Answer:
6000 lines/cm
Explanation:
From the question we are told that:
Grating 1=4000 lines/cm
Grating 2=6000 lines/cm
Generally The Spread of fringes is Larger when the Grating are closer to each other
Therefore
Grating 2 will spread the the light through a larger angle in the first-order pattern because its the closest with 6000 lines/cm
a baseball is given an initial velocity with magnitude v at the angle beta above the surface of an incline which in turn inclined at angle teta above horizontal calculate the distance measured along incline from the launch point to where the baseball strike the incline
Explanation:
The maximum height of an object, given the initial launch angle and initial velocity is found with:h=v2isin2θi2g h = v i 2 sin 2 θ i 2 g .
Large cockroaches can run as fast as 1.50 m/s in short bursts. Suppose you turn on the light in a cheap motel and
see one scurrying directly away from you at a constant 1.50 m/s. If you start 0.90 m behind the cockroach with
an initial speed of 0.80 m/s toward it, what minimum constant acceleration would you need to catch up with it
when it has traveled 1.20 m, just short of safety onder a counter?
Answer:
The time that you need to use 1.2/1.5 because this is how long it took the cockroach to travel the 1.2 meters to the counter. That is therefore how long you have to catch up to it.
Explanation:
Consider newtonian mechanics here.
Dynamic equation is
The time we have to use 1.2/1.5 this how long it took the cockroach to travel the 1.2 meters to the counter.
we'll consider newtonian mechanics here.
so the dynamic equations is S = ut + 0.5at^2
we know u=0.8
S=1.2+0.9
t=1.2/1.5
find a.
3. A microscope is focused on a black dot. When a 1.30 cm -thick piece of plastic is placed over the dot, the microscope objective has to be raised 0.410 cm to bring the dot back into focus. What is the index of refraction of the plastic
The index of refraction of the plastic is approximately 1.461
The known values in the question are;
The thickness of the piece of plastic placed on the dot = 1.30 cm
The height to which the microscope objective is raised to bring the dot back to focus = 0.410 cm
The unknown values in the question are;
The index of refraction
Strategy;
Calculate the refractive index by making use of the apparent height and real height method for the black dot under the thick piece of plastic
[tex]\mathbf{ Refractive \ index, n = \dfrac{Real \ depth}{Apparent \ depth}}[/tex]
The real depth of the dot below the piece of plastic, d₁ = 1.30 cm
The apparent depth of the dot, d₂ = The actual depth - The height to which the microscope is raised
Therefore;
The apparent depth of the dot, d₂ = 1.30 cm - 0.410 cm = 0.89 cm
[tex]The \ refractive \ index, \ n = \dfrac{d_1}{d_2}[/tex]
Therefore, n = 1.30/0.89 ≈ 1.461
The refractive index of the plastic block, n ≈ 1.461
Learn more about refractive index of light here;
https://brainly.com/question/24321580
Snell's Law: Light goes from material having a refractive index of n 1 into a material with refractive index n 2. If the refracted light is bent away from the normal, what can you conclude about the indices of refraction
Answer:
a) the light is close to normal therefore the reference incidence of medium 1 is less than medium n2 where the ray is transmitted.
b) The ray is far from normal in this case the refractive index of medium 1 is greater than index of medium 2
Explanation:
The expression for the angle of refraction is
n₁ sin θ₁ = n₂ sin θ₂
refractive index n₁ is for incident light and n₂ is for transmitted light.
We have two cases
a) the light is close to normal therefore the reference incidence of medium 1 is less than medium n2 where the ray is transmitted.
b) The ray is far from normal in this case the refractive index of medium 1 is greater than index of medium 2
Condensation is the process of ____________________.
a. planetesimals accumulating to form protoplanets.
b. planets gaining atmospheres from the collisions of comets.
c. clumps of matter adding material a small bit at a time.
d. clumps of matter sticking to other clumps.
e. clouds formed from volcanic eruptions.
A simple model of the human eye ignores its lens entirely. Most of what the eye does to light happens at the outer surface of the transparent cornea. Assume that this surface has a radius of curvature of 6.50 mm and that the eyeball contains just one fluid, with a refractive index of 1.41. Determine the distance from the cornea where a very distant object will be imaged.
Answer:
the distance from the cornea where a very distant object will be imaged is 23.35 mm
Explanation:
Given the data in the question;
For a spherical refracting surface;
[tex]n_i[/tex]/[tex]d_0[/tex] + [tex]n_t[/tex]/[tex]d_i[/tex] = ( [tex]n_t[/tex] - [tex]n_i[/tex] )/R
where [tex]n_i[/tex] is the index of refraction of the light of ray in the incident medium
[tex]d_0[/tex] is the object distance
[tex]n_t[/tex] is the index of refraction of light ray in the refracted medium
[tex]d_i[/tex] is the image distance
R is the radius of curvature
Now, let [tex]d_0[/tex] = ∞, such that;
[tex]n_i[/tex]/∞ + [tex]n_t[/tex]/[tex]d_i[/tex] = ( [tex]n_t[/tex] - [tex]n_i[/tex] )/R
0 + [tex]n_t[/tex]/[tex]d_i[/tex] = ( [tex]n_t[/tex] - [tex]n_i[/tex] )/R
we make [tex]d_i[/tex] subject of the formula
[tex]n_t[/tex]R = [tex]d_i[/tex]( [tex]n_t[/tex] - [tex]n_i[/tex] )
[tex]d_i[/tex] = ( [tex]n_t[/tex] × R ) / ( [tex]n_t[/tex] - [tex]n_i[/tex] )
given that; R = 6.50 mm, [tex]n_t[/tex] = 1.41, we know that [tex]n_i[/tex] = 1.00
so we substitute
[tex]d_i[/tex] = (1.41 × 6.50 mm ) / ( 1.41 - 1.00 )
[tex]d_i[/tex] = 9.165 / 0.41
[tex]d_i[/tex] = 23.35 mm
Therefore, the distance from the cornea where a very distant object will be imaged is 23.35 mm
An object is acted upon by two and only two forces that are equal magnitude and oppositely directed. Is the objected necessarily in static equilibrium? Explain. You can draw a picture if that helps explain.
Answer:
the body is subjected to a continuous rotation and the body is not in rotational equilibrium
Explanation:
For an object to have a static equilibrium, it must meet two relationships
∑ F = 0
∑ τ =0
force acting on a body fulfills the relation of
sum F = F - F = 0
when two forces do not move from position.
To find the torque we assume that the counterclockwise rotations are positive
Σ τ = - F r - F r
Στ = -2 Fr <> 0
consequently the body is subjected to a continuous rotation and the body is not in rotational equilibrium
In which situation should a parent be proactive and act to assume responsibility?
Answer: Patsy is eager to learn how to bake a cake but does not know how to do it.
Explanation: i picked this and it is correct, you’re welcome:)
The potential difference between the plates of a capacitor is 234 V. Midway between the plates, a proton and an electron are released. The electron is released from rest. The proton is projected perpendicularly toward the negative plate with an initial speed. The proton strikes the negative plate at the same instant the electron strikes the positive plate. Ignore the attraction between the two particles, and find the initial speed of the proton.
I have tried looking at the cramster.com solution manual and do not like the way it is explained. Simply put, I cannot follow what is going on and I am looking for someone who can explain it in plain man's terms and help me understand and get the correct answer. I am willing to give MAX karma points to anyone who can help me through this. Thank you kindly.
Answer:
The speed of proton is 2.1 x 10^5 m/s .
Explanation:
potential difference, V = 234 V
let the initial speed of the proton is v.
The kinetic energy of proton is
KE = q V
[tex]0.5 mv^2 = e V \\\\0.5\times 1.67\times 10^{-27} v^2 = 1.6\times 10^{-19} \times 234\\\\v=2.1\times 10^5 m/s[/tex]
15- A racehorse coming out of the gate accelerates from rest to a velocity f 15.0 m/s due west in 1.80 s. What is its average acceleration?
Answer: (15 - 0)/1.8 = 8. 33m/s^2
Explanation:
The acceleration of the racehorse is 8.33 m/s²
The given parameters;
initial velocity of the racehorse, u = 0
final velocity of the racehorse, v = 15 m/s
time of motion of the horse, t = 1.8 s
The acceleration of the racehorse is calculated from change in velocity per change in time of motion as shown below;
[tex]a = \frac{\Delta v}{\Delta t} = \frac{v-u}{t} \\\\a = \frac{15 - 0}{1.8} \\\\a = 8.33 \ m/s^2[/tex]
Thus, the acceleration of the racehorse is 8.33 m/s²
Learn more here: https://brainly.com/question/17067013
a concave mirror has a radius of curvature of 60cm. How close to the mirror should an object be placed so that the rays travel parallel to each other after reflection
Answer:
Answer:30 cm
Answer:30 cmExplanation:
Answer:30 cmExplanation:Given=ROC= 60cm
Answer:30 cmExplanation:Given=ROC= 60cmObject be placed so that the rays that came from the object to them mirror are reflected from the mirror, and, then travel parallel to each other= 30cm at focus.
A 30-year-old astronaut goes off on a long-term mission in a spacecraft that travels at speeds close to that of light. The mission lasts exactly 20 years as measured on Earth. Biologically speaking, at the end of the mission, the astronaut's age would be:_______.
a) exactly 50 years.
b) exactly 25 years.
c) exactly 30 years.
d) less than 50 years.
e) more than 50 years.
Answer:
I think D) less than 50 years
Biologically speaking, at the end of the mission, the astronaut's age would be less than 50 years. The correct option is d.
Who is an astronaut?An astronaut observes and performs the experiments based on the universe.
A 30-year-old astronaut goes off on a long-term mission in a spacecraft that travels at speeds close to that of light. The mission lasts exactly 20 years as measured on Earth.
Due to special relativity, between space and Earth, both moving with different speeds.
The total age will be less than 30 +20 =50 years. In space, he is moving with speed of light. So, time will move slowly. As measured with respect to Earth, exact time spent in space 20 years will be less on Earth.
So, biologically speaking, at the end of the mission, the astronaut's age would be less than 50 years.
Thus, the correct option is d.
Learn more about astronaut.
https://brainly.com/question/11244838
#SPJ2
Which of the following accurately describes circuits?
options:
A)
In a parallel circuit, there's only one path for the current to travel.
B)
In a series circuit, the amount of current passing through each part of the circuit may vary.
C)
In a series circuit, the current can flow through only one path from start to finish.
D)
In a parallel circuit, the same amount of current flows through each part of the circuit.
' C ' is the only correct statement.
Which of the following quantities is measured by the area under the velocity time graph? (a) Magnitude of velocity (b) Magnitude of acceleration (c) Magnitude of displacement (d) Average Speed
Answer:
c.
magnitude of displacement
A student graphs power (p) on the vertical axis and time (t) on the horizontal axis. The graph appears to be a hyperbola.
a) What should the student graph on each axis to test whether the relationship is actually
hyperbolic?
b) If the relationship is actually hyperbolic, what is the general equation for the relationship between power and time?
Answer: it would be daddy
Explanation:
Because I’m daddy
What frequency is received by a person watching an oncoming ambulance moving at 110 km/h and emitting a steady 800-Hz sound from its siren? The speed of sound on this day is 345 m/s. Group of answer choices
Answer:
check photo for solve
Explanation:
Outside a spherically symmetric charge distribution of net charge Q, Gauss's law can be used to show that the electric field at a given distance:___________.
A) must be directed inward.
B) acts like it originated in a point charge Q at the center of the distribution.
C) must be directed outward.
D) must be greater than zero.
E) must be zero.
Answer:
Q at the center of the distribution.
Explanation:
The Gauss's law is the law that relates to the distribution of electrical charges to the resulting electrical field. It states that a flux of electricity outside the arabatory closed surface is proportional to the electricitical harg enclosed by the surface.An observer on Earth sees rocket 1 leave Earth and travel toward Planet X at 0.3c. The observer on Earth also sees that Planet X is stationary. An observer on Planet X sees rocket 2 travel toward Earth at 0.4c. What is the speed of rocket 1 according to an observer on rocket 2?
Answer:
0.625 c
Explanation:
Relative speed of a body may be defined as the speed of one body with respect to some other or the speed of one body in comparison to the speed of second body.
In the context,
The relative speed of body 2 with respect to body 1 can be expressed as :
[tex]$u'=\frac{u-v}{1-\frac{uv}{c^2}}$[/tex]
Speed of rocket 1 with respect to rocket 2 :
[tex]$u' = \frac{0.4 c- (-0.3 c)}{1-\frac{(0.4 c)(-0.3 c)}{c^2}}$[/tex]
[tex]$u' = \frac{0.7 c}{1.12}$[/tex]
[tex]u'=0.625 c[/tex]
Therefore, the speed of rocket 1 according to an observer on rocket 2 is 0.625 c
The spectral lines of two stars in a particular eclipsing binary system shift back and forth with a period of 6 months. The lines of both stars shift by equal amounts, and the amount of the Doppler shift indicates that each star has an orbital speed of 64,000 m/s. What are the masses of the two stars
Answer:
the masses of the two stars are; m₁ = m₂ = 4.92 × 10³⁰ kg
Explanation:
Given the data in the question;
Time period = 6 months = 1.577 × 10⁷ s
orbital speed v = 64000 m/s
since its a circular orbit,
v = 2πr / T
we solve for r
r = vT/ 2π
r = ( 64000 × 1.577 × 10⁷ ) / 2π
r = 1.6063 × 10¹¹ m = ( (1.6063 × 10¹¹) / (1.496 × 10¹¹) )AU = 1.0737 AU
Now, from Kepler's law
T² = r³ / ( m₁ + m₂ )
T = 6 months = 0.5 years
we substitute
(0.5)² = (1.0737)³ / ( m₁ + m₂ )
0.25 = 1.2378 / ( m₁ + m₂ )
( m₁ + m₂ ) = 1.2378 / 0.25
( m₁ + m₂ ) = 4.9512
m₁ = m₂ = 4.9512 / 2 = 2.4756 solar mass
we know that solar mass = 1.989 × 10³⁰ kg
so
m₁ = m₂ = 2.4756 × 1.989 × 10³⁰ kg
m₁ = m₂ = 4.92 × 10³⁰ kg
Therefore, the masses of the two stars are; m₁ = m₂ = 4.92 × 10³⁰ kg
State the law of conservation of momentum
Explanation:
Conservation of momentum, general law of physics according to which the quantity called momentum that characterizes motion never changes in an isolated collection of objects; that is, the total momentum of a system remains constant
What is not one of the main uses of springs?
A. Car suspension
B. Bike suspension
C. The seasons
D. Clock making
which of the following cannot be increased by using a machine of some kind? work, force, speed, torque
Explanation:
Work cannot be increased by using a machine of some kind.
Work cannot be increased by using a machine of some kind.
A machine is any device in which the effort applied at one end overcomes a load at the other end.
Machines are generally used to perform different tasks faster.
However, a simple machine can not be used to increase the amount of work done at any time.
Force, speed and torque can all be increased using machines.
Learn more: https://brainly.com/question/15365822
Present the ways to observe interference patterns on thin films. Why the thickness of thin films should be in scale of wavelength?
the president of The proposal ahr stay Sheba SBR Abba and and I send svrvs you svrvs
Which of the following groups is the largest ?
population
community
ecosystem
biome
Answer:
B. Community
Took science classes for 6 years now
Given that two vectors A = 5i-7j-3k, B = -4i+4j-8k find A×B
[tex]\textbf{A}×\textbf{B}= 68\hat{\textbf{i}} + 52\hat{\textbf{j}} - 8\hat{\textbf{k}}[/tex]
Explanation:
Given:
[tex]\textbf{A} = 5\hat{\textbf{i}} - 7\hat{\textbf{j}} - 3\hat{\textbf{k}}[/tex]
[tex]\textbf{B} = -4\hat{\textbf{i}} + 4\hat{\textbf{j}} - 8\hat{\textbf{k}}[/tex]
The cross product [tex]\textbf{A}×\textbf{B}[/tex] is given by
[tex]\textbf{A}×\textbf{B} = \left|\begin{array}{ccc}\hat{\textbf{i}} & \hat{\textbf{j}} & \hat{\textbf{k}} \\\:\:5 & -7 & -3 \\ -4 & \:\:4 & -8 \\ \end{array}\right|[/tex]
[tex]= \left|\begin{array}{cc}-7 & -3\\\:4 & -8\\ \end{array}\right|\:\hat{\textbf{i}}\:+\:\left|\begin{array}{cc}-3 & \:\:5\\-8 & -4\\ \end{array}\right|\:\hat{\textbf{j}}\:+\: \left|\begin{array}{cc}\:\:5 & -7\\-4 & \:\:4\\ \end{array}\right|\:\hat{\textbf{k}}[/tex]
[tex]= 68\hat{\textbf{i}} + 52\hat{\textbf{j}} - 8\hat{\textbf{k}}[/tex]
Sound is an example of a:
Select one:
O a. rolling waves
b. longitudinal wave
O c. traverse waves
O d. surface wave
Ez Physics question will mark brainliest.
Answer:
The answer is B. longitude wave
What is the submarine's maximum safe depth in sea water? The pressure inside the submarine is maintained at 1.0 atm
Answer:
The submarine's maximum safe depth in sea water is 801.678 m.
Explanation:
P=Po+(rho)*g*h
Max Pressure = Initial Pressure + (Water Density)(Gravity)(Max Depth)
Area of Window = Pi*(Diameter/2)^2 = Pi*(.4m/2)^2 = 0.125664 m^2
Max Pressure= (1.0*10^6 N)/(0.125664 m^2)= 7.95775-E6 Pa
Initial Pressure= 1atm= 101.3kPa= 101300Pa
Water Density (rho) = 1000kg/m^3
Gravity= 9.8m/s^2
So rearranging for h= (P-Po)/((rho)*g)
h=((7.95775-E6Pa)-(101300Pa))/((1000kg/m^3)(9.8m/s^2))= 801.678 m
Determine the magnitude as well as direction of the electric field at point A, shown in the above figure. Given the value of k = 8.99 × 1012N/C. where, d= 11 cm Q= 12.5 C
Answer:
The electric field is 9.3 x 10^12 N/C and the direction is away from the charge.
Explanation:
charge, Q = 12.5 C
distance, d = 11 cm = 0.11 m
Let the electric field is E.
[tex]E =\frac{K Q}{d^2}\\\\E = \frac{9\times 10^9\times 12.5}{0.11\times 0.11}\\\\E = 9.3\times 10^{12} N/C[/tex]
The direction of electric filed is away from the charge.
Keisha writes that if an object has any external forces acting on it, then the object can be in dynamic equilibrium but not
static equilibrium
Which statement best describes Keisha's error?
An object that is not moving is always in static equilibrium.
O An object that is moving must be in dynamic equilibrium.
An object in either state of equilibrium must have no forces acting on it.
An object in either state of equilibrium must have no net force acting on it.
Answer:
An object in either state of equilibrium must have no net force acting on it.
Explanation:
Answer: An object in either state of equilibrium must have no net force acting on it.
Explanation:
1. Una pelota rueda hacia la derecha siguiendo una trayectoria en línea recta de modo que recorre una distancia de 10m en 5 s , después cambia su trayectoria cuando es lanzada hacia arriba 25m durante 7 s. Calcular la velocidad y la rapidez al punto final (altura maxima) al que llegó la pelota.
2. Una mariposa vuela en línea recta hacia el sur recorriendo una distancia de 15 m durante 28 s, después cambia de dirección hacia el Oeste recorriendo una distancia de 50 m en un tempo de 80 s ¿cuál es la velocidad y rapidez de la mariposa?
3.- Una persona camina durante 21 minutos hacia el este de su casa una distancia de 1500 m y después cambia su dirección hacia el Norte recorriendo una distancia de 3350 m en un tiempo 32 minutos llegando al supermercado. ¿Calcula la velocidad y rapidez de la persona?
4.- Un automóvil se mueve al Oeste recorriendo una distancia de 80 km en 1.2 horas, posteriormente cambia su trayectoria hacia el Sur, recorriendo una distancia de 120 km en un tiempo 1.6 hora. ¿Calcula la velocidad y rapidez del automóvil?
Answer:
https://youtu.be/ymHHdoCGJOU