In a family with ​children, the probability that all the children are girls is appoximately . In a random sample of 1000 families with ​children, what is the approximate probability that or fewer will have ​girls? Approximate a binomial distribution with a normal distribution.

Answers

Answer 1

Answer:

The probability that 100 or fewer will have 3 ​girls is 0.00734.

Step-by-step explanation:

The complete question is:

In a family with ​3 children, the probability that all the children are girls is approximately 0.125. In a random sample of 1000 families with ​3 children, what is the approximate probability that 100 or fewer will have 3 ​girls? Approximate a binomial distribution with a normal distribution.

Solution:

Let X represent the number of families who has 3 girls.

The random variable X follows a Binomial distribution with parameters n = 1000 and p = 0.125.

But the sample selected is too large.

So a Normal approximation to binomial can be applied to approximate the distribution of X if the following conditions are satisfied:

1. np ≥ 10

2. n(1 - p) ≥ 10

Check the conditions as follows:

 [tex]np=1000\times 0.125=125>10\\\\n(1-p)=1000\times (1-0.125)=875>10[/tex]

Thus, a Normal approximation to binomial can be applied.

So,  [tex]X\sim N(\mu=np,\sigma^{2}=np(1-p))[/tex]

The mean and standard deviation are:

[tex]\mu=np=1000\times 0.125=125\\\\\sigma=\sqrt{np(1-p)}=\sqrt{1000\times 0.125\times (1-0.125)}=10.46[/tex]

Compute the probability that 100 or fewer will have 3 ​girls as follows:

Apply Continuity correction:

[tex]P(X\leq 100)=P(X<100-0.50)[/tex]

                  [tex]=P(X<99.50)\\\\=P(\frac{X-\mu}{\sigma}<\frac{99.5-125}{10.46})\\\\=P(Z<-2.44)\\\\=0.00734[/tex]

*Use a z-table.

Thus, the probability that 100 or fewer will have 3 ​girls is 0.00734.


Related Questions

PLEASE help me with this question! No nonsense answers please. This is really urgent.

Answers

Answer:

last option

Step-by-step explanation:

Let's call the original angle x° and the radius of the circle y. The area of the original sector would be x / 360 * πy². The new angle, which is a 40% increase from x, can be represented as 1.4x so the area of the new sector is 1.4x / 360 * πy². Now, to find the corresponding change, we can calculate 1.4x / 360 * πy² ÷  x / 360 * πy² = (1.4x / 360 * πy²) * (360 * πy² / x). 360 * πy² cancels out so we're left with 1.4x / x which becomes 1.4, signifying that the area of the sector increases by 40%.

Find the surface area of a
sphere with a diameter of
15 in.
Can someone please explain how?

Answers

Answer:

About 706.5 square inches.

Step-by-step explanation:

Surface area of a sphere is: [tex]SA=4\pi r^2[/tex]

The radius is half the diameter. So, the radius of the given sphere is 7.5 in.

15/2 = 7.5

Find the surface area:

I use 3.14 for pi.

[tex]SA=4*3.14*7.5^2\\\\SA=4*3.14*56.25\\\\SA=12.56*56.25\\\\\boxed{SA=706.5}[/tex]

The surface area is about 706.5 square inches.

Hope this helps.

Answer:

SA=706.86 in²

Step-by-step explanation:

surface area of a sphere = 4πr²

radius r=d/2=15/2=7.5

SA=4(π)(7.5)²

SA=706.86 in²

is 7.2 a repeating or terminating decimal

Answers

Answer: terminating

Step-by-step explanation:

Answer:

7.2 is a terminating decimal.

Step-by-step explanation:

Terminating decimals are decimals that have an end point. The decimal does not continue to go on and on with numbers but, it stops at one number which makes it terminating.

Repeating decimals are decimals that go on and on with the same number or same patterns of numbers.

So, since 7.2 has an endpoint, then it is a terminating decimal.

Represents the solution to the inequality -9=2/3x-7<5

Answers

Answer:

-3=x <13

Step-by-step explanation:

[tex] - 9 = \frac{2x}{3} - 7 < 5[/tex]

Multiply through by 3

[tex] - 27 = 2x - 21 < 15[/tex]

Add 21 to all sides

[tex] - 6 = 2x < 36[/tex]

Divide through by 2

[tex] - 3 = x < 18[/tex]

The solutin set is

[tex]{- 3 = x < 18}[/tex]

PLEASE HELP
Find the area and the perimeter of the shaded regions below. Give your answer as a completely simplified exact value in terms of π (no approximations). The figures below are based on semicircles or quarter circles and problems b), c), and d) are involving portions of a square.

Answers

Answer:

perimeter is  4 sqrt(29) + 4pi  cm

area is 40 + 8pi cm^2

Step-by-step explanation:

We have a semicircle and a triangle

First the semicircle with diameter 8

A = 1/2 pi r^2 for a semicircle

r = d/2 = 8/2 =4

A = 1/2 pi ( 4)^2

  =1/2 pi *16

  = 8pi

Now the triangle with base 8 and height 10

A = 1/2 bh

  =1/2 8*10

  = 40

Add the areas together

A = 40 + 8pi cm^2

Now the perimeter

We have 1/2 of the circumference

1/2 C =1/2 pi *d

         = 1/2 pi 8

        = 4pi

Now we need to find the length of the hypotenuse of the right triangles

using the pythagorean theorem

a^2+b^2 = c^2

The base is 4 ( 1/2 of the diameter) and the height is 10

4^2 + 10 ^2 = c^2

16 + 100 = c^2

116 = c^2

sqrt(116) = c

2 sqrt(29) = c

Each hypotenuse is the same so we have

hypotenuse + hypotenuse + 1/2 circumference

2 sqrt(29) + 2 sqrt(29) + 4 pi

4 sqrt(29) + 4pi  cm

Step-by-step explanation:

First we need to deal with the half circle. The radius of this circle is 4, because the diameter is 8. The formula for the circumference of a circle is 2piR.

2pi4 so the perimeter for the half circle would be 8pi/2.

The area of that half circle would be piR^2 so 16pi/2.

Now moving on the triangle part, we need to find the hypotenuse side of AC. We will use the pythagoram theorem. 4^2+10^2=C^2

16+100=C^2

116=C^2

C=sqrt(116)

making the perimeter of this triangle 2×sqrt(116)

The area of this triangle is 8×10=80, than divided by 2 which is equal to 40.

We than just need to add up the perimeters and areas for both the half circle and triangle.

The area would be equal to 8pi+40

The perimeter would be equal to 4pi+4(sqrt(29))

PLEaSE HELP!!!!!! will give brainliest to first answer

Answers

Answer:

The coordinates of A'C'S'T' are;

A'(-7, 2)

C'(-9, -1)

S'(-7, -4)

T'(-5, -1)

The correct option is;

B

Step-by-step explanation:

The coordinates of the given quadrilateral are;

A(-3, 1)

C(-5, -2)

S(-3, -5)

T(-1, -2)

The required transformation is T₍₋₄, ₁₎ which is equivalent to a movement of 4 units in the leftward direction and 1 unit upward

Therefore, we have;

A(-3, 1) + T₍₋₄, ₁₎ = A'(-7, 2)

C(-5, -2) + T₍₋₄, ₁₎ = C'(-9, -1)

S(-3, -5) + T₍₋₄, ₁₎ = S'(-7, -4)

T(-1, -2) + T₍₋₄, ₁₎ = T'(-5, -1)

Therefore, the correct option is B

Please help! I’ve tried every site and nothing has helped


The answer is 11.8

Answers

Answer:

11.8%

Step-by-step explanation:

Here in this question, we want to find the probability of no success in the binomial experiment for 6 trials.

Let p = probability of success = 30% = 30/100 = 0.3

q = probability of failure = 1-p = 1-0.3 = 0.7

Now to calculate the probability, we shall need to use the Bernoulli approximation of the binomial theorem.

That would be;

P(X = 0) = 6C0 p^0 q^6

6C0 is pronounced six combination zero

= 6 * 0.3^0 * 0.7^6 = 1 * 1 * 0.117649 = 0.117649

This is approximately 0.1176

If we convert this to percentage we have 11.76%

But we want our answer rounded to the nearest tenth of a percent and that is 11.8%

Given that p=x^2-y^2/x^2+xy
I. Express p in the simplest form
ii. Find the value of p, if x=-4 and y=-6

Answers

Answer:

When x = -4 and y = -6, p = 37.75

Step-by-step explanation:

Given that p = x² - y²/x² + x·y, we have;

p = (x² × x² -y² + x·y×x²)/x²

p = (x²⁺² - y² + x¹⁺² × y)/x²

p = (x⁴ - y² + x³·y)/x²

Therefore, p in the simplest form is given as follows;

[tex]p = \dfrac{x^4 - y^2 + x^3 \cdot y }{x^2}[/tex]

To find the value of p when x = -4 and y = -6, we plug in the value of x and y into the above equation to get the following equation;

[tex]p = \dfrac{(-4)^4 - (-6)^2 + (-4)^3 \cdot (-6) }{(-4)^2} = 37.75[/tex]

Therefore, the value of p when x = -4 and y = -6 is equal to 37.75.

1. Suzette ran and biked for a total of 80 miles in 9 hours. Her average running speed was 5 miles per hour (mph) and her average biking speed was 12 mph. Let x = total hours Suzette ran. Let y = total hours Suzette biked. Use substitution to solve for x and y. Show your work. Check your solution. (a) How many hours did Suzette run? (b) How many hours did she bike?

Answers

Answer:

a) Suzette ran for 4 hours

b) Suzette biked for 5 hours

Step-by-step explanation:

Speed is rate of distance traveled, it is the ratio of distance traveled to time taken. It is given by:

Speed = distance / time

The total distance ran and biked by Suzette (d) = 80 miles, while the total time ran and biked by Suzette (t) = 9 hours.

For running:

Her speed was 5 miles per hour, let the total hours Suzette ran be x and the total distance she ran be p, hence since Speed = distance / time, therefore:

5 = p / x

p = 5x

For biking:

Her speed was 12 miles per hour, let the total hours Suzette ran be y and the total distance she ran be q, hence since Speed = distance / time, therefore:

12 = q / y

q = 12y

The total distance ran and biked by Suzette (d) = Distance biked + distance ran

d = p + q

80 = p + q

80 = 5x + 12y                 (1)

The total time taken to run and bike by Suzette (t) = time spent to bike + time spent to run

t = x + y

9 = x + y                         (2)

Solving equation 1 and equation 2, multiply equation 2 by 5 and subtract from equation 1:

7y = 35

y = 35/7

y = 5 hours

Put y = 5 in equation 2:

9 = x + 5

x = 9 -5

x = 4 hours

a) Suzette ran for 4 hours

b) Suzette biked for 5 hours

How do u simplify each expression by combining like terms?

Answers

Answer:

1. 8y - 9y = -1y

( 8 - 9 = -1)

3. 8a - 6 +a - 1

( i have showed the like terms here)

8a - 1a= 7a

-6 - 1 = -7

7a - 7

5. -x - 2 + 15x

( i have showed the like terms here)

-x + 15x = 14x

(x = 1)

14x + 2

7.  8d - 4 - d - 2

( i have showed the like terms here)

8d - d = 7d

-4 -2 = -6

7d - 6

8. 9a + 8 - 2a - 3 - 5a

( i have showed the like terms here)

9a - 2a - 5a = 2a

8 - 3= 5

2a + 5

If an octagon is 24, how many is a pentagon?

Answers

●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●

Hi my lil bunny!

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙

If an octagon is 24, how many is a pentagon?

Ans : Pentagon has 5 sides.

( A five-sided shape is called a pentagon. A six-sided shape is a hexagon, a seven-sided shape a heptagon, while an octagon has eight sides. The names of polygons are derived from the prefixes of ancient Greek numbers. )

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙

●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●

Have a great day/night!

❀*May*❀

The pentagon is 15, when octagon is 24.

What is Polygon?

A polygon is a figure made up of line segments (not curves) in a two-dimensional plane. Polygon is the combination of two words, i.e. poly (means many) and gon (means sides).

Polygon with 8 sides known as Octagon and polygon with 5 sides known as Pentagon.

Here, given that, Octagon = 8 sides = 24

So, 1 side= 3

Then, we get, pentagon = 5 sides = (5×3) = 15

Hence, the pentagon is 15.

To learn more on Polygon click:

https://brainly.com/question/15324224

#SPJ2

Cam’s tent (shown below) is a triangular prism.
Find the surface are, including the floor of his tent
PLEASE HELP

Answers

Answer:

21.4 m²

Step-by-step explanation:

To find the surface area of this whole triangular prism, we have to look at the bases (the triangles), find their surface area, then look at the sides (the rectangles) and find theirs.

Let's start with the triangles. The area of any triangle is [tex]\frac{bh}{2}[/tex]. The base of this triangle is 2m (because there are 2 one meters) and the height is 1.7m.

[tex]\frac{2\cdot1.7}{2} = \frac{3.4}{2} = 1.7[/tex]

So the area of one of these triangles is 1.7m. Multiplying this by two, because there are two triangles in this prism:

[tex]1.7\cdot2=3.4[/tex]

Now let's find the area of the sides.

The side lengths are 2 and 3, so

[tex]2\cdot3=6[/tex], and there are 3 sides (including the bottom/floor) so [tex]6\cdot3=18[/tex].

Now we add.

[tex]18+3.4=21.4[/tex] m².

Hope this helped!

Answer: 21.4 square meters^2

Step-by-step explanation:

MATHEMATICS
Algebra
Simultaneous Equations
1. 5u + 2v=7
2u - 2v=7

2. 3x - 4y=19
4x - 5y=23

Answers

Answer:

1. u = 2, v = -1.5

2. y = -7, x = -3

Step-by-step explanation:

1) For the following simultaneous equation, we have;

5·u + 2·v = 7....................(1)

2·u - 2·v = 7......................(2)

Adding equation (1) to equation (2), gives;

5·u + 2·v + 2·u - 2·v = 14

5·u + 2·u + 2·v- 2·v   = 14

7·u = 14

u = 14/7 = 2u = 2

u = 2

From equation (1), we have;

5·u + 2·v = 7 substituting u = 2 gives;

5×2 + 2·v = 7

2·v = 7  - 5×2 = 7 - 10 = -3

v = -3/2 = -1.5

v = -1.5

2.

3·x - 4·y = 19....................(1)

4·x - 5·y = 23.......................(2)

Multiplying  equation (1) by 4 and equation (2) by 3 gives;

For equation (1)

4 × (3·x - 4·y) = 4 ×19

12·x - 16·y = 76...........................(3)

For equation (2)

3 × (4·x - 5·y) = 3 × 23

12·x - 15·y = 69...........................(4)

Subtracting equation (3) from equation (4) gives;

12·x - 15·y - (12·x - 16·y) = 69 - 76 = -7

12·x - 15·y - 12·x + 16·y = 69 - 76 = -7

12·x - 12·x - 15·y + 16·y = -7

y = -7

Substituting the value of y = -7 in equation (1), we have;

3·x - 4·y = 19 = 3·x - 4×(-7) = 19

3·x - 4×(-7) = 19

3·x + 28 = 19

3·x = 19- 28  = -9

x = -9/3 = -3

x = -3.

Complete the square to transform the expression x2 - 2x - 2 into the form a(x - h)2 + k

Answers

Answer:

A

Step-by-step explanation:

Find the vertex form of the quadratic function below.

y = x^2 - 4x + 3

This quadratic equation is in the form y = a{x^2} + bx + cy=ax  

2

+bx+c. However, I need to rewrite it using some algebraic steps in order to make it look like this…

y = a(x - h)^2 + k

This is the vertex form of the quadratic function where \left( {h,k} \right)(h,k) is the vertex or the “center” of the quadratic function or the parabola.

Before I start, I realize that a = 1a=1. Therefore, I can immediately apply the “completing the square” steps.

STEP 1: Identify the coefficient of the linear term of the quadratic function. That is the number attached to the xx-term.

STEP 2: I will take that number, divide it by 22 and square it (or raise to the power 22).

STEP 3: The output in step #2 will be added and subtracted on the same side of the equation to keep it balanced.

Think About It: If I add 44 on the right side of the equation, then I am technically changing the original meaning of the equation. So to keep it unchanged, I must subtract the same value that I added on the same side of the equation.

STEP 4: Now, express the trinomial inside the parenthesis as a square of a binomial, and simplify the outside constants.

After simplifying, it is now in the vertex form y = a{\left( {x - h} \right)^2} + ky=a(x−h)  

2

+k where the vertex \left( {h,k} \right)(h,k) is \left( {2, - 1} \right)(2,−1).

Visually, the graph of this quadratic function is a parabola with a minimum at the point \left( {2, - 1} \right)(2,−1). Since the value of “aa” is positive, a = 1a=1, then the parabola opens in upward direction.

Example 2: Find the vertex form of the quadratic function below.

The approach to this problem is slightly different because the value of “aa” does not equal to 11, a \ne 1a  

​  

=1. The first step is to factor out the coefficient 22 between the terms with xx-variables only.

STEP 1: Factor out 22 only to the terms with variable xx.

STEP 2: Identify the coefficient of the xx-term or linear term.

STEP 3: Take that number, divide it by 22, and square.

STEP 4: Now, I will take the output {9 \over 4}  

4

9

​  

 and add it inside the parenthesis.

By adding {9 \over 4}  

4

9

​  

 inside the parenthesis, I am actually adding 2\left( {{9 \over 4}} \right) = {9 \over 2}2(  

4

9

​  

)=  

2

9

​  

 to the entire equation.

Why multiply by 22 to get the “true” value added to the entire equation? Remember, I factored out 22 in the beginning. So for us to find the real value added to the entire equation, we need to multiply the number added inside the parenthesis by the number that was factored out.

STEP 5: Since I added {9 \over 2}  

2

9

​  

 to the equation, then I should subtract the entire equation by {9 \over 2}  

2

9

​  

 also to compensate for it.

STEP 6: Finally, express the trinomial inside the parenthesis as the square of binomial and then simplify the outside constants. Be careful combining the fractions.

It is now in the vertex form y = a{\left( {x - h} \right)^2} + ky=a(x−h)  

2

+k where the vertex \left( {h,k} \right)(h,k) is \left( {{{ - \,3} \over 2},{{ - 11} \over 2}} \right)(  

2

−3

​  

,  

2

−11

​  

).

Example 3: Find the vertex form of the quadratic function below.

Solution:

Factor out - \,3−3 among the xx-terms.

The coefficient of the linear term inside the parenthesis is - \,1−1. Divide it by 22 and square it. Add that value inside the parenthesis. Now, figure out how to make the original equation the same. Since we added {1 \over 4}  

4

1

​  

 inside the parenthesis and we factored out - \,3−3 in the beginning, that means - \,3\left( {{1 \over 4}} \right) = {{ - \,3} \over 4}−3(  

4

1

​  

)=  

4

−3

​  

 is the value that we subtracted from the entire equation. To compensate, we must add {3 \over 4}  

4

3

​  

 outside the parenthesis.

Therefore, the vertex \left( {h,k} \right)(h,k) is \left( {{1 \over 2},{{11} \over 4}} \right)(  

2

1

​  

,  

4

11

​  

).

Example 4: Find the vertex form of the quadratic function below.

y = 5x^2 + 15x - 5  

Solution:

Factor out 55 among the xx-terms. Identify the coefficient of the linear term inside the parenthesis which is 33. Divide it by 22 and square to get {9 \over 4}  

4

9

​  

.

Add {9 \over 4}  

4

9

​  

 inside the parenthesis. Since we factored out 55 in the first step, that means 5\left( {{9 \over 4}} \right) = {{45} \over 4}5(  

4

9

​  

)=  

4

45

​  

 is the number that we need to subtract to keep the equation unchanged.

Express the trinomial as a square of binomial, and combine the constants to get the final answer.

Therefore, the vertex \left( {h,k} \right)(h,k) is {{ - \,3} \over 2},{{ - \,65} \over 4}  

2

−3

​  

,  

4

−65

​  

.

Answer:

(x - 1 )^2 - 3

Step-by-step explanation:

( x - 1 )^2 + ( -3)

x^2 - 2x + 1 - 3

x^2 - 2x - 2

how do you solve 2m-10=44+8m

Answers

Answer:

m = -9

Step-by-step explanation:

2m-10=44+8m

Subtract 2m from each side

2m-2m-10=44+8m-2m

-10 = 44+6m

Subtract 44 from each side

-10-44 = 44-44+6m

-54 = 6m

Divide by 6

-54/6 = 6m/6

-9 = m

Answer:

solve by solving the salvation for equation don't be a slave get educated from what's gave

Consider the following system of equations: y=2x−2 6x+3y=2 The graph of these equations consists of two lines that: 1. intersect at more than one point. 2. intersect in an infinite number of points. 3. intersect at exactly one point. 4. do not intersect.

Answers

Answer:

3.  Intersect at exactly one point.  ( (2/3), (-2/3) )

Step-by-step explanation:

To make the comparison of these lines easier, let's rewrite the 2nd equation into slope-intercept form, as the 1st equation is in slope-intercept form.

[1] y = 2x - 2

---------------------

[2] 6x + 3y = 2 ==> 3y = 2 - 6x ==> y = -2x + (2/3)

[2] y = -2x + (2/3)

So now that we have both equations in slope-intercept form, we can see that the two equations are both linear, have different slopes, and have different y-intercepts.

Since these equations have both different slopes and different y-intercepts, we know that the lines will cross at least one point.  We can confirm that the lines only cross at a single point using the fact that both equations are linear, meaning there will only be one point of crossing.  To find that point, we can simply set the equations equal to each other.

y = 2x - 2

y = -2x + (2/3)

2x - 2 = -2x + (2/3)

4x = (8/3)

x = (8/12) = (2/3)

And plug this x value back into one of the equations:

y = 2x - 2

y = 2(2/3) - 2

y = (4/3) - (6/3)

y = (-2/3)

Thus these lines only cross at the point ( (2/3), (-2/3) ).

Cheers.

Answer:

I don't understand the question

I need hellp please its my last chance to become a senior please someone

Answers

Answer:

d= 6

r= 6/2

r=3

V= π. r². h

V= π . 3². 14

V= π. 9 . 14

V= π 126 cm³

V= 126 π cm³ (π not in number)

hope it helps^°^

Answer:if you use the formula it is 126 pi cm cubed

The answer is c

Step-by-step explanation:

the cube root of 2 to the seventh power

Answers

Answer:

4 2^(1/3) or 5.0396841995794926590688424291129134022810058588060319203279004486... decimal

Step-by-step explanation:

Simplify the following:

(2^(1/3))^7

Hint: | For all a>=0, (a^(1/3))^m = a^(m/3). Apply this to (2^(1/3))^7.

Multiply exponents. (2^(1/3))^7 = 2^(7/3):

2^(7/3)

Hint: | Separate the exponent of 2^(7/3) into integer and fractional parts.

2^(7/3) = 2^(6/3 + 1/3) = 2^(6/3)×2^(1/3):

2^(6/3) 2^(1/3)

Hint: | Divide 6 by 3.

6/3 = (3×2)/3 = 2:

2^2 2^(1/3)

Hint: | Evaluate 2^2.

2^2 = 4:

Answer:  4 2^(1/3) or 5.0396841995794926590688424291129134022810058588060319203279004486... decimal

I need help asap!!!​

Answers

There are 360° total in a circle, so AB is half of the circle so it’s 180°. CBA is 180° also. 180°+55°=235°, 360-235= 125° which is AC

Use the image to answer the question. What notes do you see? a. quarter and eighth notes b. whole and quarter notes c. eighth and sixteenth notes d. quarter and sixteenth notes help me please, ty

Answers

Answer:

a. quarter and eighth notes is the best option

Step-by-step explanation:

you can get help from this attachment

hope it will help you :)

Two co-interior angles
formed between the
two parallel lines are in the ratio of 11.7.
Find the measures
of angles

Answers

Answer:

110° and 70°

Step-by-step explanation:

The angles are supplementary, thus sum to 180°

sum the parts of the ratio, 11 + 7 = 18

divide 180° by 18 to find the value of one part of the ratio

180° ÷ 18 = 10° ← value of 1 part of the ratio

Thus

11 parts = 11× 10° = 110°

7 parts = 7 × 10° = 70°

The angles are 110° and 70°

type in symbols to make 3,7,12,2 equal 45

Answers

Answer:

The answer is (3×7) + (12×2) .

[tex](3 \times 7) + (12 \times 2)[/tex]

[tex] = 21 + 24[/tex]

[tex] = 45[/tex]

20. A pool holds 1440 cubic feet of water, the city charges $1.75 per cubic meter of water used.
How much will it cost to fill the pool?

Answers

Answer:Conversion units

Step-by-step explanation: 1 ft^3= 0.028m^3 .: 1440ft^3=40.776m^3, so $1.75x40.776=$71.358~ $71.36.:

Answer:

$71.36

Step-by-step explanation:

1 foot = 0.3048 metros

1 cubic feet = (0.3048metros)³ = 0.02932 cubic meters   (aprox.)

1440 cubic feet = 1440*0.02932 = 40.7763 m

$1.75 por cubic meter:

1.75*40.7763 = $71.36

AB =
Round your answer to the nearest hundredth.
B
?
2
25°
С
A

Answers

Answer:

? = 4.73

Step-by-step explanation:

Since this is a right triangle we can use trig functions

sin theta = opp / hyp

sin 25 = 2 / ?

? sin 25 = 2

? = 2 / sin 25

? =4.732403166

To the nearest hundredth

? = 4.73

prove tan(theta/2)=sin theta/1+cos theta for theta in quadrant 1 by filling in the calculations and reasons. PLEASE HELP!!!!

Answers

Answer:

See explanation

Step-by-step explanation:

We have to prove the identity

[tex]tan(\frac{\Theta }{2})=\frac{sin\Theta}{1+cos\Theta }[/tex]

We will take right hand side of the identity

[tex]\frac{sin\Theta}{1+cos\Theta}=\frac{2sin(\frac{\Theta }{2})cos(\frac{\Theta }{2})}{1+[2cos^{2}(\frac{\Theta }{2})-1]}[/tex]

[tex]=\frac{2sin(\frac{\Theta }{2})cos(\frac{\Theta }{2})}{2cos^{2}(\frac{\Theta }{2})}=\frac{sin(\frac{\Theta }{2})}{cos(\frac{\Theta }{2})}[/tex]

[tex]=tan(\frac{\Theta }{2})[/tex] [ Tan θ will be positive since θ lies in 1st quadrant ]

Two angles are complementary. One angle's measure is 3 more than 9
times the other angle. What is the measure of each angle? Write each
angle's measure separately. ​

Answers

Answer:

The measure of one angle is 81.3° and the other angle is 8.7°.

Step-by-step explanation:

We are given that two angles are complementary. One angle's measure is 3 more than 9  times the other angle.

Let the measure of one angle be 'x' and the measure of other angle be 'y'.

So, according to the question;

The first condition states that two angles are complementary, this means that the sum of both angles must be equal to 90°, i.e;

                                 x + y = 90°

                                 x = 90° - y  ---------------- [equation 1]

The second condition states that One angle's measure is 3 more than 9  times the other angle, i.e;

                             x = 3 + 9y ------------ [equation 2]

Now, both the equations we get;

90 - y = 3 + 9y

9y + y = 90 - 3

10y = 87

[tex]y=\frac{87}{10}[/tex] = 8.7°

Now, putting the value of y in equation 1 we get;

                x = 90° - y

                x = 90° - 8.7° = 81.3°

Hence, the measure of one angle is 81.3° and the other angle is 8.7°.

URGENT PLZ!! Drag the correct transformation into the box to match the definition. [BLANK]... moves points across a specified line so that the line is the perpendicular bisector of each line segment connecting corresponding preimage and image points. Translation Rotation Reflection

Answers

Answer:

Reflection.

Step-by-step explanation:

Reflection moves points across a specified line so that the line is the perpendicular bisector of each line segment connecting corresponding pre-image and image points.

On the other hand, "Translation" moves points the same distance along lines that are parallel to each other while "Rotation" moves points along concentric circles and through the same angle of rotation.

At an angle of 90°, a line of reflection intersects the line segments connecting corresponding points of the pre-image under a reflection.

Basically, a reflection allows us to flip an object or figure across a line, point or plane without any change in its shape or size.

Hence, to reflect an object or a figure such as a triangle simply means that its mirror image would be produced with respect to a line; this line is generally referred to as the line of reflection.

Jeremy drove 180 miles in 3 hours. Find his average rate of change.​

Answers

Answer:

60 miles per hour

Step-by-step explanation:

Total distance= 180 miles

Total time =3 hours

Average rate of change= ?

Distance= Rate × time

Make Time the subject of the formula

Time= Distance / Rate

Make average rate of change the subject of the formula

Average rate of change = Distance / time

= 180 miles / 3 hours

= 60 miles per hour

Having trouble.. help?

Answers

Answer:

(A) [tex]y = x+3[/tex]

Step-by-step explanation:

Using the values of (-6, -3), (3,6), and (5,8) we can substitute the values into each equation and see if the equation meets the requirements for all 3.

Let's test A first.

[tex]-3 = -6+3[/tex]

Correct, let's try the second pair.

[tex]6 = 3+3[/tex]

Correct, let's try the third pair.

[tex]8 = 5+3[/tex]

So yes, this equation works.

For fun, let's try the other equations.

Let's test B.

[tex]-3 = -6-3[/tex]

This is not true as -6 -3 = -9. So this equation is immediately ruled out.

Let's test C.

[tex]-3 = 2\cdot-6[/tex]

Again this doesn't work, as -6 times 2 is -12. So this equation is also ruled out.

Let's try D.

[tex]-3 = \frac{1}{2}\cdot-6[/tex]

This works, as half of -6 is -3 - however the equation will only work if all 3 pairs work for it.

Let's try the second pair.

[tex]6 = \frac{1}{2}\cdot3[/tex]

This doesn't work, as half of 3 is 1.5. This equation is also ruled out.

Therefore, A is the only equation that works with these pairs.

Hope this helped!

A. {(x, y): y= x + 3}

can someone help me with this graphical method equation 3x + 5y = -2 7x - 8y = 15

Answers

X=1 and y=-1

Hope this helps :)

Answer:

x = 1

y = -1

Step-by-step explanation:

3x + 5y = -2

7x - 8y = 15

=> -8y = 15 - 7x

=> -y = 15/8 - 7/8x

=> y = -15/8 + 7/8x

3x + 5(-15/8 + 7/8x) = -2

=> 3x -75/8 + 35/8x = -2

=> 24/8x - 75/8 + 35/8x = -16/8

=> 59/8x - 75/8 = -16/8

=> 59/8x = 59/8

=> x = 59/8 x 8/59

=> x = 472/472

=> x = 1

x = 1

So, 3x + 5y = -2

=> 3 (1) + 5y = -2

=> 3 + 5y = -2

=> 5y = -5

=> y = -5/5

=> y = -1

So, x = 1

=>  y = -1

Other Questions
Brainliest for the correct answer!! A calculator was used to perform a linear regression on the values in the table. The results are shown to the right of the table.What is the line of best fit?A.y = 0.984x + 13.5B.y = 2.9x + 13.5C.0.984 = 2.9x + 13.5D.y = 13.5x 2.9 Ray's Satellite Emporium wishes to determine the best order size for its best-selling satellite dish (model TS111). Ray has estimated the annual demand for this model at 1,500 units. His cost to carry one unit is $80 per year per unit, and he has estimated that each order costs $22 to place. Using the EOQ model, how many should Ray order each time? The following shows the monthly sales in units of six salespersons before and after a bonus plan was introduced. At 95% confidence, determine whether the bonus plan has increased sales significantly. (For the following matched samples, let the difference "d" be: d = after - before.)Salesperson After Before1 94 902 82 843 90 844 76 705 79 806 85 80 Dextra Computing sells merchandise for $9,000 cash on September 30 (cost of merchandise is $7,200). Dextra collects 7% sales tax. Record the entry for the $9,000 sale and its sales tax. Also record the entry that shows Dextra sending the sales tax on this sale to the government on October 15.View transaction list Journal entry worksheet Record the cash sales and 9% sales tax. Note: Enter debits before credits. Date General Journal Debit Credit Sep 30 Record entry Clear entry View general journal All of the following are considered process innovation EXCEPT A. organizational innovation. B. nonneutral technical progress. C. neutral technical progress. D. labor saving technical progress. Jeff is playing a racing game. The game awards him an initial of virtual money. In addition, he gets of virtual money for each race he wins. In the end, he calculates average earnings of for each race he won. If represents the number of races he won, which equation can be used to find the number of wins? A. B. C. D. A spinner has 3 red spaces, 5 white spaces, and 1 black space. If the spinner isspun once, what is the theoretical probability of the spinner NOT stopping onred?P(Not red) = A. 6B.70C.8D.g Which phase of the business cycle would be marked by an increase in productivity while employment and profits also rise?A. inflationB. contractionC. expansionD. recession The Hamburg Sun Devils are most specifically an example of Americanization. globalization. cultural dilution. Westernization. A central air-conditioner uses 3500W of electricity. If electricity costs $0.087/kW*h. calculate how much it would cost to operate the air-conditioner 24 hours a day for 4 months (120 days). In most organisms, the end product of glycolysis is pyruvate. Pyruvate still contains a substantial amount of energy, which can be further extracted. Whether the organisms are operating under aerobic or anaerobic conditions determines the metabolic pathway that pyruvate undergoes to produce more ATP. In this tutorial, you will identify the end products of these metabolic pathways. Examine the two triangles. Are the triangles congruent? Justify your conclusions. If they are congruent, complete the following statement: "Yes, triangle __ congruent to triangle __ giving a detailed explanation of your reasoning. If they are not congruent, explain why you think so. Be specific in your answer and make sure to show your work. Which line is parallel to line r? line p line q line s line t Thinking about the ethnographic examples used in your text to illustrate types of political organization, which statement is false? Group of answer choices The Asante of Ghana are an example of a band level of political organization. The Bushmen of the Kalahari Desert are an example of the band level of political organization. The Cheyenne of North America were an example of a tribal level of political organization. The Yanomamo are an example of a tribal level of political organization. The Inuit are an example of a band level of political organization. an investment under consideration has a payback of six years and a cost of 876000. Assume the cash flows are conventional. If the required return is 12 percent, what is the worst-case NPV? A number is chosen at random from the set of consecutive natural numbers $\{1, 2, 3, \ldots, 24\}$. What is the probability that the number chosen is a factor of $4!$? Express your answer as a common fraction. -4.1=8(y-5) it says solve equation The function f is defined by the following rulef (x) - 5+1Complete the function table.-5-1023 Please answer ASAPRandomly pick 6 points from a square of side = 1. Show that you can always find 2 points from these 6 that their distance is less or equal to [tex]\frac{\sqrt{2} }{2} }[/tex]Randomly pick 5 points from a sphere. Show that you can always find a closed semi-sphere ( half a sphere and boundary) that contains 4 points.