Answer:
139 ( D )
Step-by-step explanation:
Interest rate on loan = 4% = 0.04
Number of payments = 15
First 10 payments = 100 each
last 5 payments = 200 each
Calculating the value of K
K = [ ( 100 / 0.04 * ( 1-1 / 1.04^10 ) + 200/0.04 * ( 1-1 / (1 +0.04)^5)* 1 /1.04^10)
* 1.1 - 100 / 0.04 * ( 1-1 / (1+0.04)^5 ) - 200/0.04 * (1-1 /1.04^5) * 1/1.04^10)*0.04 / ( 1-1 / 1.04^5) * (1 + 0.04)^5
= 138.6051 ≈ 139
!!!HELPPP PLEASEEE!!! For this problem I thought it meant to subtract 0.1492 - 0.1515 = -0.0023 however my answer was incorrect. How do I solve this problem then? Help Please!
Answer:
0.1492-0.1515= -0.0023
factor 9-x^2 completely
Answer:
-(x + 3)(x - 3)
Step-by-step explanation:
Using the difference of squares we can factor this expression.
[tex](9 - x^2)\\= (3^2 - x^2)\\= (3 + x)(3 - x)\\= -(3 + x)(-3 + x)\\= -(x + 3)(x - 3)[/tex]
PLEASE HELP ME AND BE CORRECT BEFORE ANSWERING
Answer:
False, true
Step-by-step explanation:
I’m not 100% sure but I think that’s the answer
write the equation of the line passing through the points (-2, 3) and (-1,-2) in slope intercept and point slope form
in slope intercept
y = -5x - 7
point slope form
y + 5x - 7 =0
Suppose the average commute time of your employees is unknown. The standard deviation of their commute time is estimated as 22.8 minutes. How many employees must be included in a sample to create a 99 percent confidence interval for the average commute time with a confidence interval width of no more than 12 minutes
Answer:
96 employees
Step-by-step explanation:
Given that the standard deviation = 22.8
The width in the question = 12
We solve for the margin of error E.
E = width / 2
= 12/2 = 6
At 99%
Alpha = 1-0.99
= 0.01
Alpha/2 = 0.01/2 = 0.005
Z0.005 = 2.576
Sample size n
= ((2.576x22.8)/2)²
= 95.8
= 96
The number of employees is 96
Thank you!
the function h is defined by (x)=x^2+2
find h(4n)
h(4n) =
Answer:
h(4n) =16n^2+2
Step-by-step explanation:
h(4n) = (4n)^2+2
h(4n) =16n^2+2
Multiply the following and combine terms where possible. -a(a-b-3)
Answer:
-a^2 +ab +3a
Step-by-step explanation:
-a(a-b-3)
Distribute
-a*a -a*(-b) -a *(-3)
-a^2 +ab +3a
3-6÷12
simplyfication
You are dividing a rectangular garden into 2 equal sections by
placing a wooden plank diagonally across it, from one corner to
the opposite comer. The garden measures 4 feet by 6 feet. What
length diagonal plank should you buy, and why?
Diagonal planks are available in 1-foot increments (you can
buy a 1-foot board, or a 2-foot board, or a 3-foot board, and
so on...)
• You can cut the plank down from the size you buy to the
exact size, but you want to waste as little wood as possible.
Answer:
You can cut the plank down from the size you buy to the
exact size, but you want to waste as little wood as possible.
Suppose that the length of a side of a cube X is uniformly distributed in the interval 9
Answer:
[tex]f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.[/tex]
Step-by-step explanation:
Given
[tex]9 < x < 10[/tex] --- interval
Required
The probability density of the volume of the cube
The volume of a cube is:
[tex]v = x^3[/tex]
For a uniform distribution, we have:
[tex]x \to U(a,b)[/tex]
and
[tex]f(x) = \left \{ {{\frac{1}{b-a}\ a \le x \le b} \atop {0\ elsewhere}} \right.[/tex]
[tex]9 < x < 10[/tex] implies that:
[tex](a,b) = (9,10)[/tex]
So, we have:
[tex]f(x) = \left \{ {{\frac{1}{10-9}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex]
Solve
[tex]f(x) = \left \{ {{\frac{1}{1}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex]
[tex]f(x) = \left \{ {{1\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex]
Recall that:
[tex]v = x^3[/tex]
Make x the subject
[tex]x = v^\frac{1}{3}[/tex]
So, the cumulative density is:
[tex]F(x) = P(x < v^\frac{1}{3})[/tex]
[tex]f(x) = \left \{ {{1\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex] becomes
[tex]f(x) = \left \{ {{1\ 9 \le x \le v^\frac{1}{3} - 9} \atop {0\ elsewhere}} \right.[/tex]
The CDF is:
[tex]F(x) = \int\limits^{v^\frac{1}{3}}_9 1\ dx[/tex]
Integrate
[tex]F(x) = [v]\limits^{v^\frac{1}{3}}_9[/tex]
Expand
[tex]F(x) = v^\frac{1}{3} - 9[/tex]
The density function of the volume F(v) is:
[tex]F(v) = F'(x)[/tex]
Differentiate F(x) to give:
[tex]F(x) = v^\frac{1}{3} - 9[/tex]
[tex]F'(x) = \frac{1}{3}v^{\frac{1}{3}-1}[/tex]
[tex]F'(x) = \frac{1}{3}v^{-\frac{2}{3}}[/tex]
[tex]F(v) = \frac{1}{3}v^{-\frac{2}{3}}[/tex]
So:
[tex]f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.[/tex]
Clarissa has abudget of 1,200$ amonth to spend for rent n food she already spent 928 this month which inequality represents the amount she can still spend this month
Answer:
272$
Step-by-step explanation:
You really should be clearer with your questions, but if your looking for the balance she has 272$
Given the function
f(x)=7x2−2x+5.Calculate the following values:
f(−2)=
f(−1)=
f(0)=
f(1)=
f(2)=
This is the answers and their coordinates
Lakisha wants to buy some bitcoins. The exchange rate is $1 USD to 0.004 bitcoin. How many bitcoins can she buy with $400?
Answer:
1.6 Bitcoins
Step-by-step explanation:
Given data
We have the rate as
$1 USD to 0.004
Hence $400 will buy x bitcoins
Cross multiply to find the value of x
1*x= 400*0.004
x=1.6
Hence $400 will get you 1.6 Bitcoins
i just need the answer no explanation
Find mDCAˆ.
A. 92
B. 145
C. 159
D. 113
9514 1404 393
Answer:
C. 159°
Step-by-step explanation:
The exterior angle at B is half the difference of the measures of the arcs it intercepts:
(3x +19)° = 1/2((17x -3)° -91°)
6x +38 = 17x -94 . . . . . . . . . . multiply by 2, divide by °
132 = 11x . . . . . . . . . . . . . add 94-6x
x = 12 . . . . . . . . . . . . divide by 11
Then long arc AD is ...
arc AD = (17(12) -3)° = 201°
Arc DCA is the rest of the circle:
arc DCA = 360° -201° = 159°
C = ſa²+b² Please describe the Mathematical order of Operation
Step-by-step explanation:
C + ſa6+b5 bescribe the Mathematical order of Operation
Which function below has the following domain and range?
Domain: {-7, - 5,2, 6, 7}
Range: {0, 1,8}
Answer:
{(2,0),(-5,1),(7,8),(6,0),(-7,1)
Given the following formula, solve for y.
Answer:
b) y=x -2(w+z)
Step-by-step explanation:
multiply both sides, move the terms and write on parametric form
CAN SOMEONE PLEASE ANSWER MY QUESTION?!
Answer:
0.02 m/sec
Step-by-step explanation:
26/30=0.89 —> 0.89 min —> 53.4 sec
42/50=0.84 meters
speed=0.84 / 53.4 = 0.015 m/sec = 0.02 m/sec
What is the length of BD Round to one decimal place. Thanks!
Answer:
2.7
Step-by-step explanation:
ratios help
2.5 : 5.8 :: x : 6.2
2.5/5.8 = x/6.2
solve for x :
x = approx. 2.7
Nick nas cup of syrup. He uses cup of syrup to make a bont of granota
PartA: How many bow's or granola can Nick make with cup of syrup? (4 points)
Part 8: on your own paper, draw a fraction model that shows the total number of bouts of granola that Nick can make with cup of syrup. Make sure to label the model seks
explain your model in detail to descnbe how this model visually shows the solution for Part A. (6 points). I’ll make u brainless if u help
Answer:
Step-by-step explanation:
its easyk
Not sure whether the answer is 9 or -11, so please help
help with number 6 please. thank you.
Answer:
See Below.
Step-by-step explanation:
We are given that:
[tex]\displaystyle \frac{dT}{dt} = -k(T - T_0)[/tex]
And we want to show that:
[tex]\displaystyle T = T_0+Ae^{-kt}[/tex]
From the original equation, divide both sides by (T - T₀) and multiply both sides by dt. Hence:
[tex]\displaystyle \frac{dT}{T-T_0}= -k\, dt[/tex]
Take the integral of both sides:
[tex]\displaystyle \int \frac{dT}{T- T_0} = \int -k \, dt[/tex]
Integrate. For the left integral, we can use u-substitution. Note that T₀ is simply a constant. Hence:
[tex]\displaystyle \ln\left|T - T_0\right| = -kt+C[/tex]
Raise both sides to e:
[tex]\displaystyle e^{\ln\left|T-T_0\right|} = e^{-kt+C}[/tex]
Simplify:
[tex]\displaystyle \begin{aligned} \left| T- T_0\right| &= e^{-kt} \cdot e^C \\ \\ &= e^C\left(e^{-kt}\right) \\ \\ &=Ae^{-kt} & \text{Let $e^C = A$}\end{aligned}[/tex]
Since the temperature T will always be greater than or equal to the surrounding medium T₀, we can remove the absolute value. Hence:
[tex]\left(T - T_0\right) = Ae^{-kt}[/tex]
Therefore:
[tex]\displaystyle T = T_0+Ae^{-kt}[/tex]
Mandatory minimum character count of 20.
When an individual inherits two identical alleles for the brown eyed gene (BB)which type of individual is this?
In the equation y = 39x + 50represents the number of people at a holiday dinner and y represents the total cost of
the dinner. If a family spent $518, how many people attended the dinner?
Answer:
The correct answer is - 12.
Step-by-step explanation:
Given:
Total number of people = y = 39x+50
Total amount spent y = 518
Solution:
The equation for the number of people who attended the dinner
y = 39x+50
The cost of dinner is equally divided by number of people =
then, 518 = y
placing value, 518 = 39x+50
x = (518-50)/39
= 468/39
= 12
Then number of people attended the dinner = 12
Hi, hiw do we do this question?
[tex]\displaystyle \int\sec x\:dx = \ln |\sec x + \tan x| + C[/tex]
Step-by-step explanation:
[tex]\displaystyle \int\sec x\:dx=\int\sec x\left(\frac{\sec x+ \tan x}{\sec x + \tan x}\right)dx[/tex]
[tex]\displaystyle = \int \left(\dfrac{\sec x\tan x + \sec^2x}{\sec x + \tan x} \right)dx[/tex]
Let [tex]u = \sec x + \tan x[/tex]
[tex]\:\:\:\:\:\:du = (\sec x\tan x + \sec^2x)dx[/tex]
where
[tex]d(\sec x) = \sec x\tan x\:dx[/tex]
[tex]d(\tan x) = \sec^2x\:dx[/tex]
[tex]\displaystyle \Rightarrow \int \left(\frac{\sec x\tan x + \sec^2x}{\sec x + \tan x}\right)\:dx = \int \dfrac{du}{u}[/tex]
[tex]= \ln |u| + C = \ln |\sec x + \tan x| + C[/tex]
find csc theta and sin theta if tan theta = 7/4 and sin theta less than 0
9514 1404 393
Answer:
sin(θ) = (-7√65)/65
csc(θ) = (-√65)/7
Step-by-step explanation:
The angle will have the given characteristics if its terminal ray passes through the 3rd-quadrant point (-4, -7). The distance from the origin to that point is ...
d = √((-4)² +(-7)²) = √65
The sine of the angle is the ratio of the y-coordinate to this value:
sin(θ) = -7/√65
sin(θ) = (-7√65)/65
The cosecant is the inverse of the sine
csc(θ) = (-√65)/7
The measure of ∠1 is 39°. What is the measure of ∠2?
Answer:
141
Step-by-step explanation:
if the sum of the two angles equals 180 subtract 39 from 180 to get the remainder of 141 which is angle 2
What system of equations is shown on the graph below
Answer:
A.
Step-by-step explanation:
x-2y=4 has a x-intercept of 4, a slope of 1/2, and a y-intercept of -2. 2x+y=4 has a x-intercept of -2, a slope of 2, and a y-intercept of -4.
Determine f(-1) if the graph of f(x) is given below.
Answer:
[tex]f(-1) = -2[/tex]
Step-by-step explanation:
Given
The attached graph
Required
[tex]f(-1)[/tex]
This is the point where
[tex]x = -1[/tex]
On the attached graph;
[tex]f(x) = -2[/tex] when [tex]x = -1[/tex]
Hence:
[tex]f(-1) = -2[/tex]