James and his family spend a morning picking peaches. They fill several bags. This line plot shows the weight of each bag. How many more pounds does one of the heaviest bags weigh than one of the lightest bags? Enter your answer as a fraction in simplest form by filling in the boxes.

Answers

Answer 1

Answer:

The answer is "[tex]1\frac{1}{2}[/tex]"

Step-by-step explanation:

Please find the graph file of the question in the attachment.

Its first step is the lightest and heaviest evil. [tex]4 \frac{1}{4}[/tex] is the lightest bag, and [tex]5 \frac34[/tex] is the heaviest bag. To remove it now, it is not permissible to remove it as a mixed fraction, therefore convert each fraction into an improper fraction by multiplying the whole integer to the numerator, then adding a numerator to this amount, multiplied by the numerator. Follow those steps to find out [tex]4 \frac{1}{4}[/tex]  is the wrong part.

[tex](4\times 4+1=17) \ so\ 4\frac14=\frac{17}{4}.[/tex] The process is the same for [tex]5 \frac34 (5\times 4+3=23) \ so \ 5 \frac34= \frac{23}{4}.[/tex]

You now deduce the numerator but just not the negative, to deduct both. You subtract, as the question is raised far as[tex]\frac{23}{4}-\frac{17}{4} =\frac{6}{4}[/tex] is involved. The last stage is that this is transformed into blended families, dividing its count by the denominator, 6 divided by 4 is identical to 1.5. 1 is a full amount so you don't modify it, but you do need to change the 5 decimals to [tex]1.5=1 \frac{5}{10}[/tex] and the last step is [tex]1\frac{1}{2}[/tex]to reduce.

James And His Family Spend A Morning Picking Peaches. They Fill Several Bags. This Line Plot Shows The

Related Questions

ax^2-y^2-x-y factorize​

Answers

Answer:

x(ax-1)-y(y+1)

Step-by-step explanation:

you have to group the like terms

ax^2-x-y^2-y

x(ax-1)-y(y+1)

I hope this helps

Please help I’ll mark as brainlist

Answers

Answer:

Ekta and Preyal

Step-by-step explanation:

Answer: Ekta and Preyal

Originally the cubes have a perimeter of 15, both Ekta and Preyal have a perimeter of 17 which is exactly a 2 unit increase

If a line has a midpoint at (2,5), and the endpoints are (0,0) and (4,y), what is the value of y? Please explain each step for a better understanding:)

Answers

Answer:

y = 10

Step-by-step explanation:

To find the y coordinate of the midpoint, take the y coordinates of the endpoints and average

(0+y)/2 = 5

Multiply each  die by 2

0+y = 10

y = 10

Where did term “infinity” come from

Answers

the English mathematician John Wallis in 1655 invented the word infinity Infinity is from the Latin, infinitas. In general, the word signifies the state from an entity's not ending/limit.

what does this equal 2^3 + 6^5=

Answers

[tex]\\ \sf\longmapsto 2^3+6^5[/tex]

[tex]\\ \sf\longmapsto 2^3+(2\times 3)^5[/tex]

[tex]\\ \sf\longmapsto 8+2^5\times 3^5[/tex]

[tex]\\ \sf\longmapsto 8+32\times 243[/tex]

[tex]\\ \sf\longmapsto 40+7776[/tex]

[tex]\\ \sf\longmapsto 7784[/tex]

Answer:

2*2*2= 8

6*6*6*6*6= 7,776

7,776+8=

7,784

result of 5 and 75 with dividid by 3

Answers

Answer:

your answer is 30

Step-by-step explanation:

I hope this help

Find the value of the sum 219+226+233+⋯+2018.

Assume that the terms of the sum form an arithmetic series.

Give the exact value as your answer, do not round.

Answers

Answer:

228573

Step-by-step explanation:

a = 219 (first term)

an = 2018 (last term)

Sn->Sum of n terms

Sn=n/2(a + an)         [Where n is no. of terms] -> eq 1

To find number of terms,

an = a + (n-1)d     [d->Common Difference] -> eq 2

d= 226-219 = 7

=> d=7

Substituting in eq 2,

2018 = 219 + (n-1)(7)

1799 = (n-1)(7)

1799 = 7n-7

1799 = 7(n-1)

1799/7 = n-1

257 = n-1

n=258

Substituting values in eq 1,

Sn = 258/2(219+2018)

    = 129(2237)

    = 228573

convert 10.09% to a decimal

Answers

Answer:

0.1009

Step-by-step explanation:

To convert percentage into decimal, you need to divide the percentage by 100

10.09/100

= 0.1009

To convert 10.09% to a decimal, we need to decide it by 100 like so:

10.09 ÷ 100 = 0.1009

Therefore, the answer is 0.1009

Two lateral faces of a rectangular pyramid have a base length of 10 inches and a height of 15 inches. The other two lateral faces have a base length of 18 inches and a height of 13 inches. What is the surface area of the rectangular pyramid?

Answers

The surface area of the rectangular pyramid is the sum of the area of its individual surface. The surface area of the pyramid is 384 square inches.

Each surface of the rectangular pyramid has the shape of a triangle.

So that the area of each surface of the pyramid = [tex]\frac{1}{2}[/tex] x base x height.

From the given question;

The area of one of the two lateral faces = [tex]\frac{1}{2}[/tex] x b x h

                                                                 = [tex]\frac{1}{2}[/tex] x 10 x 15

The area of one of the two lateral faces = 75 square inches

Thus,

the area of the first two given lateral faces = 2 x 75

                                                            = 150 square inches

The area of the first two given lateral faces = 150 square inches

Also,

The area of one of the other two lateral faces = [tex]\frac{1}{2}[/tex] x b x h

                                                                             = [tex]\frac{1}{2}[/tex] x 18 x 13

The area of one of the other two lateral faces =  117 square inches

So that;

the area of the first two other lateral faces = 2 x 117

                                                            = 234 square inches

The area of the first two other lateral faces = 234 square inches

Thus,

the surface area of the pyramid = 150 + 234

                                                              = 384 square inches

Therefore, the surface area of the rectangular pyramid is 384 square inches.

For more clarifications: https://brainly.com/question/23564399

Answer:

Step-by-step explanation:

The surface area of the rectangular pyramid is the sum of the area of its individual surface. The surface area of the pyramid is 384 square inches.

Each surface of the rectangular pyramid has the shape of a triangle.

So that the area of each surface of the pyramid =  x base x height.

From the given question;

The area of one of the two lateral faces =  x b x h

                                                                =  x 10 x 15

The area of one of the two lateral faces = 75 square inches

Thus,

the area of the first two given lateral faces = 2 x 75

                                                           = 150 square inches

The area of the first two given lateral faces = 150 square inches

Also,

The area of one of the other two lateral faces =  x b x h

                                                                            =  x 18 x 13

The area of one of the other two lateral faces =  117 square inches

So that;

the area of the first two other lateral faces = 2 x 117

                                                           = 234 square inches

The area of the first two other lateral faces = 234 square inches

The area of the rectangle is B x H = 18 x 10 = 180 square inches

Thus,

the surface area of the pyramid = 150 + 234+180

                                                             = 564 square inches

Therefore, the surface area of the rectangular pyramid is 564 square inches.

If LM = 9x + 27 and RS = 135, find x.

Answers

Answer:

x=12

Step-by-step explanation:

LM = RS

9x+27 = 135

Subtract 27 from each side

9x+27-27 =135-27

9x=108

Divide each side by 9

9x/9 = 108/9

x = 12

the boxes are equivalent so the one with a single dash is equal to the other with a single dash.

the one with 2 dashes is equal to the other with 2 dashes so on and so forth

SR=LM

LM=9x+27

RS=135

9x+27=135

so I solve it in my own weird way but you can solve it differently. 135-27=108

108/9=12

so your answer is 12

−30=5(x+1)

what is x?

Answers

[tex]\\ \rm\Rrightarrow -30=5(x+1)[/tex]

[tex]\\ \rm\Rrightarrow -30=5x+5[/tex]

[tex]\\ \rm\Rrightarrow 5x=-30-5[/tex]

[tex]\\ \rm\Rrightarrow 5x=-35[/tex]

[tex]\\ \rm\Rrightarrow x=\dfrac{-35}{-5}[/tex]

[tex]\\ \rm\Rrightarrow x=7[/tex]

Answer:

x = -7

Step-by-step explanation:

-30 = 5 (x -1 )

5 ( x + 1 ) =-30

5 (x + 1 ) = - 30

     5            5

x + 1 = -6

x + 1 -1 = -6 -1

x = - 7

100 POINTS AND BRAINLIEST FOR THIS WHOLE SEGMENT

a) Find zw, Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

b) Find z^10. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

c) Find z/w. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

d) Find the three cube roots of z in complex form. Give answers correct to 4 decimal

places.

Answers

Answer:

See Below (Boxed Solutions).

Step-by-step explanation:

We are given the two complex numbers:

[tex]\displaystyle z = \sqrt{3} - i\text{ and } w = 6\left(\cos \frac{5\pi}{12} + i\sin \frac{5\pi}{12}\right)[/tex]

First, convert z to polar form. Recall that polar form of a complex number is:

[tex]z=r\left(\cos \theta + i\sin\theta\right)[/tex]

We will first find its modulus r, which is given by:

[tex]\displaystyle r = |z| = \sqrt{a^2+b^2}[/tex]

In this case, a = √3 and b = -1. Thus, the modulus is:

[tex]r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2[/tex]

Next, find the argument θ in [0, 2π). Recall that:

[tex]\displaystyle \tan \theta = \frac{b}{a}[/tex]

Therefore:

[tex]\displaystyle \theta = \arctan\frac{(-1)}{\sqrt{3}}[/tex]

Evaluate:

[tex]\displaystyle \theta = -\frac{\pi}{6}[/tex]

Since z must be in QIV, using reference angles, the argument will be:

[tex]\displaystyle \theta = \frac{11\pi}{6}[/tex]

Therefore, z in polar form is:

[tex]\displaystyle z=2\left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}\right)[/tex]

Part A)

Recall that when multiplying two complex numbers z and w:

[tex]zw=r_1\cdot r_2 \left(\cos (\theta _1 + \theta _2) + i\sin(\theta_1 + \theta_2)\right)[/tex]

Therefore:

[tex]\displaystyle zw = (2)(6)\left(\cos\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right) + i\sin\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right)\right)[/tex]

Simplify. Hence, our polar form is:

[tex]\displaystyle\boxed{zw = 12\left(\cos\frac{9\pi}{4} + i\sin \frac{9\pi}{4}\right)}[/tex]

To find the complex form, evaluate:

[tex]\displaystyle zw = 12\cos \frac{9\pi}{4} + i\left(12\sin \frac{9\pi}{4}\right) =\boxed{ 6\sqrt{2} + 6i\sqrt{2}}[/tex]

Part B)

Recall that when raising a complex number to an exponent n:

[tex]\displaystyle z^n = r^n\left(\cos (n\cdot \theta) + i\sin (n\cdot \theta)\right)[/tex]

Therefore:

[tex]\displaystyle z^{10} = r^{10} \left(\cos (10\theta) + i\sin (10\theta)\right)[/tex]

Substitute:

[tex]\displaystyle z^{10} = (2)^{10} \left(\cos \left(10\left(\frac{11\pi}{6}\right)\right) + i\sin \left(10\left(\frac{11\pi}{6}\right)\right)\right)[/tex]

Simplify:

[tex]\displaystyle z^{10} = 1024\left(\cos\frac{55\pi}{3}+i\sin \frac{55\pi}{3}\right)[/tex]

Simplify using coterminal angles. Thus, the polar form is:

[tex]\displaystyle \boxed{z^{10} = 1024\left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right)}[/tex]

And the complex form is:

[tex]\displaystyle z^{10} = 1024\cos \frac{\pi}{3} + i\left(1024\sin \frac{\pi}{3}\right) = \boxed{512+512i\sqrt{3}}[/tex]

Part C)

Recall that:

[tex]\displaystyle \frac{z}{w} = \frac{r_1}{r_2} \left(\cos (\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)\right)[/tex]

Therefore:

[tex]\displaystyle \frac{z}{w} = \frac{(2)}{(6)}\left(\cos \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right) + i \sin \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right)\right)[/tex]

Simplify. Hence, our polar form is:

[tex]\displaystyle\boxed{ \frac{z}{w} = \frac{1}{3} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12}\right)}[/tex]

And the complex form is:

[tex]\displaystyle \begin{aligned} \frac{z}{w} &= \frac{1}{3} \cos\frac{5\pi}{12} + i \left(\frac{1}{3} \sin \frac{5\pi}{12}\right)\right)\\ \\ &=\frac{1}{3}\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right) + i\left(\frac{1}{3}\left(- \frac{\sqrt{6} + \sqrt{2}}{4}\right)\right) \\ \\ &= \boxed{\frac{\sqrt{2} - \sqrt{6}}{12} -\frac{\sqrt{6}+\sqrt{2}}{12}i}\end{aligned}[/tex]

Part D)

Let a be a cube root of z. Then by definition:

[tex]\displaystyle a^3 = z = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]

From the property in Part B, we know that:

[tex]\displaystyle a^3 = r^3\left(\cos (3\theta) + i\sin(3\theta)\right)[/tex]

Therefore:

[tex]\displaystyle r^3\left(\cos (3\theta) + i\sin (3\theta)\right) = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]

If two complex numbers are equal, their modulus and arguments must be equivalent. Thus:

[tex]\displaystyle r^3 = 2\text{ and } 3\theta = \frac{11\pi}{6}[/tex]

The first equation can be easily solved:

[tex]r=\sqrt[3]{2}[/tex]

For the second equation, 3θ must equal 11π/6 and any other rotation. In other words:

[tex]\displaystyle 3\theta = \frac{11\pi}{6} + 2\pi n\text{ where } n\in \mathbb{Z}[/tex]

Solve for the argument:

[tex]\displaystyle \theta = \frac{11\pi}{18} + \frac{2n\pi}{3} \text{ where } n \in \mathbb{Z}[/tex]

There are three distinct solutions within [0, 2π):

[tex]\displaystyle \theta = \frac{11\pi}{18} , \frac{23\pi}{18}\text{ and } \frac{35\pi}{18}[/tex]

Hence, the three roots are:

[tex]\displaystyle a_1 = \sqrt[3]{2} \left(\cos\frac{11\pi}{18}+ \sin \frac{11\pi}{18}\right) \\ \\ \\ a_2 = \sqrt[3]{2} \left(\cos \frac{23\pi}{18} + i\sin\frac{23\pi}{18}\right) \\ \\ \\ a_3 = \sqrt[3]{2} \left(\cos \frac{35\pi}{18} + i\sin \frac{35\pi}{18}\right)[/tex]

Or, approximately:

[tex]\displaystyle\boxed{ a _ 1\approx -0.4309 + 1.1839i,} \\ \\ \boxed{a_2 \approx -0.8099-0.9652i,} \\ \\ \boxed{a_3\approx 1.2408-0.2188i}[/tex]

Classify the triangle as acute, right, or obtuse and as equilateral, isosceles, or scalene.​

Answers

9514 1404 393

Answer:

  (d)  Right, scalene

Step-by-step explanation:

The little square in the upper left corner tells you that is a right angle. Any triangle with a right angle is a right triangle. This one is scalene, because the sides are all different lengths.

__

Additional comment

An obtuse triangle cannot be equilateral, and vice versa.

An equilateral triangle has all sides the same length, and all angles the same measure: 60°. It is an acute triangle.

Determine three consecutive odd integers whose sum is 2097.

Answers

Answer:

first odd integer=x

second odd integer=x+2

third odd integer=x+4

x+x+2+x+4=2097

x+x+x+2+4=2097

3x+6=2097

3x=2097-6

3x=2091

3x/3=2091/3

x=697

therefore, x=697

x+2=697+2=699

x+4=697+4=701

Determine the sum of the first 33 terms of the following series:

−52+(−46)+(−40)+...

Answers

Answer:

1320

Step-by-step explanation:

Use the formula for sum of series, s(a) = n/2(2a + (n-1)d)

The terms increase by 6, so d is 6

a is the first term, -56

n is the terms you want to find, 33

Plug in the numbers, 33/2 (2(-56)+(32)6)

Simplify into 33(80)/2 and you get 1320

Write the equation of the sinusoidal function shown?

A) y = cos x + 2

B) y = cos(3x) + 2

C) y = sin x + 2

D) y = sin(3x) + 2

Answers

Answer:

günah(3x) + 2

Step-by-step explanation:

Gösterilen sinüzoidal fonksiyonun denklemini yazınız? A) y = cos x + 2 B) y = cos(3x) + 2 C) y = günah x + 2 D) y =

Answer:

y = sin(3x) + 2

Solve for x in the triangle. Round your answer to the nearest tenth.

Answers

Answer:

x = 6.2

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

tan theta = opp / adj

tan 32 = x/ 10

10 tan 32 = x

x=6.24869

Rounding to the nearest tenth

x = 6.2

Answer:

x=6.2 (Rounded to the nearest tenth)

Step-by-step explanation:

This problem gives you an angle(32°), and ask for the dimension of the opposite side to that angle(x), along with another dimension the adjacent side(10).

Since you have the opposite and adjacent sides, you can use tangent. opposite (x) over adjacent (10). Tan(32) =[tex]\frac{x}{10}[/tex]. You want (x) so multiply tan(32) by 10. Then round to the nearest tenth.

Remember to put calculator in degree mode!

tan (32) = 0.6248693519 multiply by ten 6.248693519. Round to nearest 10th 6.2.

Hope this helps!


Rationalise the denominator

Answers

Answer:

sqrt(3) /3

Step-by-step explanation:

1 / sqrt(3)

Multiply the top and bottom by sqrt(3)

1/ sqrt(3) * sqrt(3)/ sqrt(3)

sqrt(3) /  sqrt(3)*sqrt(3)

sqrt(3) /3

Answer:

[tex] = { \sf{ \frac{1}{ \sqrt{3} } }} \\ \\ { \sf{ = \frac{1}{ \sqrt{3} } . \frac{ \sqrt{3} }{ \sqrt{3} } }} \\ \\ = { \sf{ \frac{ \sqrt{3} }{ {( \sqrt{3}) }^{2} } = \frac{ \sqrt{3} }{3} }} [/tex]

PLEASE HELP I WILL GIVE BRAINLIEST

Answers

Step-by-step explanation:

A natural number is a positive whole number.

A whole number is a positive number with no fractions or decimals.

A interger is a whole number negative or positive.

A rational number is a number that terminates or continue with repeating digits.

A irrational number is a number that doesn't terminate or continue with repeating digits.

1. Rational Number

2. Natural,Whole,Interger,Rational

3. Whole,Rational,Interger

4. Rational

5.Irrational

6.Rational

7.Natural,Whole,Interger,Rational

8.Interger,Rational

9.Irrational

help help help help

Answers

Answer:

abc is a triangle so ,

a is ( 9,6 )

b is ( 9,3 )

and c is ( 3,3 )

PLS HELP ME ON THIS QUESTION I WILL MRK YOU AS BRAINLIEST IF YOU KNOW THE ANSWER!!
Which of the following measures is a measure of spread?
A. median
B. range
C. mode
D. mean

Answers

Answer:

range

Step-by-step explanation:

Answer:

B. range.

Step-by-step explanation:

others are:

» Standard variation.

» Interquatile range.

» Quatiles, deciles and percentiles.

» variance.

[tex]{ \underline{ \blue{ \sf{christ \: † \: alone}}}}[/tex]

3a + 2 = 20

5(b+1) = 10

3 (2y - 3) - 2y = y-3

2+ (2+4p) =6p

Please answer these questions with steps please!

Answers

1. 3a=20-2
3a=18
a=6

2. b+1=2
b=2-1
b=1

3. 6y-9-2y=y-3
4y-9=y-3
4y-y=-3+9
3y=6
y=2

4. 2+2+4p=6p
4+4p=6p
4p-6p=-4
-2p=-4
p=2

Hi, Which option is correct??

Answers

Answer:

B

Step-by-step explanation:

option B is not similar.

the ratio of each side isn't same

how many inches is 775 centimeters

Answers

Answer:

305.11

Step-by-step explanation:

Just use a calculator. A centimeter is 2.5 inches. Divide 775 by that.

F is on the bisector of angle BCD. Find the length of FD (with lines over FD)

Answers

Answer:

8n-2 = 6n+9

2n-2 = 9

2n = 11

n = 5.5

So C is correct

Let me know if this helps!

Help ASAP please :))

Image attached

Answers

No Sophie made a mistake going from step one to two. (She should’ve multiplied 9*2 and 6*7 instead of dividing first, she didn’t follow PEMDAS)

What is the area of a rectangle with vertices at (7,3) (12,3) (12,11) (7,11)

Answers

Answer:

Area = 5 × 8

= 40 square units

Answer:

40^2

Step by Step Solution:

I counted the difference between the length and the width, which was 5 and 8, then using the formula for area, lw=a^2, I did 5(8)=40^2.  Some people leave out the squared part of the area, but 40^2 would be the most correct option if they do not square any of the answers, just put 40 that'll probably be accepted too.

How do we derive the sum rule in differentiation? (ie. (u+v)' = u' + v')

Answers

It follows from the definition of the derivative and basic properties of arithmetic. Let f(x) and g(x) be functions. Their derivatives, if the following limits exist, are

[tex]\displaystyle f'(x) = \lim_{h\to0}\frac{f(x+h)-f(x)}h\text{ and }g'(x)\lim_{h\to0}\frac{g(x+h)-g(x)}h[/tex]

The derivative of f(x) + g(x) is then

[tex]\displaystyle \big(f(x)+g(x)\big)' = \lim_{h\to0}\big(f(x)+g(x)\big) \\\\ \big(f(x)+g(x)\big)' = \lim_{h\to0}\frac{\big(f(x+h)+g(x+h)\big)-\big(f(x)+g(x)\big)}h \\\\ \big(f(x)+g(x)\big)' = \lim_{h\to0}\frac{\big(f(x+h)-f(x)\big)+\big(g(x+h)-g(x)\big)}h \\\\ \big(f(x)+g(x)\big)' = \lim_{h\to0}\frac{f(x+h)-f(x)}h+\lim_{h\to0}\frac{g(x+h)-g(x)}h \\\\ \big(f(x)+g(x)\big)' = f'(x) + g'(x)[/tex]

Two observers are 300 ft apart on opposite sides of a flagpole. The angles of
elevation from the observers to the top of the pole are 20°
and 15°. Find the
height of the flagpole.

Answers

I know similar questions and have answers. do you want

Which value of x makes this equation true?-9x+15=3(2-x)

Answers

Step-by-step explanation:

-9x+15=3(2-x)

expand the bracket by the right hand side

6-6x

2. collect like terms

-9x+15= 6-6x

15-6 = 6x+9x

11= 15x

3. divide both sides by the coefficient of X which is 15

x= 11/15

Other Questions
If a friend says that she wants a confidence with you, what doesshe mean? Base your answer on the meaning of confidence as itappears in The Tragedy of Romeo and Juliet Act II. Enter the repeating digit:[tex] \frac{2 }{3} = 0. \frac{?}{?} [/tex] During the inflammatory process_______destroy pathogensO A tearsO B phagocytes. ymphocytesD. cilia Find the surface area of the cube shown below.units?2 1/2 What do people criticize the Mongols for? The Nernst equation at 20oC is: Eion= 58 millvolts/z. [log10 (ion)out/(ion)in]Calculate the equilibrium potential for Cl- if the concentration of Cl- outside of the cell is 100 and the concentration inside of the cell is 10 mmol/liter.a. 58 millivoltsb. +58 millivoltsc. -116 millivoltsd. 0 Lectins often bind their ligands via multiple weak interactions. bind their ligands with relatively low specificity. prevent viruses from binding to their target cells. are carbohydrates that bind to receptor proteins. Dawson Toys, Ltd., produces a toy called the Maze. The company has recently created a standard cost system to help control costs and has established the following standards for the Maze toy: Direct materials: 7 microns per toy at $0.33 per micron Direct labor: 1.4 hours per toy at $6.70 per hour During July, the company produced 5,000 Maze toys. The toy's production data for the month are as follows: Direct materials: 70,000 microns were purchased at a cost of $0.29 per micron. 26,250 of these microns were still in inventory at the end of the month. Direct labor: 7,500 direct labor-hours were worked at a cost of $54,750.Required:a. Compute the following variance for julyb. The materials price and quantity variancesc. The labor rate and efficiency variances are teachers the cause of indiscipline in schools. There are 38 chocolates in a box, all identically shaped. There are 8 filled with nuts, 16 with caramel, and 14 are solid chocolate. You randomly select one piece, eat it and then select a second piece. Find the probability of selecting 2 solid chocolate in a row Why must oxidation be accompanied by a reduction? A. The species being oxidized shares electron(s) with the species that is reduced B. The species being oxidized takes electron(s) from some other C. Electrons can be given up to free space. species being oxidized must transfer electron(s) to some othen D. Electrons cannot just be given up to free space. Customers receive rewards pints based on the purchase type: Please help me solve this short problem today is my last day to complete these 1. Im feeling tired. . So am I . 2. I dont like eggs. .. 3. I need a holiday. .. 4. I dont like milk. .. 5. I couldnt get up this morning. .. 6. Id love a cup of tea. . 7. Ive never been to Africa. .. 8. I was ill yesterday. 9. I should smoke less. .. 10. I spent the whole evening watching television . 11. I didnt know that Ann was in hospital. . Use the given information to determine which of the following relationshipscan be proved and why.L= 20ME ZPML = POA. ALMN - A OPQ, because of AAS.B. ALMNE A OPQ, because of ASA.C. We cannot prove any relationship based on these data.D. ALMN=A OPQ, because of SAS, What is the emotion that comes through a non-fiction work called?A. RhetoricB. Evidencec. PurposeD. Tone Using these metal ion/metal standard reduction potentials calculate cell potential for Cu2+(aq) + Cd(s) Cd2+(aq)+ Cu(s) Cu2+(aq)|Cu(s) + 0.34 VNi2+(aq)|Ni(s) -0.25 Cd2+(aq)/Cd(s) -0.4V everyone of the workers receive same benefits (correct the sentence) cual es tu defectos dominantes ?por ejemplo Avaricia y la codicia. ...Envidia. ...Agresividad. ...Crueldad. ...Venganza y el rencor. ...Arrogancia. ...Egosmoy el tuyo cual es The weight of an object on the moon is1/6 of its weight on Earth. If a moon rockweighs 20.5 lb on Earth, how much didthe moon rock weigh on the moon?