = Q3 - Q1
The table shows Q1 = 27.825 and Q3 = 36.075, then
IQR = 36.075 - 27.825
IQR = 8.25
The value of interquartile range is 8.25.
what are the comparison symbols for 5/6 and 2/5, 4/10 and 7/8, and 3/12 and 1/4
Answer like this: Example
=
<
>
Answer:
5/6 > 2/44/10 < 7/83/12 = 1/4Step-by-step explanation:
The comparison will be the same if you subtract the right side and compare to zero:
a/b ?? c/d . . . . . . . using ?? for the unknown comparison symbol
a/b - c/d ?? 0 . . . . subtract the fraction on the right
(ad -bc)/bd ?? 0 . . . combine the two fractions
ad - bc ?? 0 . . . . . . multiply by bd to make the job easier
__
5/6 and 2/5
5(5) -6(2) = 25 -12 > 0 ⇒ 5/6 > 2/5
4/10 and 7/8
4(8) -10(7) = 48 - 70 < 0 ⇒ 4/10 < 7/8
3/12 and 1/4
3(4) -12(1) = 0 ⇒ 3/12 = 1/4
_____
Of course, you can use your calculator (or your memory) to change each of these to a decimal equivalent. The comparison should be easy at that point.
0.833 > 0.400
0.400 < 0.875
0.250 = 0.250
sasha has some pennies nickels and dimes in her pocket. the number of coins is 18 the expression is 0.01p+0.05n+0.10d represents the value of the coins which is 1.08 she has twice as many dimes as pennies. How many of each coin does Sasha have
Answer:
3 pennies, 9 nickels, and 6 dimes
Step-by-step explanation:
We have three conditions:
(1) p + n + d = 18
(2) 0.01p + 0.05n + 0.10d = 1.08
(3) d = 2p
Multiply (2) by 100 and rearrange (3) to get a standard array.
(4) p + n + d = 18
(5) p + 5n + 10d = 108
(6) -2p + d = 0
Subtract (4) from (5). This gives
(4) p + n + d = 18
(7) 4n + 9d = 90
(6) -2p + d = 0
Multiply (4) by 2 and add to (6). This gives
(4) p + n + d = 18
(7) 4n + 9d = 90
(8) 2n + 3d = 36
Double (8) and subtract from (7). This gives
(4) p + n + d = 18
(7) 4n + 9d = 90
(9) 3d = 18
Divide (9) by 3. This gives
(10) d = 6
Substitute (10) into (7). This gives
4n + 9(6) = 90
4n + 54 = 90
4n = 36
(11) n = 9
Substitute (10) and (11) into (4). This gives
p + 9 + 6 = 18
p + 15 = 18
p = 3
Sasha has 3 pennies, 9 nickels, and 6 dimes.
football team, won 35 out of 39 games over a period of 4 years. if they keep winning pace, predict how many games you would expect them to win over the next 78 football games
Answer:
70
Step-by-step explanation:
If the team continues with same pace, they expected wins as per previous ratio:
35/39*78 = 70Expected wins 70 out of 78 games
What number is the opposite of -3?
Explain your reasoning
Which solution value satisfies the inequality equation x – 5 ≤ 14?
Answer:
Any value that has x less than or equal to 19 is a solution
Step-by-step explanation:
x – 5 ≤ 14
Add 5 to each side
x – 5+5 ≤ 14+5
x ≤ 19
Any value that has x less than or equal to 19 is a solution
Answer:
[tex]\boxed{x\leq 19}[/tex]
Step-by-step explanation:
[tex]x-5\leq 14[/tex]
[tex]\sf Add \ 5 \ on \ both \ sides.[/tex]
[tex]x-5+5 \leq 14+5[/tex]
[tex]x\leq 19[/tex]
What does it mean when the resulting temperature is above 0 on the number line? What does it mean when a temperature is below 0?
Answer:
It means that above 0 degrees Celsius the water does not freeze, whereas 0 degrees are freezing teperatures of water.
Step-by-step explanation:
Water freezes at 0 degrees Celsius, but the freezing temperature can be lowered by adding salt to the water. A student discovered that adding half a cup of salt to a gallon of water lowers its freezing temperature by 7 degrees Celsius. What is the freezing temperature of the gallon of salt water?
0° - 7° = -7°
2.
The monthly sales S (in hundreds of units) of baseball equipment for an Internet sporting goods site
are approximated by
77
S=56.9–40.7cos
6
where t is the time in months), with t=1 corresponding to January. Determine the months when
sales exceed 7700 units at any time during the month.
O May through September
O March through August
O March through September
O April through August
O August through April
Answer:
March through August
Step-by-step explanation:
Ok, in order to solve this problem, we must start by building an equation to solve. The original equation was:
[tex]S=56.9-40.7cos (\frac{\pi}{6}t)[/tex]
and we need to figure out the months when the sales exceed 7700 units. Since the equation is given in hundreds of units, we need to divide those 7700 units into one hundred to get 77 hundred units. So we can go ahead and substitute that value in the equation:
[tex]77=56.9-40.7cos (\frac{\pi}{6}t)[/tex]
if you wish you can rewrite the equation so the variable is on the left side of it but it's up to you. So you get:
[tex]56.9-40.7cos (\frac{\pi}{6}t)=77[/tex]
and now we solve for t
[tex]-40.7cos (\frac{\pi}{6}t)=77-56.9[/tex]
[tex]-40.7cos (\frac{\pi}{6}t)=20.1[/tex]
[tex]cos (\frac{\pi}{6}t)=\frac{20.1}{-40.7}[/tex]
[tex]cos (\frac{\pi}{6}t)=-0.4938[/tex]
[tex]\frac{\pi}{6}t=cos^{-1}(-0.4938)[/tex]
[tex]\frac{\pi}{6}t=2.087[/tex]
[tex]t=\frac{2.087(6)}{\pi}[/tex]
[tex]t=3.98 months[/tex]
but there is a second answer to this problem. Notice that the function cos can be 2.87 at [tex]2\pi-2.087=4.1962 rad[/tex] as well, so we repeat the process:
[tex]\frac{\pi}{6}t=4.1962[/tex]
[tex]t=\frac{4.1962(6)}{\pi}[/tex]
[tex]t=8.014 months[/tex]
So now we need to determine on which period of times the number of items sold exceed 77 hundred units so we build different intervals for us to test:
(1,3.98) (3.98,8.014) and (8,014, 13)
and find a test value for each of the intervals and test it.
(1,3.98) t=2
[tex]S=56.9-40.7cos (\frac{\pi}{6}(2))[/tex]
S=36.55
this is less than 77 so this is not our answer.
(3.98,8.014) t=5
[tex]S=56.9-40.7cos (\frac{\pi}{6}(5))[/tex]
S=92.15
this is more than 77 so this is our answer.
(8.014,13) t=10
[tex]S=56.9-40.7cos (\frac{\pi}{6}(10))[/tex]
S=36.55
this is less than 77 so this is not our answer.
so, since our answer is the interval (3.98,8.014)
this means that between the months of march and august we will be sellin more than 7700 units.