In tests of significance about an unknown parameter of some population, which of the following is considered strong evidence against the null hypothesis?
A. The value of an estimate of the unknown parameter based on a simple random sample from the population is not equal to zero.
B. The value of an estimate of the unknown parameter lies within 2 units of the sample value.
C. We observe a value of an estimate of the unknown parameter based on a simple random sample from the population that is very consistent with the null hypothesis
D. We observe a value of an estimate of the unknown parameter based on a simple random sample from the population that is very unlikely to occur if the null hypothesis is true.

Answers

Answer 1

In tests of significance about an unknown parameter of some population, "We observe a value of an estimate of the unknown parameter based on a simple random sample from the population that is very unlikely to occur if the null hypothesis is true" is considered strong evidence against the null hypothesis. The correct answer is Option (D).

We apply the principle of hypothesis testing to test a population's claims in inferential statistics. The null hypothesis (H₀) is always a statement about the population parameter that we believe to be true. However, we use the sample data to decide whether the null hypothesis is true or not. When we perform the hypothesis testing, we must consider the level of significance, the sample size, and the nature of the test.

The value of an estimate of the unknown parameter based on a simple random sample from the population that is very unlikely to occur if the null hypothesis is true is considered strong evidence against the null hypothesis. In other words, if the value of the test statistic is greater than the critical value, we can reject the null hypothesis. Consequently, we will have sufficient evidence to support the alternative hypothesis.

Learn more about null hypothesis here: https://brainly.com/question/29576929

#SPJ11


Related Questions

Student A can solve 75% of problems, student B can solve 70%. What is the probability that A or B can solve a problem chosen at random?

Answers

The probability that student A or B can solve a problem chosen at random is 0.95.

Probability is calculated by dividing the number of favourable outcomes by the number of possible outcomes.

Random: An event is referred to as random when it is not possible to predict it with certainty. The probability that either student A or B will be able to solve a problem chosen at random can be calculated as follows:

P(A or B) = P(A) + P(B) - P(A and B) where: P(A) = probability of A solving a problem = 0.75, P(B) = probability of B solving a problem = 0.7, P(A and B) = probability of both A and B solving a problem. Since A and B are independent, the probability of both solving the problem is:

P(A and B) = P(A) x P(B) = 0.75 x 0.7 = 0.525

Now, using the above formula: P(A or B) = P(A) + P(B) - P(A and B) = 0.75 + 0.7 - 0.525 = 0.925

Therefore, the probability that student A or B can solve a problem chosen at random is 0.95 (or 95%).

To learn more about "Probability": brainly.com/question/31120123

#SPJ11

1 Find the value of x.

i’m like struggling

Answers

Answer: 23 degrees

Step-by-step explanation:

Assuming that 117 is the entire angle we can find that:

94+x = 117

Subtract 94 from both sides:

x = 117-94

x = 23 degrees

Answer: 23°

Hope it’s right and it helps lol

there exists a complex number $c$ such that we can get $z 2$ from $z 0$ by rotating around $c$ by $\pi/2$ counter-clockwise. find the sum of the real and imaginary parts of $c$.

Answers

The sum of the real and imaginary parts of $c$ is$$\operatorname{Re}(c) + \operatorname{Im}(c) = \frac{\operatorname{Re}(2c)}{2} + \frac{\operatorname{Im}(2c)}{2}$$$$= \frac{\operatorname{Re}(z_0+z_2)}{2} - \frac{\operatorname{Im}(z_0)}{2}(1-\cos(\theta/2)) - \frac{\operatorname{Re}(z_0)}{2}\sin(\theta/2)$$$$+ \frac{\operatorname{Im}(z_0+z_2)}{2} - \frac{\operatorname{Re}(z_0)}{2}(1-\cos(\theta/2)) + \frac{\operatorname{Im}(z_0)}{2}\sin(\theta/2).$$

The given problem can be solved using algebraic and geometric methods. We can use algebraic methods, such as the equations given in the problem, and we can use geometric methods by visualizing what the problem is asking. To start, let's translate the given problem into mathematical equations. Let $z_0$ be the original complex number. We want to rotate this point by 90 degrees counter-clockwise about some complex number $c$ to get $z_2$. Thus,$$z_2 = c + i(z_0 - c)$$$$=c + iz_0 - ic$$$$= (1-i)c + iz_0.$$We also know that this transformation will rotate the point $z_1 = (z_0 + z_2)/2$ by 45 degrees. Thus, using similar logic,$$z_1 = (1-i/2)c + iz_0/2.$$Now let's use the formula for rotating a point about the origin by $\theta$ degrees (where $\theta$ is measured in radians) to find a relationship between $z_1$ and $z_0$.$$z_1 = z_0 e^{i\theta/2}$$$$\implies (1-i/2)c + iz_0/2 = z_0 e^{i\theta/2}$$$$\implies (1-i/2)c = (e^{i\theta/2} - 1)z_0/2.$$We can solve for $c$ by dividing both sides by $1-i/2$.$$c = \frac{e^{i\theta/2} - 1}{1-i/2}\cdot\frac{z_0}{2}.$$We can now use the information given in the problem to solve for the sum of the real and imaginary parts of $c$. We know that rotating $z_0$ by 90 degrees counter-clockwise will result in the complex number $z_2$. Visually, this means that $c$ is located at the midpoint between $z_0$ and $z_2$ on the line that is perpendicular to the line segment connecting $z_0$ and $z_2$. We can use this geometric interpretation to solve for $c$. The midpoint of the line segment connecting $z_0$ and $z_2$ is$$\frac{z_0+z_2}{2} = c + i\frac{z_0-c}{2}.$$Solving for $c$, we get$$c = \frac{z_0+z_2}{2} - \frac{i}{2}(z_0-c)$$$$\implies 2c = z_0+z_2 - i(z_0-c)$$$$\implies 2c = z_0+z_2 - i(z_0- (e^{i\theta/2} - 1)(z_0/2)/(1-i/2)).$$We can now find the real and imaginary parts of $c$ and add them together to get the desired answer. Let's first simplify the expression for $c$.$$2c = z_0+z_2 - i(z_0 - (e^{i\theta/2} - 1)\cdot(z_0/2)\cdot(1+i)/2)$$$$= z_0 + z_2 - i(z_0 - z_0(e^{i\theta/2} - 1)(1+i)/4)$$$$= z_0 + z_2 - i(z_0 - z_0e^{i\theta/2}(1+i)/4 + z_0(1-i)/4)$$$$= z_0 + z_2 - i(z_0(1-e^{i\theta/2})/4 + z_0(1-i)/4)$$$$= z_0 + z_2 - i(z_0/4(1-e^{i\theta/2} + 1 - i))$$$$= z_0 + z_2 - i(z_0/2(1-\cos(\theta/2) - i\sin(\theta/2)))$$$$= z_0 + z_2 - i(z_0(1-\cos(\theta/2)) + z_0\sin(\theta/2) - i(z_0\cos(\theta/2))/2.$$Now we can find the real and imaginary parts of $2c$ and divide by 2 to get the real and imaginary parts of $c$. We have$$\operatorname{Re}(2c) = \operatorname{Re}(z_0+z_2) - \operatorname{Im}(z_0)(1-\cos(\theta/2)) - \operatorname{Re}(z_0)\sin(\theta/2)$$$$\operatorname{Im}(2c) = \operatorname{Im}(z_0+z_2) - \operatorname{Re}(z_0)(1-\cos(\theta/2)) + \operatorname{Im}(z_0)\sin(\theta/2).$$Thus, the sum of the real and imaginary parts of $c$ is$$\operatorname{Re}(c) + \operatorname{Im}(c) = \frac{\operatorname{Re}(2c)}{2} + \frac{\operatorname{Im}(2c)}{2}$$$$= \frac{\operatorname{Re}(z_0+z_2)}{2} - \frac{\operatorname{Im}(z_0)}{2}(1-\cos(\theta/2)) - \frac{\operatorname{Re}(z_0)}{2}\sin(\theta/2)$$$$+ \frac{\operatorname{Im}(z_0+z_2)}{2} - \frac{\operatorname{Re}(z_0)}{2}(1-\cos(\theta/2)) + \frac{\operatorname{Im}(z_0)}{2}\sin(\theta/2).$$

Learn more about Imaginary

brainly.com/question/6748860

#SPJ11

With the information given, can you prove
that this quadrilateral is a parallelogram?
A. Yes
B. No

AB = DC

Answers

We cannot prove that the quadrilateral is a parallelogram with only the given information that AB = DC.

What is quadrilateral and parallelogram ?

A quadrilateral is a four-sided polygon, which means it is a closed shape with four straight sides. Some examples of quadrilaterals include rectangles, squares, trapezoids, and rhombuses.

A parallelogram is a special type of quadrilateral where both pairs of opposite sides are parallel. This means that the opposite sides never intersect, and they have the same slope. Additionally, the opposite sides of a parallelogram are congruent (i.e., have the same length), and the opposite angles are also congruent. Some examples of parallelograms include rectangles, squares, and rhombuses.

To prove that a quadrilateral is a parallelogram, we need to show that both pairs of opposite sides are parallel. Knowing that AB = DC only gives us information about the lengths of the sides, but it doesn't tell us anything about their orientation or whether they are parallel.

We would need additional information, such as the measures of angles or the lengths of other sides, to determine whether the quadrilateral is a parallelogram.

To know more about polygon visit :-

https://brainly.com/question/29425329

#SPJ1

if the circumference of the moon is 6783 miles what is its diameter in miles

Answers

Answer:

C = 21,309.4

Step-by-step explanation:

Diameter of moon is miles is,

d = 2159.8 miles

We have,

The circumference of the moon is, 6783 miles

Since, We know that,

the circumference of circle is,

C = 2πr

Substitute given values,

6783 miles = 2 × 3.14 × r

6783 = 6.28 × r

r = 6783 / 6.28

r = 1079.9 miles

Therefore, Diameter of moon is miles is,

d = 2 x r

d = 2 x 1079.9

d = 2159.8 miles

Learn more about the circle visit:

https://brainly.com/question/24810873

#SPJ6

Set up iterated integrals for both orders of integration. Then evaluate the double integral using the easier order.
y dA, D is bounded by y = x − 6; x = y2
D

Answers

The value of the double integral using the easier order, ydA bounded by y = x − 6; x = y² is 125/12.

The double integral, indicated by ', is mostly used to calculate the surface area of a two-dimensional figure. By using double integration, we may quickly determine the area of a rectangular region. If we understand simple integration, we can easily tackle double integration difficulties. Hence, first and foremost, we will go over some fundamental integration guidelines.

Given, the double integral ∫∫yA and the region y = x-6 and x = y²

y = x-6

x = y²

y² = y +6

y² - y - 6 = 0

y² - 3y +2y - 6 = 0

(y-3) (y+2) = 0

y = 3 and y = -2

[tex]\int\int\limits_\triangle {y} \, dA\\ \\[/tex]

= [tex]\int\limits^3_2 {y(y+6-y^2)} \, dx \\\\\int\limits^3_2 {(y^2+6y-y^3)} \, dx \\\\(\frac{y^3}{3} + 3y^2-\frac{y^4}{4} )_-_2^3\\\\\frac{63}{4} -\frac{16}{3} \\\\\frac{125}{12}[/tex]

The value for the double integral is 125/12.

Integration is an important aspect of calculus, and there are many different forms of integrations, such as basic integration, double integration, and triple integration. We often utilise integral calculus to determine the area and volume on a very big scale that simple formulae or calculations cannot.

Learn more about Double Integral:

https://brainly.com/question/19053586

#SPJ4

Which points satisfy both inequalities?

Answers

The pοint that satisfies bοth inequalities is the pοint inside this triangular regiοn.

What is inequality?

An inequality is a mathematical statement that cοmpares twο values οr expressiοns and indicates whether they are equal οr nοt, οr which οne is greater οr smaller.

Since the shading is nοt included, we will need tο use the lines themselves tο determine the cοrrect regiοn οf the cοοrdinate plane.

The first inequality y > (3/2)x - 5 has a slοpe οf 3/2 and a y-intercept οf -5. This means the line will have a pοsitive slοpe and will be lοcated belοw the pοint (0,-5).

The secοnd inequality y < (-1/6)x - 6 has a negative slοpe οf -1/6 and a y-intercept οf -6. This means the line will have a negative slοpe and will be lοcated abοve the pοint (0,-6).

Tο find the pοint that satisfies BOTH inequalities, we need tο lοοk fοr the regiοn οf the cοοrdinate plane that is belοw the line y = (3/2)x - 5 AND abοve the line y = (-1/6)x - 6. This regiοn is the triangular-shaped area that is bοunded by the twο lines and the x-axis.

The pοint that satisfies bοth inequalities is the pοint inside this triangular regiοn.

To know more about inequalities visit:

brainly.com/question/30797813

#SPJ1

3p^2 +7p=0 solve by factoring

Answers

Answer:

p = 0, p = -7/3

Step-by-step explanation:

Pre-Solving

We are given the following equation:
3p² + 7p = 0

We want to solve the equation by factoring.

Solving

To factor, we want to look for a common term that we can pull out.

You may notice that both terms have 'p' in common, so we can pull out p from both terms.

This will then make the equation:

p(3p + 7) = 0

Now, we can use zero product property to solve the equation.

p = 0

3p + 7 = 0

Subtract.

3p = -7

Divide.

p = -7/3

Our answers are p = 0 and p = -7/3

Help me please I need to show my work

Answers

Answer:

x=33

Step-by-step explanation:

all angles in a triangle sum to 180 degrees

x+2x+(2x+15) = 180 <---- simplify this

5x+15 = 180

5x=165

x = 33

Four pipes can fill a tank in 16 hours. How long will it take to fill the tank if twelve
pipes of the same dimensions are used ?

Answers

Answer:

5.333 hours

Step-by-step explanation:

We know

4 Pipes fill a tank in 16 hours.

How long will it take to fill the tank if 12 pipes of the same dimensions are used?

We Take

16 x 1/3 = 5.333 hours

So, it takes about 5.333 hours to fill the tank.

Find the outer perimeter.
6 ft
4 ft
15 ft
10 ft
P = [?] ft
Round to the nearest
hundredth.

Answers

Answer:

P= 40 ft

Step-by-step explanation:

Perimeter is the sum of all the lengths

So,

Perimeter= 6+4+15+10ft

= 35ft

Nearest ten can be 40ft or 30ft

If you succeed In understanding then kindly mark my answer the brainliest. Thank you :)

determine whether the set S spans R2. If the set does not span R2, then give a geometric description of the subspace that it does span. a, S = {(1, −1), (2, 1)} b, S = {(1, 1)} c, S = {(0, 2), (1, 4)}

Answers

a. S = {(1, -1), (2, 1)}Let's begin by calculating the determinant of the matrix composed of the vectors of S, and checking if it is equal to 0. Because the two vectors are not colinear, they should span R2.|1 -1||2 1| determinant is not 0, therefore S spans R2. No geometric description is required for this example.

b. S = {(1, 1)} The set S contains one vector. A set containing only one vector cannot span a plane because it only spans a line. Therefore, S does not span R2. Geometric description: S spans a line that passes through the origin (0, 0) and the point (1, 1).c. S = {(0, 2), (1, 4)} Let's again begin by calculating the determinant of the matrix composed of the vectors of S, and checking if it is equal to 0.|0 2||1 4| determinant is 0, thus S does not span R2. In this scenario, S only spans the line that contains both vectors, which is the line with the equation y = 2x.

Geometric description: S spans a line that passes through the origin (0, 0) and the point (1, 2).

Learn more about geometric description:

https://brainly.com/question/28159445

#SPJ11

Goods with a cost price of R200 are sold at a mark-up of 100%. The selling price is:​

Answers

If the cost price of the goods is R200 and they are sold at a mark-up of 100%, then the selling price is equal to the cost price plus the mark-up, or:

Selling price = Cost price + Mark-up

Mark-up = 100% x Cost price

= 100% x R200

= R200

So the mark-up is R200.

Selling price = Cost price + Mark-up

= R200 + R200

= R400

Therefore, the selling price of the goods is R400.

A satellite TV company offers two plans. One plan costs $115 plus $30 per month. The other plan costs $60 per month. How many months must Alfia have the plan in order for the first plan to be the better buy?

Answers

4 months. The reason I say why is because the first one is 115$ with 30$ for the first month 145$. Then take 1 month for the second plan 60$. Take 2 months for the first plan to make it 175$. The same with the second, 120. Again with the first, 205$. The same with the second. 180$. For the last or 4th month, the first one is 235$, and the second one is 240$. I hope this helps :)

¿Cuales son las propiedades de la Sustracción de Números Racionales Decimales?

Answers

The following characteristics of racional decimal number abstraction apply: Conmutative property: The order of the remaining rational decimal numbers has no bearing on the operation's outcome,

Proprietary property: The racional decimal numbers may remain in various groups without affecting the operation's ultimate outcome, i.e., (a - b) - c = a - (b - c). Distributive property: Subtracting one racional decimal number from a sum of racional decimal numbers equals the sum of the subtractions of each one of them, or a - (b + c) = a - b - c. Neutral element: If a racional decimal number is left at zero, the outcome is the same number, i.e., a - 0 = a. Estas propiedades son útiles para simplificar y realizar cálculos más complejos con números racionales decimales.

learn more about  numbers here:

https://brainly.com/question/17429689

#SPJ4

what is the as surface area of the rectangular prism ​

Answers

Answer:

142 sq cm

Step-by-step explanation:

A= 2(lh + wh + lw)

2(7*3+5*3+7*5)

2(21+15+35)

2(71)

A= 142 sq cm

It’s going to a. 142 square cm


-you multiply the length x width to find the surface area

Aaron sampled 101 students and calculated an average of 6.5 hours of sleep each night with a standard deviation of 2.14. Using a 96% confidence level, he also found that t* = 2.081.confidence intervat = x±s/√n A 96% confidence interval calculates that the average number of hours of sleep for working college students is between __________.

Answers

The average number of hours of sleep for working college students is between 6.28 and 6.72 hours of sleep each night

According to the given data,

Sample size n = 101

Sample mean x = 6.5

Standard deviation s = 2.14

Level of confidence C = 96%

Using a 96% confidence level, the value of t* for 100 degrees of freedom is 2.081, as given in the question.

Now, the formula for the confidence interval is:x ± (t* × s/√n)Here, x = 6.5, s = 2.14, n = 101, and t* = 2.081

Substituting the values in the above formula, we get:

Lower limit = x - (t* × s/√n) = 6.5 - (2.081 × 2.14/√101) = 6.28

Upper limit = x + (t* × s/√n) = 6.5 + (2.081 × 2.14/√101) = 6.72

Therefore, the 96% confidence interval for the average number of hours of sleep for working college students is between 6.28 and 6.72 hours of sleep each night.

You can learn more about the average numbers at: brainly.com/question/16956746

#SPJ11

Five cars start out on a cross-country race. The probability that a car breaks down and drops out of the race is 0.2. Cars break down independently of each other.
(a) What is the probability that exactly two cars finish the race?
(b) What is the probability that at most two cars finish the race?
(c) What is the probability that at least three cars finish the race?

Answers

(a) The probability that exactly two cars finish the race is 0.0512.

(b) The probability that at most two cars finish the race is 0.05792.

(c) The probability that at least three cars finish the race is 0.94208.

(a) To determine the probability that exactly two cars finish the race, we have to use binomial distribution. In this case, we have n = 5 trials, and p = 0.8 is the probability that a car finishes the race (1 - 0.2). Using the binomial distribution formula:

P(X = k) = (nCk)(p^k)(1 - p)^(n - k)

Where X is the number of cars that finish the race, we get:

P(X = 2) = (5C2)(0.8²)(0.2)³= (10)(0.64)(0.008)= 0.0512

Therefore, the probability that exactly two cars finish the race is 0.0512.

(b) To determine the probability that at most two cars finish the race, we have to calculate the probabilities of 0, 1, and 2 cars finishing the race and add them up.

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)= (5C0)(0.8⁰)(0.2)⁵ + (5C1)(0.8¹)(0.2)⁴ + (5C2)(0.8²)(0.2)³= 0.00032 + 0.0064 + 0.0512= 0.05792

Therefore, the probability that at most two cars finish the race is 0.05792.

(c) To determine the probability that at least three cars finish the race, we can calculate the probability of 0, 1, and 2 cars finishing the race and subtract it from 1, which gives us the probability of at least three cars finishing the race.

P(X ≥ 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)]= 1 - (0.00032 + 0.0064 + 0.0512)= 0.94208

Therefore, the probability that at least three cars finish the race is 0.94208.

Learn more about binomial distribution here: https://brainly.com/question/24756209

#SPJ11

The exponential 12 (3) 2x-12 has been converted to 12(k)*-6, what is the value of k?

Answers

Answer:

The solution set is (13,− 32). A quadratic equation of the form x 2= k can be solved by factoring with the following sequence of equivalent equations.

Step-by-step explanation:

NEED HELP DUE TODAY!!!! GIVE GOOD ANSWER
2. How do the sizes of the circles compare?





3. Are triangles ABC and DEF similar? Explain your reasoning.

4. How can you use the coordinates of A to find the coordinates of D?

Answers

The triangles ABC and DEF are similar triangles, but DEF is twice as big as ABC.

What does it signify when two triangles are similar?

Congruent triangles are triangles that share similarity in shape but not necessarily in size. All equilateral triangles and squares of any side length serve as illustrations of related objects.

                        Or to put it another way, the corresponding angles and sides of two triangles that are similar to one another will be congruent and proportionate, respectively.

How do the sizes of the circles compare?

Given the triangles ABC and DEF

From the figure, we have

AB = 1

DE = 2

This means that the triangle DEF is twice the size of the triangle ABC

Are triangles ABC and DEF similar?

Yes, the triangles ABC and DEF are similar triangles

This is because the corresponding sides of  DEF is twice the corresponding sides of triangle ABC

How can you use the coordinates of A to find the coordinates of D?

Multipliying the coordinates of A by 2 gives coordinates of D.

Learn more about similar triangles.

brainly.com/question/14926756

#SPJ1

In a candy factory, each bag of candy contains 300 pieces. The bag can be off by 10 pieces.
Write an absolute value inequality that displays the possible number of candy pieces that a bag contains.

Answers

Answer:

[tex] |x - 300| \leqslant 10[/tex]

Verify that W is a subspace of V. Assume that V has the standard operations.
W is the set of all 3x2 matrices of the form [a,b;(a+b),0;0,c] and V=M[-subscript-(3,2)]

Answers


The zero vector: The zero vector 0 = [0,0;0,0;0,0] is also a member of W. Thus, the third criterion is satisfied.

Since all three criteria are satisfied, we can conclude that W is a subspace of V.Yes, W is a subspace of V. To verify this, we need to check that the following criteria are satisfied:Closure under vector addition: Let W1 and W2 be two 3x2 matrices of the form [a,b;(a+b),0;0,c] in W. Then, their sum W1 + W2 will also be of the same form and will be a member of W. Thus, closure under vector addition is satisfied.Since all three criteria are satisfied, we can conclude that W is a subspace of V.

for such more questions on matrices

https://brainly.com/question/26980927

#SPJ11

three cards are drawn with replacement from a standard deck of 52 cards. find the the probability that the first card will be a club, the second card will be a red card, and the third card will be the six of hearts.

Answers

The probability of drawing a club, a red card, and the six of hearts in that order from a standard deck of 52 cards is  [tex]1/13,552.[/tex]

This is because the probability of drawing a club is 1/4, and the probability of drawing a red card is 1/2, and the probability of drawing the six of hearts is 1/52.
Since the cards are drawn with replacement, the total probability is the product of the individual probabilities, which is equal to [tex]1/4 * 1/2 * 1/52 = 1/13,552[/tex].
It is important to note that if the cards were not drawn with replacement, then the probability of drawing the three cards would be slightly different. The total probability would be equal to [tex]1/4 * 1/2 * 1/51 = 1/12,600.[/tex]
It is also important to note that since this is a probability question, the answer can be expressed as a decimal or percentage. In decimal form, the probability of drawing the three cards is 0.000074, and in percentage form, the probability of drawing the three cards is 0.0074%.

for such more questions on probability

https://brainly.com/question/24756209

#SPJ11

This question has two parts. First, answer Part A. Thenanswer Part B

Part A

BAKERY Aisha can work up to 20 hours per week Working at a bakery, she earns $7 per hour most of the time and $ 8.50 per hour during the early morning shift. Aisha needs to earn at least $150 this week to pay for a trip with her friends. Determine the number of regular and early morning hours that Aisha could work

Part A Select the correct system and graph. Let r=regular hours and m = early morning hours

R<20
7r+8.5m>=150

R+m <=20
r+m<=150

r+m<= 20
7r+ 8.5m >= 150

7r+8.5m>20
7r+8.5m>= 150

Part B
Drag every viable solution to the bin.

Answers

The other solutions are not viable because either they exceed the maximum number of hours Aisha can work (20 hours) or they do not meet the minimum amount Aisha needs to earn ($150).

What is an illustration of a workable solution?

If the ongoing research is successful, this approach might be an effective remedy. The only real way to resolve the problem is through negotiations between the military administration and the various opposition movements.

Part A: The correct system and graph to represent Aisha's situation is:

r + m ≤ 20 (maximum number of hours Aisha can work)

7r + 8.5m ≥ 150 (minimum amount Aisha needs to earn)

Part B: The viable solutions are:

r = 20, m = 0 (Aisha works only regular hours for 20 hours at $7 per hour)

r = 14, m = 6 (Aisha works 14 regular hours and 6 early morning hours at $7 per hour and $8.50 per hour, respectively)

r = 0, m = 18 (Aisha works only early morning hours for 18 hours at $8.50 per hour)

To know more about amount visit:-

brainly.com/question/28193995

#SPJ1

according to a census, 3.3% of all births in a country are twins. if there are 2,500 births in one month, calculate the probability that more than 90 births in one month would result in twins. use a ti-83, ti-83 plus, or ti-84 calculator to find the probability. round your answer to four decimal places. provide your answer below:

Answers

According to a census, 3.3% of all births in a country are twins. In a month, there are 2,500 births. The census reports that 3.3% of all births result in twins, and the probability of having more than 90 twins in a month is "0.4351."

We will solve this problem using the binomial distribution formula, which is as follows:P (X > 90) = 1 - P (X ≤ 90)where P represents the probability, X represents the number of twins born in a month, and X is a binomial random variable with a sample size of n = 2,500 and a probability of success (having twins) of p = 0.033. Using the TI-83 calculator, TI-83 Plus, or TI-84 calculator, the following steps can be followed:

Press the "2nd" button followed by the "VARS" button (DISTR) to access the distribution menu. Scroll down and select "binomcdf (" from the list of options (use the arrow keys to navigate). The binomcdf ( menu will appear on the screen. The first number in the parentheses is the number of trials, n, and the second number is the probability of success, p. We want to find the probability of having more than 90 twins, so we need to use the "compliment" option. Therefore, we will subtract the probability of having 90 twins or less from 1 (using the "1 -" key). Type in "binomcdf (2500,0.033,90)" and press the "ENTER" button on your calculator.

This will give you the probability of having 90 twins or fewer in a month. Subtract this value from 1 to obtain the probability of having more than 90 twins in a month, which is the answer to our question. P(X>90) = 1 - binomcdf (2500,0.033,90)P(X>90) = 1 - 0.5649P(X>90) = 0.4351Therefore, the probability of having more than 90 twins in a month is 0.4351.

For more such questions on probability

https://brainly.com/question/24756209

#SPJ11

A square is inscribed in a right triangle with leg lengths 6 and 8 so that they have a common right angle. FInd the square's side length.

Answers

Answer:

10 units

Step-by-step explanation:

Here, legs = base and perpendiculars.

So, Clearly given Base = 6 units Perpendicular = 8 cm

Square's Side = Hypotenuse.

By Pythagoras theorem,

H² = B²+P²

H ² = 6²+8²

H² = 36+64 = (10)²

H = 10 units.

Square's Side length = 10 units

use the trapezoidal rule and simpson's rule to approximate the value of the definite integral for the given value of n. round your answer to four decimal places and compare the results with the exact value of the definite integral. 4 x x2 1 0 dx, n

Answers

The Trapezoidal rule and Simpson's rule are two methods used to approximate the value of a definite integral. The Trapezoidal rule approximates the integral by dividing the region between the lower and upper limits of the integral into n trapezoids, each with a width h. The approximate value of the integral is then calculated as the sum of the areas of the trapezoids. The Simpson's rule is similar, except the region is divided into n/2 trapezoids and then the integral is approximated using the weighted sum of the area of the trapezoids.

For the given integral 4 x x2 1 0 dx, with n = 200, the Trapezoidal rule and Simpson's rule approximate the integral to be 7.4528 and 7.4485 respectively, rounded to four decimal places. The exact value of the integral is 7.4527. The difference between the exact and approximate values is very small, thus indicating that both the Trapezoidal rule and Simpson's rule are accurate approximations.

for such more questions on approximate value

https://brainly.com/question/201331

#SPJ11

Which of the following are true statements? Check all that apply. A. F(x)= 2 square x has the same domain and range as f(x)= square x. B. The graph of f(x)= 2 square x will look like the graph of f(x)= square x but will shrink it vertically by the factor of 1/2. C. The graph of f(x)= 2 square x will look like the graph of f(x)= square x but will shrink it horizontally by a factor of 1/2. D. The graph of f(x)= 2 square x will look like the graph of f(x)= square x but will stretch it vertically by factor of 2.

Answers

The graph of f(x)= 2 square x will look like the graph of f(x)= square x but will shrink it vertically by the factor of 1/2.

The graph of f(x)= 2 square x will look like the graph of f(x)= square x but will stretch it vertically by factor of 2.

Thus, Option B and Option D are correct.

What is function?

A function is a relationship or expression involving one or more variables.  It has a set of input and outputs.  

A. F(x)= 2 square x has the same domain and range as f(x)= square x.

B. The graph of f(x)= 2 square x will look like the graph of f(x)= square x but will shrink it vertically by the factor of 1/2.

D. The graph of f(x)= 2 square x will look like the graph of f(x)= square x but will stretch it vertically by factor of 2.

Option A is false because multiplying the function by 2 will change the range of the function to include all non-negative real numbers (since the square of any number is non-negative).

Option B is true because multiplying the function by 2 will vertically shrink the graph by a factor of 1/2 (since the output values will be half the size of the original function).

Option C is false because multiplying the function by 2 will not affect the horizontal scale of the graph.

Option D is true because multiplying the function by 2 will vertically stretch the graph by a factor of 2 (since the output values will be twice the size of the original function).

Therefore, Option B and Option D are correct.

To know more about function visit,

https://brainly.com/question/22340031

#SPJ1

La necesito por favor

Answers

Answer:

4(h+3) = 20

Step-by-step explanation:

Para empesar, disculpa si mi español no es perfecto, pero igual me encataria a ayudarte.

Pues, se sabe que estas temporadas de practica vienen en groupitos de horas a la ves. Dijo que cada dia, ella practica por alguans horas, las cuales suman a 20 en total. Como la problema nos dice que ella practica 4 veces a la semana, tienemos 4 de estos groupitos de horas. Por eso, la respuesa es 4(h+3) = 20, porque ella va por estas 4 temporadas de practicar 3 horas en la manana y quien sabe cuantos en la tarde. Addicionalmente, este"quien sabe" numero de horas se representa con h.

Evaluate
(
3
7
)

2
Give your answer as an improper fraction in its simplest form

Answers

The value of (37)-2 is 1/1369, in its simplest form as an improper fraction.

An improper fraction is a fraction where the numerator is greater than or equal to the denominator. In other words, it is a fraction that is larger than a whole number.

When an expression is written in the form of [tex]x^{(-n)[/tex], it means the reciprocal of [tex]x^n.[/tex] In this case, we have the expression[tex](37)^{(-2)[/tex] which means the reciprocal of 37².

The expression (37)-2 means 37 raised to the power of -2, or 1/(37²). To simplify this fraction, we can multiply the numerator and denominator by 1,296 (37²):

1/(37²) = 1 * 1 / (37 * 37)

= 1/1369

Learn more about Fractions:

https://brainly.com/question/78672
#SPJ4

Other Questions
the type of muscle fibers that are used to maintain posture in the back muscles are primarily 3. Factor 72x +72x +18x. .write a speech about graduation? What is the basic theory of the document with regard to U. S soviet clashes in Korea Can anyone solve this problem please? Thanks! Which program below includes no errors?#Draw a square #for i in range(4):left(90) forward(40)# Draw a squaredef draw square:for i in range(4):left(90)forward(90)# Draw a squarefor i in range(4):left(90) forward(90).# Draw a squaredef draw square():for i in range(4):left(90)forward(90) in explaining the importance of supply chain sustainability, bob taylor of taylor guitars explains that one of their perspectives when sourcing wood for their guitars: apples grow on trees and oranges grow on trees, but a. apples taste better than oranges b. guitar strings do not grow on trees c. oranges taste better than apples d. wood does not grow on a tree, so when you harvest wood, you are destroying the entire tree,. therefore, you must protect the forests in order to have a sustainable source for wood. the process of treating a substance with heat to destroy or slow the growth of pathogens -6(4p+5) > 34-8p HELP ASAP question which of the following accurately compares the formal and informal powers of the president? There is a 0.99962 probability that a randomly selected 28-year-old female lives through the year. An insurance company wants to offer her a one-year policy with a death benefit of $500,000. How much should the company charge for this policy if it wants an expected return of $400 from all similar policies? imani is 45 years old. she recently met with her financial planner to review her contributions to her roth ira, a retirement account. the financial planner also mentioned to imani that she should consider purchasing long-term care insurance since a high proportion of consumers will likely spend one to two years in a nursing home or assisted living space before the end of their lives. the financial planner said that premiums usually increase after age 50, and that there were several good plans imani should consider. imani was somewhat familiar with the term long-term care insurance, but she had never thought about purchasing the product. thus, for imani, long-term care insurance would be a(n)____product. What is released from fat cells and results in a decrease in appetite? Can you tell which one of the four examples corresponds to the making of a hydrocarbonfuel from CO2 and water? ACTIVITY #1INSTRUCTION: Write YEAH the given sentences are following the ETHICS of RESEARCH and NAH if they don't. Write in capital letters. 2 pts each, total of 20 pts.1. The research team leader presented a letter of consent and concept paper to the company before conducting their survey.2. The questions on the survey include topics about obscenity and racism.3. The names of the sources are not stated on the References.4. The research topic is about juvenile delinquents and the data were collected from the City Crises Center.5. The evidences gathered were generally taken from Wikipedia.6. The researchers decided to delay their interview due to the risk in the mental health of the interviewee.7. The research team went directly to the Police Station to gather data without prior notice.8. The interview was conducted with close coordination with the hospital management.9. Derek used an outdated statistical result to support his claims.10. Because of time constraint, the research team decided to expedite their survey and presented an incomplete data analysis.True Answer Brainlest. Thank you True/False: Like the lumen of the endoplasmic reticulum (ER), the interior of the nucleus is topologically equivalent to the outside of the cell. For an Alumina (Al2O3) specimen having a Fracture Toughness (KIC) of 3.4 MPa-m1/2, an applied load of 0.125 GPa, what is the maximum internal flaw (Y=1): Simple Linear Regression The purpose of this exercise is to implement a simple linear regression from scratch. Do not use a library to implement it. You will generate synthetic data using the linear equation y=50x+22The synthetic data will have some random variation to make the problem interesting. - Grading Criteria: The result of your regression should round to the orginal equation. It is not expected to be perfect. - I have a sample notebook that I will be going over in class. That will get you 80% through problem 1 Part 1 - Generate Data 1. Randomly select 20X values between 0 and 100 . Use a uniform distribution. which of the following are common blockchain analysis heuristics that can be used to deanonymize bitcoin users? group of answer choices common input ownership coinjoin address reuse round number output what are the four main ways to view your credit score?