x = 2
Step-by-step explanation:
Since sides have the same base (7), then we can simply write
[tex] {x}^{2} + 11 = 15[/tex]
[tex] {x}^{2} = 4[/tex]
or
[tex]x = 2[/tex]
Which inequality represents all numbers x on a number line that are farther from −8 than from −4?
Answer:
x - 8>-4-x
Step-by-step explanation:
Looking at x - 8>-4-x
Collect the like terms;
x+x > -4 + 8
2x < 4
x > 4/2
x < 2
Since the values of x are greater than 2,this shows that they are positive values and will be farther from -8 than -4
An angle measures 104° more than the measure of its supplementary angle. What is the measure of each angle?
___° and ___°
thank you <3 best answer will get brainliest.
Mark Brainliest please
Answer:
38 degrees
Step-by-step explanation:
Let the angle be x
Supplement:: 180-x
Equation:
x = 180-x + 104
2x = 284
x = 142 degrees
therefore , 180-x = 180-142= 38 degrees
Find the percent increase in volume when 1 foot is added to each dimension of the prism. Round your answer to the nearest tenth of a percent.
Percent increase ≈
%
Answer:
10
Step-by-step explanation:
Which points are on the graph of the function rule f(x) = 10 - 4x
whatcha of the following is the quotient of
Answer:
(2y+3)
Step-by-step explanation:
Find the vertex of the graphed function.
16= \x - 4 +3
2
The vertex is at
Answer:
16=/-4+3+2
16=/-1jhcdf why
hyee852iok
HII CAN SOMEONE PLEASE HELP ME, this is my final exam ... Which equation describes the line with slope 4 that contains the point (7,2)?
A. y + 2 = 4(x + 7)
B. y - 7 = 4(x - 2)
C. y+ 7 = 4(x + 2)
O D. y - 2 = 4(x - 7)
Answer:
I believe it is D
Step-by-step explanation:
I used desmos
Answer:
D
Step-by-step explanation:
Due to the coordinate being positive in both x and y, then you know by putting the numbers in the equation that they will bot subtract from their variable
[tex]4 \sqrt{(3x}^{3} [/tex]
write in exponential form
Answer:
[tex]4(3x)^{\frac{3}{2} }[/tex]
Step-by-step explanation:
How many-foot pieces of wood
can you cut from a board that is
6 feet long?
Answer:
6
Step-by-step explanation:
Foot long = 1 foot
6 / 1 = 6 foot pieces
use the following picture to classify the following statements as true or false
Assume that Y is normally distributed with mean μ and standard deviation σ. After observing a value of Y, a mathematician will construct a rectangle with length L = |Y|and width W = 3 |Y|. Let A denote the area of the resulting rectangle. What is E(A)?
Please give me the right answer me going onto my sophomore year depends on this
Answer: 5.5. if you divide you will clearly see it is 5.5 so D
Step-by-step explanation:
Actividad N°2: Marque la alternativa correcta en la siguiente pregunta.
Sea una función tal que () = 7 − 3 cuyo dominio es el conjunto () =
{−1, 0, 1, 2, 3}, entonces el () es:
5 PUNTOS
A) () = {−2, 1, 4, 7, 10}
B) () = {−1, 0, 1, 2, 3}
C) () = {4, 7, 10, 13, 16}
D) () = {1, 2, 3, 4, 5}
E) () = {−16, −13, −10, −7, −4}
Answer:
Hola busco amigos
Perdí mi otra cuenta
Ayúdame y te ayudo con tus tareas
¿ si?
Step-by-step explanation:
A club is choosing 2 members to serve on a committee. The club has nominated 3 women and 3 men. Based on chance alone, what is the probability that one woman and one man will be chosen to be on the committee
Answer: 0.6
Step-by-step explanation:
Given
There are 3 women and 3 men available to form a 2 member committee.
No of ways, a man can be chosen are [tex]3[/tex]
Similarly, no of ways a woman can be chosen are 3
Therefore, probability of choosing 2 members i.e. 1 man and 1 women is
[tex]\Rightarrow P=\dfrac{3}{6}\times \dfrac{3}{5}[/tex]
If the order matter, then
[tex]\Rightarrow P=2\times \dfrac{3\times 3}{6\times 5}\\\\\Rightarrow P=0.6[/tex]
The probability that 1 woman and 1 man will be chosen is "0.6".
According to the question, the club has nominated:
Number of women = 3 Number of men = 3Now,
→ The number of ways to select two persons from 6 will be:
= [tex]\binom{6}{2}[/tex]
hence,
The probability that one woman and one man will be chosen will be:
→ [tex]P(1 \ women \ and \ 1 \ women) = \frac{\binom{3}{1} \binom{3}{1}}{\binom{6}{2}}[/tex]
[tex]= 3\times \frac{3}{15}[/tex]
[tex]= \frac{9}{15}[/tex]
[tex]= 0.6[/tex]
Thus the above answer is right.
Learn more:
https://brainly.com/question/13419138
seven more than the quotient of a number and 2 is equal to 3 equation
Answer:
Step-by-step explanation:
seven more than the quotient of a number and 2 is 10
7+n/2=10 n=6 check 7+3=10 ok
Can you figure out what the area of this shape is?
Answer:
22 units
Step-by-step explanation:
split it into 3 sections, there are two sections of 2x3 and one of 1x10, together they make 22 units
(3/6) to the power of 2 + 7 x 4 - 5
Answer:
0.00000003
Step-by-step explanation:
2+ 7 * 4 - 5 = 25
(3/6) ^ 25 = 0.00000003
pls help me out in this assignment PLSSSSS anyone plss
Answer:
what number?
number three or number two
3.
Use the concept of a series to sum up 0.315+0.000315+0.000000315+.... Give your final answer
in reduced fraction form. Note: There are several methods to prove this fact. I am specifically asking
you to use a series.
Dividing each term in the given series by 0.315 reveals a simple geometric sum,
0.315 (1 + 1/1,000 + 1/1,000,000 + …)
or
0.315 (1 + 1/10³ + 1/10⁶ + …)
or
[tex]\displaystyle 0.315 \sum_{n=0}^\infty \frac1{10^{3n}} = 0.315 \sum_{n=0}^\infty \frac1{1000^n}[/tex]
i.e. a geometric sum with a common ratio of 1/1,000. I'm not sure what your instructor expects exactly, but you may already know that
[tex]\displaystyle a\sum_{n=0}^\infty r^n = \frac a{1-r}[/tex]
if |r | < 1. This is the case here, so
0.315 (1 + 1/1,000 + 1/1,000,000 + …) = 0.315 / (1 - 1/1,000)
… = (315/1000) / (999/1000)
… = 315/999
… = 35/111
A coin is flipped 8 times. Find the probability of the event:
exactly 6 heads
Answer:
P(E)=56256=732. Step-by-step explanation:
Thus, the probability of getting exactly 3 heads when a coin is flipped 8 times in a row
Plz help me solve this
Answer: x=-3
Step-by-step explanation:
First let's eliminate the square root
[tex](\sqrt{x^2-5x+2})^2=(\sqrt{x^2+17})^2\\x^2-5x+2=x^2+17[/tex]
Now subtract [tex]x^2\\[/tex] from both sides
[tex]x^2-5x+2-x^2=x^2+17-x^2\\-5x+2=17[/tex]
Subtract 2 from both sides
[tex]-5x+2-2=17-2\\-5x=15[/tex]
Finally divide both sides by -5
[tex]\frac{-5x}{-5} =\frac{15}{-5} \\x=-3[/tex]
match each step to its justfication to solve 2x+5=19.
Step-by-step explanation:
x=7 (given)
2x=14 (divide)
2x+5-5=19-5 (subtraction property of equality)
2x/2=14/2 (divide)
2x + 5=19 (division property of equality)
Match each three dimensional figure to its volume based on the given dimensions.
please attach a diagram
Find the maximum or minimum value of y = 3x² + 7x + 9 by completing the squares state the value of x at which the function is maximum or minimum.
Answer:
The minimum is 59/12
Step-by-step explanation:
you should calculate the -b/2a = -7/6
you should put -7/6 in the x variable
-2 (x + 3z) + 4x - 3y + 2z
Answer:
-2 (x + 3z) + 4x - 3y + 2z
-2x-6x+4x-3y+2z
2x-4z-3y
hope it helps...
have a nice day!
Answer:
please answer is then you thanks me
Step-by-step explanation:
-2(x + 3z) + 4x - 3y +2z
-2x -6z + 4x - 3y + 2z
=2x - 4z - 3y
WILL GIVE BRAINLIEST
4
3
2x + 4
x+7
Answer:
x = 8
Step-by-step explanation:
[tex]\frac{x+7}{3} =\frac{2x+4}{4}[/tex]
do cross multiplication
[tex]3(2x+4) = 4(x+7)\\6x + 12 = 4x + 28\\6x - 4x = 12 - 16\\2x = 16\\x = 16/2\\x = 8[/tex]
Historically, the average diameter of the holes drilled has been 0.25 cm and the average range has been 0.10 cm. Samples of size 4 will be collected. For the R-chart, what is the value of upper control limit
Solution :
Given the average range of the holes drilled = 0.10 cm
The average diameter of the holes drilled = 0.25 cm
The sample size = 4
For the sample size of 4, the factor for control limit for the range ([tex]D_4[/tex]) = 2.28 (From the table of constants for X-bar and R-chart)
The upper control limit for the R-chart = R-bar x [tex]D_4[/tex]
= 0.10 x 2.28
= 0.228
Therefore, the answer is greater than 0.202 but less than or equal to 0.302
What is the common ratio for the geometric sequence below, written as a fraction?
768, 480, 300, 187.5, …
/
9514 1404 393
Answer:
5/8
Step-by-step explanation:
Since the ratio is common, it can be found from the ratio of any pair of adjacent terms.
r = 480/768 = (5·96)/(8·96) = 5/8
The common ratio is 5/8.
how do i solve this problem
Answer:
Exponential function have a horizontal asymotote. The equation of the horizontal asymptote is y=0.Step-by-step explanation:
Find the equation of a line that contains the points (0,0) and (6,−7). Write the equation in slope-intercept form, using fractions when required.
Use the slope formula below:
[tex] \large \boxed{m = \frac{y_2 - y_1}{x_2 - x_1} }[/tex]
To form an equation of a line - we need to find a slope and the y-intercept from y = mx+b. We are given two points which we can substitute in the formula.
[tex] \large{m = \frac{0 - ( - 7)}{0 - 6} } \\ \large{m = \frac{0 + 7}{ - 6} \longrightarrow \frac{7}{ - 6} } \\ \large \boxed{m = - \frac{7}{6} }[/tex]
We have finally got the slope. Next is to find the y-intercept. First we rewrite the equation of y = mx+b by substituting the slope.
[tex] \large \boxed{y = mx + b}[/tex]
The equation above is the slope-intercept form. Substitute m = -7/6 in the equation.
[tex] \large{y = - \frac{7}{6} x + b}[/tex]
Since the graph passes through (0,0) which is an origin point. In y = mx+b if the graph passes through origin point, that means the b-value is 0. Therefore:
[tex] \large \boxed{y = - \frac{7}{6} + 0 \longrightarrow y = - \frac{7}{6} x}[/tex]
Answer
y = -7x/6Hope this helps and let me know if you have any doubts! Good luck on your assignment!