Answer:
The test statistic for testing if the proportion of high-altitude vehicles exceeding the standard is greater than the proportion of low-altitude vehicles exceeding the standard is 3.234.
Step-by-step explanation:
We are given that in a random sample of 380 cars driven at low altitudes, 42 of them exceeded a standard of 10 grams of particulate pollution per gallon of fuel consumed.
In an independent random sample of 90 cars driven at high altitudes, 24 of them exceeded the standard.
Let [tex]p_1[/tex] = population proportion of cars driven at high altitudes who exceeded a standard of 10 grams.
[tex]p_2[/tex] = population proportion of cars driven at low altitudes who exceeded a standard of 10 grams.
So, Null Hypothesis, [tex]H_0[/tex] : [tex]p_1\leq p_2[/tex] {means that the proportion of high-altitude vehicles exceeding the standard is smaller than or equal to the proportion of low-altitude vehicles exceeding the standard}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]p_1>p_2[/tex] {means that the proportion of high-altitude vehicles exceeding the standard is greater than the proportion of low-altitude vehicles exceeding the standard}
The test statistics that will be used here is Two-sample z-test statistics for proportions;
T.S. = [tex]\frac{(\hat p_1-\hat p_2)-(p_1-p_2)}{\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex] ~ N(0,1)
where, [tex]\hat p_1[/tex] = sample proportion of cars driven at high altitudes who exceeded a standard of 10 grams = [tex]\frac{24}{90}[/tex] = 0.27
[tex]\hat p_2[/tex] = sample proportion of cars driven at low altitudes who exceeded a standard of 10 grams = [tex]\frac{42}{380}[/tex] = 0.11
[tex]n_1[/tex] = sample of cars driven at high altitudes = 90
[tex]n_2[/tex] = sample of cars driven at low altitudes = 380
So, the test statistics = [tex]\frac{(0.27-0.11)-(0)}{\sqrt{\frac{0.27(1-0.27)}{90}+\frac{0.11(1-0.11)}{380} } }[/tex]
= 3.234
The value of z-test statistics is 3.234.
Which defines a line segment?
two rays with a common endpoint
O a piece of a line with two endpoints
O a piece of a line with one endpoint
all points equidistant from a given point
Answer:
O a piece of a line with two endpoints
Step-by-step explanation:
O a piece of a line with two endpoints
A piece of a line with two endpoints.
What is a line segment?In geometry, a line segment is a part of a line this is bounded by distinct end points and includes every point on the line this is between its endpoints.
What are the examples of line segments in real life?A ruler, a scale, a stick, a boundary line.Learn more about line segments here https://brainly.com/question/2437195
#SPJ2
An octagonal pyramid ... how many faces does it have, how many vertices and how many edges? A triangular prism ... how many faces does it have, how many vertices and how many edges? a triangular pyramid ... how many faces does it have, how many vertices and how many edges?
1: 8 faces and 9 with the base 9 vertices and 16 edges
2: 3 faces and 5 with the bases 6 vertices and 9 edges
3: 3 faces and 4 with the base 4 vertices and 6 edges
Hope this can help you.
1: 8 faces and 9 with the base 9 vertices and 16 edges
2: 3 faces and 5 with the bases 6 vertices and 9 edges
3: 3 faces and 4 with the base 4 vertices and 6 edges
solve for x: -3(x + 1)= -3(x + 1) - 5
Answer:
No solution : 0= -5Step-by-step explanation:
[tex]-3\left(x+1\right)=-3\left(x+1\right)-5\\\\\mathrm{Add\:}3\left(x+1\right)\mathrm{\:to\:both\:sides}\\\\-3\left(x+1\right)+3\left(x+1\right)=-3\left(x+1\right)-5+3\left(x+1\right)\\\\\mathrm{Simplify}\\\\0=-5\\\\\mathrm{The\:sides\:are\:not\:equal}\\\\\mathrm{No\:Solution}[/tex]
In the given figure, if POQ is a straight line then find ∠POT. please help !!!!!!
Answer:
∠POT = 78°
Step-by-step explanation:
If POQ is straight then
x + 18° + 50° + x + 24° = 180° add like terms
2x + 92° = 180°
2x = 180° - 92°
2x = 88° and x = 44 If we say SOT is a straight line then
∠POT + 50° + x + 18° = 180°
∠POT + 102° = 180°
∠POT = 78°
A standard deck of cards contains 52 cards. One card is randomly selected from the deck: Compute the probability of randomly selecting a queen or club from a deck of cards.
Answer:
The probability of randomly selecting a queen or club from a deck of cards = 17/52
Step-by-step explanation:
Here in this question, we are concerned with computing the probability of randomly selecting a queen or club form a deck of cards
Mathematically, the probability is;
Probability of selecting a queen + Probability of selecting a club
Probability of selecting a queen = number of queens/total card number
The number of queens = 4
Probability of selecting a queen = 4/52
Probability of selecting a club card = number of club cards/ total number of cards
Number of club cards = 13
Probability of selecting a club card = 13/52
The probability of selecting a queen or club from a deck of cards = 4/52 + 13/52 = 17/52
Simplify 3m2 (−6m3 )
Answer:
3m2(-6m3)
since it's a term you have to multiply it by the number in bracket
6m(-6m3)
6m(-18m)
-108m²
Find the equation of the circle in standard form for the given center (h, k) and radius R:(H,K)=(4/3,-8/8),R=1/3
Answer:
The answer is option BStep-by-step explanation:
Equation of a circle is given by
( x - h)² + ( y - k)² = r²
where r is the radius and
( h , k) is the center of the circle
From the question the radius R = 1/3
the center ( h ,k ) = (4/3 , -8/3)
Substituting the values into the above equation
We have
[tex](x - \frac{4}{3} )^{2} + {(y - - \frac{8}{3}) }^{2} = ({ \frac{1}{3} })^{2} [/tex]
We have the final answer as
[tex](x - \frac{4}{3} )^{2} + {(y + \frac{8}{3}) }^{2} = \frac{1}{9} [/tex]
Hope this helps you
two identical rubber balls are dropped from different heights. Ball 1 is dropped from a height of 109 feet, and ball 2 is dropped from a height of 260 feet. Use the function f(t) -16t^2+h to determine the current height, f(t), of a ball from a height h, over given time t.
When does ball 1 reach the ground? Round to the nearest hundredth
Answer: 5.22 seconds
Step-by-step explanation:
t represents time and y represents the height.
Since we want to know when the ball hits the ground, find t when y = 0
Ball 1 starts at a height of 109 --> h = 109
0 = -16t² + 109
16t² = 109
[tex]t^2=\dfrac{109}{16}\\[/tex]
[tex]t=\sqrt{\dfrac{109}{16}}[/tex]
[tex]t=\dfrac{\sqrt{109}}{2}[/tex]
t = 5.22
=> H = 109
=> 0 = -16t² + 109
=> 16t² = 109
=> t² = 109/16
=> t = 109/2
=> t = 5.22 sec
Therefore, 5.22 second is the answer.
Which transformation was applied to Figure 1 in order to arrive at Figure 2? Geometry A
Answer:
(B) Reflection in the x-axis
Step-by-step explanation:
We can see that these triangles have the exact same x-coordinates, however their y coordinates are opposite each other. This means that if we wanted to get one of the triangles to the other, we’d have to reflect over the x-axis
(by default, if the x values are the same and y are opposite, reflect across x axis. If y values are the same and x is opposite, reflect over y. it’s sort of like opposites.)
Hope this helped!
Suppose that y varies directly with x and y=20 when x=2 Find y when x=8
Answer:
80
Step-by-step explanation:
x y
2 = 20
8 = x
cross multiply( 8*20)/2
= 4 * 20
= 80
Please help look at the question in image
Answer:
In part 1, the value for D is given. Putting D as 1 gives us the answer 17/20
In part 2, the value of E is given as 1, putting E as 1 gives us D = 20/17
Let the sample size of leg strengths to be 7 and the sample mean and sample standard deviation be 630 watts and 32 watts, respectively.
(a) Is there evidence that leg strength exceeds 600 watts at significance level 0.05? Find the P-value. There is_________ evidence that the leg strength exceeds 600 watts at ? = 0.05.
A. 0.001 < P-value < 0.005
B. 0.10 < P-value < 0.25
C. 0.010 < P-value < 0.025
D. 0.05 < P-value < 0.10
(b) Compute the power of the test if the true strength is 610 watts.
(c) What sample size would be required to detect a true mean of 610 watts if the power of the test should be at least 0.9? n=
Answer:
a. There is_sufficient evidence that the leg
C. 0.010 < P-value < 0.025
b. Power of test = 1- β=0.2066
c. So the sample size is 88
Step-by-step explanation:
We formulate the null and alternative hypotheses as
H0 : u1= u2 against Ha : u1 > u2 This is a right tailed test
Here n= 7 and significance level ∝= 0.005
Critical value for a right tailed test with 6 df is 1.9432
Sample Standard deviation = s= 32
Sample size= n= 7
Sample Mean =x`= 630
Degrees of freedom = df = n-1= 7-1= 6
The test statistic used here is
Z = x- x`/ s/√n
Z= 630-600 / 32 / √7
Z= 2.4797= 2.48
P- value = 0.0023890 > ∝ reject the null hypothesis.
so it lies between 0.010 < P-value < 0.025
b) Power of test if true strength is 610 watts.
For a right tailed test value of z is = ± 1.645
P (type II error) β= P (Z< Z∝-x- x`/ s/√n)
Z = x- x`/ s/√n
Z= 610-630 / 32 / √7
Z=0.826
P (type II error) β= P (Z< 1.645-0.826)
= P (Z> 0.818)
= 0.7933
Power of test = 1- β=0.2066
(c)
true mean = 610
hypothesis mean = 600
standard deviation= 32
power = β=0.9
Z∝= 1.645
Zβ= 1.282
Sample size needed
n=( (Z∝ +Zβ )*s/ SE)²
n= ((1.645+1.282) 32/ 10)²
Putting the values and solving we get 87.69
So the sample size is 88
Divide write the quotient in lowest term 1 1/3 divided by 1 3/4
Answer:
7/3 or 2 1/3
Step-by-step explanation:
1 1/3 ÷ 1 3/4
Change to improper fractions
(3*1+1)/3 ÷ (4*1+3)/4
4/3 ÷ 7/4
Copy dot flip
4/3 * 7/4
Rewriting
4/4 * 7/3
7/3
As a mixed number
2 1/3
Answer:
11/3÷13/4
11/3×4/13
44/39=
1.1282
Find the product . Write your answer in exponential form 8^-2•8^-9
Answer:
8^-11
Step-by-step explanation:
The applicable rule of exponents is ...
(a^b)(a^c) = a^(b+c)
Then we have ...
(8^(-2))·(8^(-9)) = 8^(-2-9) = 8^-11
Y=-×+1 and y=2×+4 how many solutions when graphed
Answer:
One solution (-1,2)
Step-by-step explanation:
Since these two linear equations have different slopes, different y-intercepts, and are indeed linear, these equations will only have one crossing when graphed, and hence one solution.
To find that solution, we can simply set the equations equal to each other.
y = -x + 1
y = 2x + 4
-x + 1 = 2x + 4
-3 = 3x
-1 = x
Now plug that value back into one of the equations:
y = -x + 1
y = -(-1) + 1
y = 2
So now you know the crossing for these two equations occurs at (-1,2).
Cheers.
generate a continuous and differentiable function f(x) with the following properties: f(x) is decreasing at x=−5 f(x) has a local minimum at x=−3 f(x) has a local maximum at x=3
Answer:
see details in graph and below
Step-by-step explanation:
There are many ways to generate the function.
We'll generate a function whose first derivative f'(x) satisfies the required conditions, say, a quadratic.
1. f(x) has a local minimum at x = -3, and
2. a local maximum at x = 3
Therefore f'(x) has to cross the x-axis at x = -3 and x=+3.
Furthermore, f'(x) must be increasing at x=-3 and decreasing at x=+3.
f'(x) = -x^2+9
will satisfy the above conditions.
Finally f(x) must be decreasing at x= -5, which implies that f'(-5) must be negative.
Check: f'(-5) = -(-5)^2+9 = -25+9 = -16 < 0 so ok.
f(x) can then be obtained by integrating f'(x) :
f(x) = integral of -x^2+9 = -x^3/3 + 9x = 9x - x^3/3
A graph of f(x) is attached, and is found to satisfy all three conditions.
A function is differentiable at [tex]x = a[/tex], if the function is continuous at [tex]x = a[/tex]. The function that satisfy the given properties is [tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]
Given that:
The function decreases at [tex]x = -5[/tex] means that: [tex]f(-5) < 0[/tex]
The local minimum at [tex]x = -3[/tex] and local maximum at [tex]x = 3[/tex] means that:
[tex]x = -3[/tex] or [tex]x = 3[/tex]
Equate both equations to 0
[tex]x + 3 = 0[/tex] or [tex]3 - x = 0[/tex]
Multiply both equations to give y'
[tex]y' = (3 - x) \times (x + 3)[/tex]
Open bracket
[tex]y' = 3x + 9 - x^2 - 3x[/tex]
Collect like terms
[tex]y' = 3x - 3x+ 9 - x^2[/tex]
[tex]y' = 9 - x^2[/tex]
Integrate y'
[tex]y = \frac{9x^{0+1}}{0+1} - \frac{x^{2+1}}{2+1} + c[/tex]
[tex]y = \frac{9x^1}{1} - \frac{x^3}{3} + c[/tex]
[tex]y = 9x - \frac{x^3}{3} + c[/tex]
Express as a function
[tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]
[tex]f(-5) < 0[/tex] implies that:
[tex]9\times -5 - \frac{(-5)^3}{3} + c < 0[/tex]
[tex]-45 - \frac{-125}{3} + c < 0[/tex]
[tex]-45 + \frac{125}{3} + c < 0[/tex]
Take LCM
[tex]\frac{-135 + 125}{3} + c < 0[/tex]
[tex]-\frac{10}{3} + c < 0[/tex]
Collect like terms
[tex]c < \frac{10}{3}[/tex]
[tex]c <3.33[/tex]
We can then assume the value of c to be
[tex]c=3[/tex] or any other value less than 3.33
Substitute [tex]c=3[/tex] in [tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]
[tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]
See attachment for the function of f(x)
Read more about continuous and differentiable function at:
https://brainly.com/question/19590547
∠ACB is a circumscribed angle. Solve for x. 1) 46 2) 42 3) 48 4) 44
Answer:
[tex]\Huge \boxed{x=44}[/tex]
Step-by-step explanation:
The circumscribed angle and the central angle are supplementary.
∠ACB and ∠AOB add up to 180 degrees.
Create an equation to solve for x.
[tex]3x+10+38=180[/tex]
Add the numbers on the left side of the equation.
[tex]3x+48=180[/tex]
Subtract 48 from both sides of the equation.
[tex]3x=132[/tex]
Divide both sides of the equation by 3.
[tex]x=44[/tex]
Answer:
4)44
Step-by-step explanation:
PLEASE HELPPPPP!!!!!!!!!!!!!!!Which relationships have the same constant of proportionality between y and x as the following graph?Choose two answers!!
Answer:
B, E
Step-by-step explanation:
You can use these strategies to compare the given graph and the other representations.
A & B) See if the point (x, y) = (8, 6) marked on the first graph works in the given equation.
A -- 6y = 8x ⇒ 6(6) = 8(8) . . . FALSE
B -- y = (3/4)x ⇒ 6 = (3/4)8 . . . True
__
C) Compare this graph to the given graph. They don't match.
__
D & E) Plot a point from the table on the given graph and see where it falls.
D -- The point (x, y) = (3, 4) lies above the line on the given graph.
E -- The point (x, y) = (4, 3) lies on the given graph.
_____
Choices B and E have the same constant of proportionality as shown in the given graph.
Answer:
B and E
Step-by-step explanation:
One more than three times a number is the same as four less than double a number
Answer:
3x + 1 = 2x - 4. x = -5
Step-by-step explanation:
Will Give Brainliest Please Answer Quick
Answer:
Option (2)
Step-by-step explanation:
If a perpendicular is drawn from the center of a circle to a chord, perpendicular divides the chord in two equal segments.
By using this property,
Segment MN passing through the center Q will be perpendicular to chords HI ans GJ.
By applying Pythagoras theorem in right triangle KNJ,
(KJ)² = (KN)² + (NJ)²
(33)² = (6√10)² + (NJ)²
NJ = [tex]\sqrt{1089-360}[/tex]
NJ = [tex]\sqrt{729}[/tex]
= 27 units
Since, GJ = 2(NJ)
GJ = 2 × 27
GJ = 54 units
Option (2) will be the answer.
20 POINTS ANSWER QUICK
Justine graphs the function f(x) = (x – 7)2 – 1. On the same grid, she graphs the function g(x) = (x + 6)2 – 3. Which transformation will map f(x) on to g(x)? left 13 units, down 2 units right 13 units, down 2 units left 13 units, up 2 units right 13 units, up 2 units
Answer:
Justine graphs the function f(x) = (x – 7)2 – 1. On the same grid, she graphs the function
g(x) = (x + 6)2 – 3. Which transformation will map f(x) on to g(x)?
left 13 units, down 2 units
right 13 units, down 2 units
left 13 units, up 2 units
right 13 units, up 2 units
The lines shown below are perpendicular. If the green line has a slope of 2/5
, what is the slope of the red line?
A.
B.
C.
-
D.
-
Answer:
C. [tex] -\frac{5}{2}} [/tex]
Step-by-step explanation:
If two lines on a graph are perpendicular to each other, their slope is said to be negative reciprocals of each other. This means the slope of one, is the negative reciprocal of the other.
This can be represented as [tex] m_1 = \frac{-1}{m_2} [/tex]
Where, [tex] m_1, m_2 [/tex] are slopes of 2 lines (i.e. the red and green lines given in the question) that are perpendicular to one another.
Thus, the slope of the red line would be:
[tex] m_1 = \frac{-1}{\frac{2}{5}} [/tex]
[tex] m_1 = -1*\frac{5}{2}} [/tex]
[tex] m_1 = -\frac{5}{2}} [/tex]
The slope of the red line = [tex] -\frac{5}{2}} [/tex]
Different varieties of field daisies have numbers of petals that follow a Fibonacci sequence. Three varieties have 13, 21, and 34 petals.
Answer:
A. 55, 89
Step-by-step explanation:
In a Fibonacci sequence, you start with 2 given numbers. Then each subsequent number is the sum of the last two numbers.
12, 21, 34
12 + 21 = 34
34 + 21 = 55
55 + 34 = 89
Answer: 55, 89
cindy was asked by her teacher to subtract 3 from a certain number and then divide the result by 6 instead, she subtracted 6 and then divided the result by 3 giving an answer of 25 what would her answer have been if she had worked the problem correctly?
Answer:
13
Step-by-step explanation:
let the number be x
how Cindy worked it out :
(x -6) ÷ 3 = 25
x -6 = 75
x = 81
How she should have worked it out:
(x - 3) ÷ 6
(81 - 3) ÷ 6
78 ÷ 6 = 13
To which number sets of numbers does the number 3.567...belong?
Answer:
It's irrational numberIf the decimal digits do not repeat in some known pattern, then the number is irrational. We cannot write it as a ratio or fraction of two integers. If it did have a pattern, then we can use algebra to find the fractional representation of that number. Based on what is shown, it looks like there is no pattern so that's why the value is irrational. The number is also a real number as this is the case with any number you'll encounter unless you're dealing with complex numbers (but your teacher may not have introduced that topic yet).
I will rate brainly if you answer this The number of weekly social media posts varies directly with the square root of the poster’s age and inversely with the cube root of the poster’s income. If a 16-year-old person who earns $8,000 makes 64 posts in a week, what is the value of k?
Answer:
[tex]\large \boxed{\sf \bf \ \ k=320 \ \ }[/tex]
Step-by-step explanation:
Hello,
The number of weekly social media posts varies directly with the square root of the poster’s age and inversely with the cube root of the poster’s income.
If a 16-year-old person who earns $8,000 makes 64 posts in a week, what is the value of k?
[tex]64=\dfrac{\sqrt{16}}{\sqrt[3]{8000}}\cdot k=\dfrac{4}{20}\cdot k=\dfrac{1}{5}\cdot k=0.2\cdot k\\\\k=64*5=320[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
What is the error in this problem
Answer:
10). m∠x = 47°
11). x = 30.96
Step-by-step explanation:
10). By applying Sine rule in the given triangle DEF,
[tex]\frac{\text{SinF}}{\text{DE}}=\frac{\text{SinD}}{\text{EF}}[/tex]
[tex]\frac{\text{Sinx}}{7}=\frac{\text{Sin110}}{9}[/tex]
Sin(x) = [tex]\frac{7\times (\text{Sin110})}{9}[/tex]
Sin(x) = 0.7309
m∠x = [tex]\text{Sin}^{-1}(0.7309)[/tex]
m∠x = 46.96°
m∠x ≈ 47°
11). By applying Sine rule in ΔRST,
[tex]\frac{\text{SinR}}{\text{ST}}=\frac{\text{SinT}}{\text{RS}}[/tex]
[tex]\frac{\text{Sin120}}{35}=\frac{\text{Sin50}}{x}[/tex]
x = [tex]\frac{35\times (\text{Sin50})}{\text{Sin120}}[/tex]
x = 30.96
Find the interquartile range of the following data set.
Number of Points Scored at Ten Basketball Games
57 63 44 29 36 62 48 50 42 34
a .21
B.28
C. 6
D. 34
Answer:
b.28 its ans is no.b
Step-by-step explanation:
no point score in basketball
Claire has to go to the movie theater the movie starts at 4:15 pm it is a 25min walk to the theater from her home what time dose the have to leave the house to get there on time
Answer:
claire has to leave at 3:50 from her house.
Answer:
She needs to leave by 3:50 to get there on time.
Step-by-step explanation:
4:15 - 0:25 = 3:50.
A study was conducted to compare the effect of three diet types on the milk yield of cows (in lbs). The sample size, sample mean, and sample variance for each method are given below.
Diet A: n1 = 9, X1 = 39.1, s21 = 24.6
Diet B: n2 = 8, X2 = 29.9, s22 = 16.4
Diet C: n3 = 10, X3 = 45.9, s21 = 10.3
(a) Construct an ANOVA table including all relevant sums of squares, mean squares, and degrees of freedom.
(b) Perform an overall F test to determine whether the population means of milk yield are the same or not among the three diet types.
Answer:
(a) Anova table is attached below.
(b) The population means of milk yield are different among the three diet types
Step-by-step explanation:
In this case we need to perform a One-way ANOVA to determine whether the effect of three diet types on the milk yield of cows are significantly different or not.
The hypothesis can be defined as follows:
H₀: The effect of three diet types on the milk yield of cows are same.
Hₐ: The effect of three diet types on the milk yield of cows are significantly different.
(a)
The formulas are as follows:
[tex]\text{Grand Mean}=\bar x=\frac{1}{3}\sum \bar x_{i}\\\\SSB=\sum n_{i}(\bar x_{i}-\bar x)^{2}\\\\SSW=\sum (n_{i}-1)S^{2}_{i}\\\\N=\sum n_{i}\\\\DF_{B}=k-1\\\\DF_{W}=N-k\\\\DF_{T}=N-1\\[/tex]
The F critical value is computed using the Excel formula:
F critical value=F.INV.RT(0.05,2,24)
The ANOVA table is attached below.
(b)
The rejection region is defined as follows:
F > F (2, 24) = 3.403
The computed F statistic value is:
F = 34.069
F = 34.269 > F (2, 24) = 3.403
The null hypothesis will be rejected.
Thus, concluding that the population means of milk yield are different among the three diet types