Answer:
b
Step-by-step explanation:
y = x + 1
The correct answer is (B). The slope-intercept form of a line is y = mx + b. Since the line passes through (−1,2), there are three possibilities: the line will have a slope (the "m" in front of the "x" variable), it will be vertical (x = −1), or it will be horizontal (y = 2). Plug x = −1 into all four equations to see which equation is not satisfied. The only answer choice that doesn't give us y = 2 is (B).
Option B is correct.
Given:
Line A passes through the point [tex](-1,2)[/tex].
To find:
Which of the given equations cannot be the equation of line A.
Solution:
If Line A passes through the point [tex](-1,2)[/tex], it means the equation of Line A must be satisfied by the point
In option A, consider the given equation is:
[tex]y=1-x[/tex]
Substituting [tex]x=-1,y=2[/tex], we get
[tex]2=1-(-1)[/tex]
[tex]2=1+1[/tex]
[tex]2=2[/tex]
This statement is true. So, [tex]y=1-x[/tex] can be the equation of line A.
Similarly, check for the other options.
In option B,
[tex]y=x+1[/tex]
Substituting [tex]x=-1,y=2[/tex], we get
[tex]2=-1+1[/tex]
[tex]2=0[/tex]
This statement is false. So, [tex]y=x+1[/tex] cannot be the equation of line A.
In option C,
[tex]x=-1[/tex]
It is a vertical line and it passes through the point [tex](-1,2)[/tex] because the x-coordinate is [tex]-1[/tex]. So, [tex]x=-1[/tex] can be the equation of line A.
In option D,
[tex]y=x+3[/tex]
Substituting [tex]x=-1,y=2[/tex], we get
[tex]2=-1+3[/tex]
[tex]2=2[/tex]
This statement is true. So, [tex]y=x+3[/tex] can be the equation of line A.
Therefore, the correct option is B.
Learn more:
https://brainly.com/question/13078415
the length of a mathematical text book the is approximately 18.34cm and its width is 11.75 calculate ?
the approximate perimeter of the front cover?
the approximate area of the front cover of the book?
Answer:
Perimeter=60.18cm
Area=215.495cm^2
Step-by-step explanation:
Given:
Length of book=18.34cm
Breadth=11.75cm
Solution:
Perimeter=2(l +b)
P=2(18.34+11.75)
P=2 x 30.09
P=60.18cm
Area=l x b
A=18.34 x 11.75
A=215.495 cm^2
Thank you!
Question 36 of 40
The distance of a line bound by two points is defined as
L?
O A. a line segment
B. a ray
O
c. a plane
O D. a vertex
SUBMI
Answer:
A. a line segment
Step-by-step explanation:
a ray is directing in one dxn, and has no end pointa plane is a closed, so more than 2 points a vertex is a single point itselfTest the claim that the proportion of people who own cats is significantly different than 80% at the 0.2 significance level. The null and alternative hypothesis would be:______.
A. H0 : μ = 0.8 H 1 : μ ≠ 0.8
B. H0 : p ≤ 0.8 H 1 : p > 0.8
C. H0 : p = 0.8 H 1 : p ≠ 0.8
D. H0 : μ ≤ 0.8 H 1 : μ > 0.8
E. H0 : p ≥ 0.8 H 1 : p < 0.8
F. H0 : μ ≥ 0.8 H 1 : μ < 0.8
The test is:_____.
a. left-tailed
b. right-tailed
c. two-tailed
Based on a sample of 200 people, 79% owned cats.
The test statistic is:______.
The p-value is:_____.
Based on this we:_____.
A. Fail to reject the null hypothesis.
B. Reject the null hypothesis.
Answer:
C. H0 : p = 0.8 H 1 : p ≠ 0.8
The test is:_____.
c. two-tailed
The test statistic is:______p ± z (base alpha by 2) [tex]\sqrt{\frac{pq}{n} }[/tex]
The p-value is:_____. 0.09887
Based on this we:_____.
B. Reject the null hypothesis.
Step-by-step explanation:
We formulate null and alternative hypotheses as proportion of people who own cats is significantly different than 80%.
H0 : p = 0.8 H 1 : p ≠ 0.8
The alternative hypothesis H1 is that the 80% of the proportion is different and null hypothesis is , it is same.
For a two tailed test for significance level = 0.2 we have critical value ± 1.28.
We have alpha equal to 0.2 for a two tailed test . We divided alpha with 2 to get the answer for a two tailed test. When divided by two it gives 0.1 and the corresponding value is ± 1.28
The test statistic is
p ± z (base alpha by 2) [tex]\sqrt{\frac{pq}{n} }[/tex]
Where p = 0.8 , q = 1-p= 1-0.8= 0.2
n= 200
Putting the values
0.8 ± 1.28 [tex]\sqrt{\frac{0.8*0.2}{200} }[/tex]
0.8 ± 0.03620
0.8362, 0.7638
As the calculated value of z lies within the critical region we reject the null hypothesis.
Find the area of the shape shown below.
2
2
4
Hurry and answer plz!!!!
1
Answer:
7 square units
Step-by-step explanation:
We can break down this complex shape into smaller shapes.
I've broken it down into a rectangle, a square, and a triangle (See attached picture)
Let's first find the area of the triangle. To do this we use the formula [tex]\frac{bh}{2}[/tex]. The base is 1 (because the top is 2, and 1 is already used on the triangle - 2-1 = 1.) and the height is 2 (because 4 is already used on the left, and 2 was used on the right so 4-2=2).
[tex]\frac{2\cdot1}{2} = \frac{2}{2} = 1[/tex].
Now let's find the area of the top square - we can just square 2 which is 4.
To find the area of the bottom rectangle, we can multiply it's two side lengths of 2 and 1 = 2.
Adding these all together gets us 4+2+1 = 7.
Hope this helped!
The domain of the following relation has how many elements?
[(1/2, 3.14/6), (1/2, 3.14/4), (1/2, 3.14/3), (1/2,3.14/2)]
a. 0
b. 1
c. 4
Answer:
b. 1
Step-by-step explanation:
All first coordinates are 1/2.
Answer: b. 1
Can somebody explain how trigonometric form polar equations are divided/multiplied?
Answer:
Attachment 1 : Option C
Attachment 2 : Option A
Step-by-step explanation:
( 1 ) Expressing the product of z1 and z2 would be as follows,
[tex]14\left[\cos \left(\frac{\pi \:}{5}\right)+i\sin \left(\frac{\pi \:\:}{5}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{3\pi \:}{2}\right)+i\sin \left(\frac{3\pi \:\:}{2}\right)\right][/tex]
Now to solve such problems, you will need to know what cos(π / 5) is, sin(π / 5) etc. If you don't know their exact value, I would recommend you use a calculator,
cos(π / 5) = [tex]\frac{\sqrt{5}+1}{4}[/tex],
sin(π / 5) = [tex]\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}[/tex]
cos(3π / 2) = 0,
sin(3π / 2) = - 1
Let's substitute those values in our expression,
[tex]14\left[\frac{\sqrt{5}+1}{4}+i\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}\right]\cdot \:2\sqrt{2}\left[0-i\right][/tex]
And now simplify the expression,
[tex]14\sqrt{5-\sqrt{5}}+i\left(-7\sqrt{10}-7\sqrt{2}\right)[/tex]
The exact value of [tex]14\sqrt{5-\sqrt{5}}[/tex] = [tex]23.27510\dots[/tex] and [tex](-7\sqrt{10}-7\sqrt{2}\right))[/tex] = [tex]-32.03543\dots[/tex] Therefore we have the expression [tex]23.27510 - 32.03543i[/tex], which is close to option c. As you can see they approximated the solution.
( 2 ) Here we will apply the following trivial identities,
cos(π / 3) = [tex]\frac{1}{2}[/tex],
sin(π / 3) = [tex]\frac{\sqrt{3}}{2}[/tex],
cos(- π / 6) = [tex]\frac{\sqrt{3}}{2}[/tex],
sin(- π / 6) = [tex]-\frac{1}{2}[/tex]
Substitute into the following expression, representing the quotient of the given values of z1 and z2,
[tex]15\left[cos\left(\frac{\pi \:}{3}\right)+isin\left(\frac{\pi \:\:}{3}\right)\right] \div \:3\sqrt{2}\left[cos\left(\frac{-\pi \:}{6}\right)+isin\left(\frac{-\pi \:\:}{6}\right)\right][/tex] ⇒
[tex]15\left[\frac{1}{2}+\frac{\sqrt{3}}{2}\right]\div \:3\sqrt{2}\left[\frac{\sqrt{3}}{2}+-\frac{1}{2}\right][/tex]
The simplified expression will be the following,
[tex]i\frac{5\sqrt{2}}{2}[/tex] or in other words [tex]\frac{5\sqrt{2}}{2}i[/tex] or [tex]\frac{5i\sqrt{2}}{2}[/tex]
The solution will be option a, as you can see.
find the h.c.f of 186,310,434
186|2
93|3
31|31
1
310|2
155|5
31|31
1
434|2
217|7
31|31
1
[tex]186=2\cdot3\cdot31\\310=2\cdot5\cdot31\\434=2\cdot7\cdot31\\\\\text{hcf}(186,310,434)=2\cdot31=62[/tex]
In how many years will
The Compounds interest
onRs. 14,000 be Rs. 4, 634 at 10%
p.a?
Answer:
3 years
Step-by-step explanation:
A = P(1 + r)^t
A = I + P
A = 14,000 + 4,634 = 18,634
18,634 = 14,000(1 + 0.1)^t
18,634/14,000 = 1.1^t
log (18,634/14,000) = log 1.1^t
log (18,634/14,000) = t * log 1.1
t = [log (18,634/14000)]/(log 1.1)
t = 3
3. A jogger runs 4 miles on Monday, 5 miles on
Tuesday, 3 miles on Wednesday, and 5 miles on
Thursday. He doesn't run on Friday. How many
miles did he run in all?
Answer:
17 miles
Step-by-step explanation:
4+5+5+3=17
4. Solve the system of equations. (6 points) Part I: Explain the steps you would take to solve the system by eliminating the x-terms. (1 point) Part II: Explain the steps you would take to solve the system by eliminating the y-terms. (2 points) Part III: Choose either of the methods described in parts I or II to solve the system of equations. Write your answer as an ordered pair. Show your work. (3 points)
Answer:
The system of equations you want to be solved is not given. I would however give an example with which the method of elimination will be shown, and can be used in solving problems of the nature.
Step-by-step explanation:
Consider the system of equations:
x + y = 7 ................................(1)
2x - y = 8 ..............................(2)
To eliminate x:
First multiply (1) by 2 to have
2x + 2y = 14 ...........................(3)
Next, subtract (2) from (3) to have
3y = 6
y = 6/3 = 2
To eliminate y:
Add (1) and (2) to have
3x = 15
x = 15/3 = 5
Therefore, (x, y) = (5, 2).
the product of two consecutive positive integer is 306
Answer:
[tex]\Large \boxed{\sf 17 \ and \ 18}[/tex]
Step-by-step explanation:
The product means multiplication.
There are two positive consecutive integers.
Let the first positive consecutive integer be x.
Let the second positive consecutive integer be x+1.
[tex](x) \times (x+1) =306[/tex]
Solve for x.
Expand brackets.
[tex]x^2 +x =306[/tex]
Subtract 306 from both sides.
[tex]x^2 +x -306=306-306[/tex]
[tex]x^2 +x -306=0[/tex]
Factor left side of the equation.
[tex](x-17)(x+18)=0[/tex]
Set factors equal to 0.
[tex]x-17=0[/tex]
[tex]x=17[/tex]
[tex]x+18=0[/tex]
[tex]x=-18[/tex]
The value of x cannot be negative.
Substitute x=17 for the second consecutive positive integer.
[tex](17)+1[/tex]
[tex]18[/tex]
The two integers are 17 and 18.
The product of two consecutive positive integers is 306.
We need to find the integers
solution : Let two consecutive numbers are x and (x + 1)
A/C to question,
product of x and (x + 1) = 306
⇒x(x + 1) = 306
⇒x² + x - 306 = 0
⇒ x² + 18x - 17x - 306 = 0
⇒x(x + 18) - 17(x + 18) = 0
⇒(x + 18)(x - 17) = 0⇒ x = 17 and -18
so x = 17 and (x +1) = 18
Therefore the numbers are 17 and 18.
Hope it helped u if yes mark me BRAINLIEST
TYSM!
please help
-3(-4x+4)=15+3x
Answer:
x=3
Step-by-step explanation:
● -3 (-4x+4) = 15 + 3x
Multiply -3 by (-4x+4) first
● (-3) × (-4x) + (-3)×(4) = 15 + 3x
● 12 x - 12 = 15 +3x
Add 12 to both sides
● 12x - 12 + 12 = 15 + 3x +12
● 12 x = 27 + 3x
Substract 3x from both sides
● 12x -3x = 27 + 3x - 3x
● 9x = 27
Dividr both sides by 9
● 9x/9 = 27/9
● x = 3
Evaluate
1+5.3
2
please answer quickly
Answer:
1+5.3=6.3
Step-by-step explanation:
not sure what your asking for with the 2
explain what your looking for with the 2 and maybe we can help you further
(I have to do it the way I did it because the 2 in the question is confusing)
Answer:
For expression 1 + 5.32: 6.32
For expression 1 + 5.3 × 2: 11.6
Step-by-step explanation:
If the expression is 1 + 5.32:
Add 1 to 5.32: 1 + 5.32 = 6.32If the expression is 1 + 5.3 × 2:
5.3 × 2 = 10.6Plug in 10.6: 1 + 10.61 + 10.6 = 11.6
) A random sample of size 36 is selected from a normally distributed population with a mean of 16 and a standard deviation of 3. What is the probability that the sample mean is somewhere between 15.8 and 16.2
Answer:
The probability is 0.31084
Step-by-step explanation:
We can calculate this probability using the z-score route.
Mathematically;
z = (x-mean)/SD/√n
Where the mean = 16, SD = 3 and n = 36
For 15.8, we have;
z = (15.8-16)/3/√36 = -0.2/3/6 = -0.2/0.5 = -0.4
For 16.2, we have
z = (16.2-16)/3/√36 = 0.2/3/6 = 0.2/0.5 = 0.4
So the probability we want to calculate is;
P(-0.4<z<0.4)
We can get this using the standard normal distribution table;
So we have;
P(-0.4 <z<0.4) = P(z<-0.4) - P(z<0.4)
= 0.31084
Find the particular solution of the differential equation that satisfies the initial condition. f '(x) = −8x, f(1) = −3
Step-by-step explanation:
f(x) = integral (-8x) dx = -4x^2 + C
f(1) = -3 = -4 + C
C = 1
f(x) = -4x^2 + 1
The particular solution of the differential equation f'(x) = -8x that satisfies the initial condition f(1) = -3 is: f(x) = -4x² + 1.
Here, we have,
To find the particular solution of the differential equation f'(x) = -8x that satisfies the initial condition f(1) = -3,
we can integrate the equation and use the initial condition to determine the constant of integration.
First, integrate both sides of the equation with respect to x:
∫ f'(x) dx = ∫ -8x dx
Integrating, we get:
f(x) = -4x² + C
Now, we can use the initial condition f(1) = -3 to find the value of the constant C.
Substituting x = 1 and f(x) = -3 into the equation, we have:
-3 = -4(1)² + C
-3 = -4 + C
C = -3 + 4
C = 1
Therefore, the particular solution of the differential equation f'(x) = -8x that satisfies the initial condition f(1) = -3 is:
f(x) = -4x² + 1
To learn more on equation click:
brainly.com/question/24169758
#SPJ2
Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below.4,3
Answer:
5
Step-by-step explanation:
a^2 + b^2 = c^2
4^2 + 3^2 = c^2
16 + 9 = c^2
25 = c^2
c = 5
Answer:
5Step-by-step explanation:
[tex]Hypotenuse = ?\\Opposite = 4\\Adjacent = 3\\\\Pythagoras \: Theorem ;\\\\Hypotenuse^2 =Opposite^2+Adjacent ^2\\\\Hypotenuse^2 = 4^2 +3^2\\\\Hypotenuse^2 = 16+9\\\\Hypotenuse^2 = 25\\\\\sqrt{Hypotenuse^2}=\sqrt{25} \\Hypotenuse = 5[/tex]
What is the quotient of 35,423 ÷ 15?
Answer: 2361.53
Step-by-step explanation:
Use long division and round.
(The 3 is repeated)
Gulnaz plans to use less than 26 eggs while baking. She uses 5 eggs for each cake that she bakes, and 3 eggs for each quiche that she bakes.
Write an inequality that represents the number of cakes (C)left parenthesis, C, right parenthesis and quiches (Q)left parenthesis, Q, right parenthesis Gulnaz can bake according to her plan.
Answer:
5(x) +3(y)<26
Step-by-step explanation:
Let x represent the number of cakes she will bake and let you know represent the nymber of quiche she will bake.
She will use less than 26 eggs while baking and 5 eggs for each cake and 3 eggs for each quiche.
The inequality representing the above statement iz given below.
5(x) +3(y)<26
Please help me with this ,
Answer:
(a) -2.3°/min
(b) -2.9°/min
Step-by-step explanation:
The average rate of change is the ratio of the difference in R values to the difference in the corresponding t values.
(a) m = (157.6 -226.6)/(30 -0) = -69/30 = -2.3 . . . degrees per minute
__
(b) m = (61.6 -119.6)/(70 -50) = -58/20 = -2.9 . . . degrees per minute
How to find probability from cumulative frequency graph
Answer:
find the difference of points on the graph
Step-by-step explanation:
The cumulative frequency graph (CDF) represents the integral of the probability distribution function (PDF). You find the probability that X is in some interval by subtracting the value of the CDF at the low end of the interval from the CDF value at the high end of the interval.
p(a < x < b) = cdf(b) -cdf(a)
Find the 14th term in the sequence 1, 1/3, 1/9, … Find the sum of the first 10 terms of the sequence above.
Answer:
This is a geometric progresion that begins with 1 and each term is 1/3 the preceeding term
Let Pn represent the nth term in the sequence
Then Pn = (1/3)^n-1
From this P14 = (1/3)^13 = 1/1594323
5. The sum of the first n terms of a GP beginning a with ratio r is given by
Sn = a* (r^n+1 - 1)/(r - 1)
With n = 10, a = 1 and r = 1/3, S10 = ((1/3)^11 - 1)/(1/3 - 1) = 1.500
3 ratios that are equivalent to 6:12
Answer:
1:3
2:4
3:6
Step-by-step explanation:
we can divide both sides by 6 and get 1:2
we can divide both sides by 3 and get 2:4
we can divide both sides by 2 and get 3:6
Answer:
12:24, 3:6, 2:4
Step-by-step explanation:
What we are looking for here is a ratio that, when you divide/multiply the same constant on both parts of the ratio, you get 6:12.
6:12 is the same thing as 1:2, so we can find ratios equivalent to 1:2 (the first value will be half the second).
Hope this helped!
Pattern A: 0, 5, 10, 15, 20,... Pattern B: 0, 20, 40, 60, 80,... Which statement is true about the relationship between the corresponding terms of Pattern A and Pattern B? A. The terms in Pattern B is 4 times the corresponding terms in Pattern A. B. The terms in Pattern A is 1/2 times the corresponding terms in Pattern B. C. The terms in Pattern B is 20 more than the corresponding terms in Pattern A. D. The terms in Pattern A is 5 more than the corresponding terms in Pattern B.
Answer:
Option 1: The terms in Pattern B is 4 times the corresponding terms of Pattern A
Step-by-step explanation:
Answer:
Pattern B has more then pattern A so option 2
Step-by-step explanation:
The base of a triangle is 4 cm greater than the
height. The area is 30 cm. Find the height and
the length of the base
h
The height of the triangle is
The base of the triangle is
Answer:
Step-by-step explanation:
Formula for area of a triangle:
Height x Base /2
Base (b) = h +4
Height = h
h + 4 x h /2 = 30cm
=> h +4 x h = 60
=> h+4h =60
=> 5h = 60
=> h = 12
Height = 12
Base = 12 +4 = 16
a vegetable garden and he's around the path of seemed like a square that together are 10 ft wide. The path is 2 feet wide. Find the total area of the vegetable garden and path
Answer:
Garden: 36 square feet
Path: 64 square feet
Step-by-step explanation:
Let's first find the total area. The total area will be 100 square feet since the side length is 10. Since the path is 2 feet wide and on all sides, that means that the inside square will have a side length of 6. That means that the vegetable garden is 36 square feet. The path will be 100 - (the garden), and the garden is 36 square feet, which means the outer path will be 64.
The perpendicular bisectors of ΔKLM intersect at point A. If AK = 25 and AM = 3n - 2, then what is the value of n?
Answer:
n = 9 is the answer.
Step-by-step explanation:
Given a Triangle [tex]\triangle KLM[/tex] with its perpendicular bisectors intersecting at a point A.
AK = 25 units and
AM = 3n -2
To find:
Value of n = ?
Solution:
First of all, let us learn about perpendicular bisectors and their intersection points.
Perpendicular bisector of a line PQ is the line which divides the line PQ into two equal halves and is makes an angle of [tex]\bold{90^\circ}[/tex] with the line PQ.
And in a triangle, the perpendicular bisectors of 3 sides meet at one point and that point is called Circumcenter of the triangle.
We can draw a circle from circumcenter so that the circle passes from the three vertices of the triangle.
i.e.
Circumcenter of a triangle is equidistant from all the three vertices of the triangle.
In the given statement, we are given that A is the circumcenter of the [tex]\triangle KLM[/tex].
Please refer to the attached image for the given triangle and sides.
The distance of A from all the three vertices will be same.
i.e. AK = AM
[tex]\Rightarrow 25 = 3n-2\\\Rightarrow 3n =25+2\\\Rightarrow 3n =27\\\Rightarrow \bold{n = 9}[/tex]
Therefore, n = 9 is the answer.
John painted his most famous work, in his country, in 1930 on composition board with perimeter 101.14 in. If the rectangular painting is 5.43 in. taller than it is wide, find the dimensions of the painting.
Answer:
22.57 x 28
Step-by-step explanation:
10.86 + 4x = 101.14
-10.86 -10.86
4x = 90.28
/4 /4
x = 22.57
5.43 + 22.57 = 28
22.57
On a coordinate plane, a line goes through (negative 3, 3) and (negative 2, 1). A point is at (4, 1). What is the equation, in point-slope form, of the line that is parallel to the given line and passes through the point (4, 1)? y − 1 = −2(x − 4) y – 1 = Negative one-half(x – 4) y – 1 = One-half(x – 4) y − 1 = 2(x − 4)
Answer:
y - 1 = -2(x - 4).
Step-by-step explanation:
First, we need to find the slope. Two sets of coordinates are (-3, 3), and (-2, 1).
(3 - 1) / (-3 - -2) = 2 / (-3 + 2) = 2 / (-1) = -2.
The line will be parallel to the given line, so the slope is the same.
Now that we have a point and the slope, we can construct an equation in point-slope form.
y1 = 1, x1 = 4, and m = -2.
y - 1 = -2(x - 4).
Hope this helps!
The slope of the line passing parallel to the given line and passes through the point (4, 1) is y = -2x + 9
The equation of a straight line is given by:
y = mx + b
where y, x are variables, m is the slope of the line and b is the y intercept.
The slope of the line passing through the points (-3,3) and (-2,1) is:
[tex]m=\frac{y_2-y_1}{x_2-x_1} \\\\m=\frac{1-3}{-2-(-3)} \\\\m=-2[/tex]
Since both lines are parallel, hence they have the same slope (-2). The line passes through (4,1). The equation is:
[tex]y-y_1=m(x-x_1)\\\\y-1=-2(x-4)\\\\y=-2x+9[/tex]
Find out more at: https://brainly.com/question/18880408
Tanθ - cosecθ secθ (1-2 cos²θ) = cotθ
Answer:
I thinksomething is wrong.
I'm getting another proving it's-tan thita.
I hope this is the one you are searching for..
Which expression is equal to 7 times the sum of a number and 4
Answer:
7(n + 4)
Step-by-step explanation:
Represent the number by n. Then the verbal expression becomes
7(n + 4).