Answer: $43,823.37
Step-by-step explanation:
Formula to calculate the accumulated amount earned on principal (P) at rate of interest (r) compounded daily after t years :
[tex]A=P(1+\dfrac{r}{365})^{365t}[/tex]
As per given , we have
P= $ 30,700
r= 8.9 % = 0.089
t= 4 years
[tex]A=30700(1+\dfrac{0.089}{365})^{365(4)}\\\\=30700(1+0.0002438)^{365(4)}\\\\=30700(1.0002438)^{1460}\\\\=30700(1.42747138525)\\\\=43823.3715272\approx43823.37[/tex]
Hence, the amount at the end of 4 years would be $43,823.37 .
Which, if any, pair of sides are parallel? AB II DC and AD II BC Cannot be determined AB II DC only AD II BC only
Answer:
120%
Step-by-step explanation:
what are the next terms in the number pattern -11, -8, -5, -2, 1
Answer:
4, 7, 10, 13
Step-by-step explanation:
Hey there!
Well in the given pattern,
-11, -8, -5, -2, 1
we can conclude that the pattern is +3 every time.
-11 + 3 = -8
-8 + 3 = -5
-5 + 3 = -2
-2 + 3 = 1
And so on
4, 7, 10, 13Hope this helps :)
use the product of powers property to simplify the numeric expression.
4 1/3 • 4 1/5 = _____
Answer:
The value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
Step-by-step explanation:
We need to simplify the numeric expression using property. The expression is as follows :
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex]
The property to be used is : [tex]x^a{\cdot} x^b=x^{a+b}[/tex]
This property is valid if the base is same. Here, base is x.
In this given problem, x = 4, a = 1/3 and b = 1/5
So,
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}}=4^{\dfrac{1}{3}+\dfrac{1}{5}}\\\\=4^{\dfrac{5+3}{15}}\\\\=4^{\dfrac{8}{15}}[/tex]
So, the value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
What is the quotient of 35,423 ÷ 15?
Answer: 2361.53
Step-by-step explanation:
Use long division and round.
(The 3 is repeated)
write 32 1/2 in radical form
Answer:
Nothing further, the simplest answer is 32 1/2
Step-by-step explanation:
Which choice is equivalent to the expression below? √-12
A. 12i
B. -12i
C. -2√3
D. 2i √3
E. -2√3i
PLEASE DON’T GUESS
Answer:
D. 2i√3
Step-by-step explanation:
You have the expression √-12. You can divide the number in the radical sign into the numbers that make up the expression. After you do this, you will be able to take numbers out of the radical sign
√(-12)
√(-1 × 4 × 3)
√-1 = i
√4 = 2
√3 = √3
2i√3
The answer is D.
Solve the following system of equations.
2x + y = 3
x = 2y-1
ANSWER: ______
plz help me
(1,1) is your answer.
Work is shown below.
Any questions? Feel free to ask.
Answer: (1,1)
Step-by-step explanation:
6(x + 2) = 30Solve the following linear equation
Answer:
[tex]\huge \boxed{x=3}[/tex]
Step-by-step explanation:
[tex]6(x+2)=30[/tex]
[tex]\sf Divide \ both \ sides \ by \ 6.[/tex]
[tex]x+2=5[/tex]
[tex]\sf Subtract \ 2 \ from \ both \ sides.[/tex]
[tex]x=3[/tex]
Answer:
3
Step-by-step explanation:
30 = 6(x+2)
30/6 = 5
5 = x+2
5-2 = 3
3=x
This is a pretty simple question and I tried to make it as simple as possible when explaining it.
musah stands at the center of a rectangular field . He first takes 50 steps north, then 25 step west and finally 50 steps on a bearing of 315°. How far west and how far north is Musah final point from the center?
Answer:
85.36 far north from the center
10.36 far east from the center
Step-by-step explanation:
The extra direction taken in the north side is x
X/sin(360-315)=50/sin 90
Sin 90= 1
X/sin 45= 50
X= sin45 *50
X= 0.7071*50
X= 35.355 steps
X= 35.36
Then the west direction traveled
West =√(50² - 35.355²)
West = √(2500-1249.6225)
West= √1250.3775
West= 35.36 steps
But this was taken in an opposite west direction
From the center
He is 35.36 +50
= 85.36 far north from the center
And
25-35.36=-10.36
10.36 far east from the center
How much would you need to deposit in an account now in order to have $6,000 in the account in 8 years? Assume the account earns 6% interest compounded monthly. (could anyone do this whole problem out?
Answer:
$3,717
Step-by-step explanation:
Hello, in 1 year there are 12 months.
Let's note I the Initial amount.
So, after 1 month we will get the following, because we compute the interest amount for one month only.
I * ( 1 + 6% * (1/12) )
And the next month, we will have interest of the amount available from previous month so it gives
[tex]I * ( 1+6\% * \dfrac{1}{12} ) * ( 1+6\% * \dfrac{1}{12} ) \\\\=I*(1+\dfrac{6}{12*100})^2\\\\=I*(1+\dfrac{1}{200})^2\\\\=I*(1.005)^2[/tex]
... and after n months ...
[tex]I*(1.005)^n[/tex]
8 years is 8*12 = 96 months. so we are looking for I such that
[tex]I*(1.005)^{96}=6000\\\\<=> I =\dfrac{6000}{1.005^{96}}\\\\=\boxed{3717.14345....}[/tex]
Thank you.
Listed below are systolic blood pressure measurements (mm Hg) taken from the right and left arms of the same woman. Assume that the paired sample data is a simple random sample and that the differences have a distribution that is approximately normal. Use a 0.05 significance level to test for a difference between the measurements from the two arms. What can be concluded?
Right_arm(mm_Hg) Left_arm(mm_Hg)
149 166
136 179
129 190
137 148
139 138
Data was entered in SPSS using the paired t-test approach!!
a. In this example, μd is the mean value of the differences d for the population of all pairs of data, where each individual difference d is defined as the measurement from the right arm minus the measurement from the left arm. What are the null and alternative hypotheses for the hypothesis test?
b.) Identify the test statistic.
c.) Identify the P-value.
d.) What is the conclusion based on the hypothesis test?
Answer:
There is a significant difference in the systolic blood pressure measurements between the two arms.
Step-by-step explanation:
The dependent t-test (also known as the paired t-test or paired samples t-test) compares the two means associated groups to conclude if there is a statistically significant difference amid these two means.
In this case a paired t-test is used to determine whether there is a difference in the systolic blood pressure measurements between the two arms.
The SPSS output is attached below.
(a)
The hypothesis for the test can be defined as follows:
H₀: There is no difference in the systolic blood pressure measurements between the two arms, i.e. d = 0.
Hₐ: There is a significant difference in the systolic blood pressure measurements between the two arms, i.e. d ≠ 0.
(b)
Consider the SPSS output.
The test statistic value is t = 0.871.
(c)
Consider the SPSS output.
The p-value of the test is:
p-value = 0.433.
(d)
The significance level of the test is, α = 0.05.
Decision rule:
If the p-value of the test is less than the significance level then the null hypothesis will be rejected and vice-versa.
p-value = 0.433 > α = 0.05
The null hypothesis will not be rejected at 5% level of significance.
Conclusion:
Thus, it can be concluded that there is a significant difference in the systolic blood pressure measurements between the two arms.
please help
-3(-4x+4)=15+3x
Answer:
x=3
Step-by-step explanation:
● -3 (-4x+4) = 15 + 3x
Multiply -3 by (-4x+4) first
● (-3) × (-4x) + (-3)×(4) = 15 + 3x
● 12 x - 12 = 15 +3x
Add 12 to both sides
● 12x - 12 + 12 = 15 + 3x +12
● 12 x = 27 + 3x
Substract 3x from both sides
● 12x -3x = 27 + 3x - 3x
● 9x = 27
Dividr both sides by 9
● 9x/9 = 27/9
● x = 3
Marco purchased a large box of comic books for $300. He gave 15 of the comic books to his brother and then sold the rest on an internet website for $330 making a profit , making a profit of $1.50 on each one.how many comic books were in the box? what was the original price of each comic book (assuming they all cost the same amount)?
Answer: There are 75 books.
Price of each book = $4.
Step-by-step explanation:
Let x = Number of books in the box.
Then as per given,
Cost of x books = $300
Cost of one book = [tex]\$(\dfrac{300}x)[/tex]
Books left after giving 15 of them = x-15
Selling price of (x-15) books= $330
Selling price of one book = [tex]\$(\dfrac{330}{x-15})[/tex]
Profit on each book= $1.50
Profit = selling price - cost price
[tex]\Rightarrow 1.50=\dfrac{330}{x-15}-\dfrac{300}{x}\\\\\Rightarrow\ 1.50=\dfrac{330(x)-300(x-15)}{x(x-15)}\\\\\Rightarrow\ 1.50=\dfrac{330x-300x+4500}{x^2-15x}\\\\\Rightarrow\ 1.50(x^2-15x)=30x+4500\\\\\Rightarrow\ 1.50x^2-22.5x=30x+4500\\\\\Rightarrow\ 1.50x^2-52.5x-4500=0\\\\\Rightarrow\ 1.50x^2-52.5x-4500=0\\\\\Rightarrow\ x^2-25x-3000=0\ \ [\text{divide by 1.5}][/tex]
[tex]\Rightarrow (x+40)(x-75)=0\\\\\Rightarrow\ x=-40,75[/tex]
Number of books cannot be negative.
So, there are 75 books.
Price of each book = [tex]\dfrac{300}{75}=\$4[/tex]
So price of each book = $4.
f(x) = -3x + 7
What is f (0)?
Answer:
f(0) = 7
Step-by-step explanation:
f(x) = -3x + 7
Let x =0
f(0) = -3*0 + 7
f(0) = 7
A buoy floating in the sea is bobbing in simple harmonic motion with amplitude 13 in and period 0.25 seconds. Its displacement d from sea level at time t=0 seconds is 0in, and initially it moves downward. (Note that downward is the negative direction.)Required:Give the equation modeling the displacement d as a function of time t.
Answer:
The equation is [tex]x(t) = -13 cos (8 \pi t )[/tex]
Step-by-step explanation:
From the question we are told that
The amplitude is [tex]A = 13 \ in[/tex]
The period is [tex]T = 0.25[/tex]
Generally the displacement function for a simple harmonic motion is mathematically represented as
[tex]x(t) = A cos (wt )[/tex]
Here [tex]w[/tex] is the angular frequency which is mathematically represented as
[tex]w = \frac{2 \pi }{T}[/tex]
substituting values
[tex]w = \frac{2 \pi }{ 0.25}[/tex]
[tex]w = 8\pi[/tex]
Given that at t = 0 the displacement is equal to 0 it means that there is no phase shift and also we are told that it is initially moving downward which implies that its Amplitude is [tex]A = -13\ in[/tex]
So the equation modeling the displacement d as a function of time t is mathematically represented as
[tex]x(t) = -13 cos (8 \pi t )[/tex]
Question:
A school's band members raised money by selling magazine subscriptions and shirts. Their profit from selling shirts was per shirt minus a one-time set-up fee. Their profit from selling magazine subscriptions was per subscription. They made exactly the same profit from shirts as they did from magazines. They also sold the same number of shirts as magazine subscriptions. How many shirts did they sell?
Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have?
The gasoline gauge on a van initially read ⅛ full. When 15 gallons of gasoline were added to the tank, the gauge then read ¾ full. How many more gallons would be needed to fill the tank?
Answer:
Question 1: 40 shirts and 40 magizines
Question 2: $4.4
Question 3: 6 gallons
Answer:
hello
Step-by-step explanation:
Using only four 4's and any operational sign find the value of 8
Answer:
The answer is 4 + 4 + 4 - 4 = 8
Step-by-step explanation:
The four fours problem is one of the problems given in the book "The Man Who Calculated" by Malba Tahan, a Brazilian-born professor of mathematical sciences.
There are many complicated problems in this book made with the intention of using logic to find a value.
The 4 fours problem is based on using these numbers and using any operation to result in the numbers 1 through 10.
paul worked 50 hours last week. if he earns $10 per hour plus time-and-a-half for any hours worked beyond 40 in a week, how much did he earn last week?
Answer: 4150
Step-by-step explanation:
You take the 50, becuse the amount earned increases once you surpass 40 you do 40 x 10 and that = 4000 then you take the remaining 10 and times that by 15 (becuse after 40 it is 1.5 of what you where earning before you hit 40 hours and half of ten is 5 so you do 10 plus 5 and times that by 10) then add both numbers together and you have 4150! Hope that helped!
a vegetable garden and he's around the path of seemed like a square that together are 10 ft wide. The path is 2 feet wide. Find the total area of the vegetable garden and path
Answer:
Garden: 36 square feet
Path: 64 square feet
Step-by-step explanation:
Let's first find the total area. The total area will be 100 square feet since the side length is 10. Since the path is 2 feet wide and on all sides, that means that the inside square will have a side length of 6. That means that the vegetable garden is 36 square feet. The path will be 100 - (the garden), and the garden is 36 square feet, which means the outer path will be 64.
Determine the value(s) for which the rational expression 2x^2/6x is undefined. If there's more than one value, list them separated by a comma, e.g. x=2,3.
Answer:
0
Step-by-step explanation:
Hello, dividing by 0 is not defined. so
[tex]\dfrac{2x^2}{6x}[/tex]
is defined for x different from 0
This being said, we can simplify by 2x
[tex]\dfrac{2x^2}{6x}=\dfrac{2x*x}{3*2x}=\dfrac{1}{3}x[/tex]
and this last expression is defined for any real number x.
Thank you
A spinner has 10 equally sized sections, 5 of which are gray and 5 of which are blue. The spinner is spun twice. What is the probability that the first spin lands on gray and the second spin lands on blue? Write your answer as a fraction in the simplest form.
Answer:
[tex]P(Gray\ and\ Blue) = \frac{1}{4}[/tex]
Step-by-step explanation:
Given
[tex]Sections = 10[/tex]
[tex]n(Gray) = 5[/tex]
[tex]n(Blue) = 5[/tex]
Required
Determine P(Gray and Blue)
Using probability formula;
[tex]P(Gray\ and\ Blue) = P(Gray) * P(Blue)[/tex]
Calculating P(Gray)
[tex]P(Gray) = \frac{n(Gray)}{Sections}[/tex]
[tex]P(Gray) = \frac{5}{10}[/tex]
[tex]P(Gray) = \frac{1}{2}[/tex]
Calculating P(Gray)
[tex]P(Blue) = \frac{n(Blue)}{Sections}[/tex]
[tex]P(Blue) = \frac{5}{10}[/tex]
[tex]P(Blue) = \frac{1}{2}[/tex]
Substitute these values on the given formula
[tex]P(Gray\ and\ Blue) = P(Gray) * P(Blue)[/tex]
[tex]P(Gray\ and\ Blue) = \frac{1}{2} * \frac{1}{2}[/tex]
[tex]P(Gray\ and\ Blue) = \frac{1}{4}[/tex]
find the total area of the prism
Answer:
63.5
Step-by-step explanation:
For the following polynomial, find P(a), P(-x) and P(x + h).
P(x) = 7x-6
Answer:
Step-by-step explanation:
Hello, please consider the following.
P(a) = 7 * a - 6
P(-x)= 7 *(-x) - 6 = -7x - 6
P(x+h) = 7 * (x+h) - 6 = 7x + 7h - 6
Hope this helps.
Thank you.
The values of the polynomial for the given expressions are:
P(a) = 7a - 6
P(-x) = -7x - 6
P(x + h) = 7x + 7h - 6
To find P(a), P(-x), and P(x + h) for the given polynomial P(x) = 7x - 6, we need to substitute the respective values of x into the polynomial expression.
1. P(a):
P(a) = 7a - 6
2. P(-x):
P(-x) = 7(-x) - 6
P(-x) = -7x - 6
3. P(x + h):
P(x + h) = 7(x + h) - 6
P(x + h) = 7x + 7h - 6
To know more about polynomial:
https://brainly.com/question/2928026
#SPJ2
WHY CAN'T ANYONE HELP ME PLEASE?A 40% solution of fertilizer is to be mixed with a 80% solution of fertilizer in order to get 80 gallons of a 70% solution. How many gallons of the 40% solution and 80% solution should be mixed? 40% solution =? gallons, 80% solution =? gallons
Answer:
40% solution = 20 gallons
80% solution = 60 gallons
Step-by-step explanation:
x = gallons of 40% solution
y = gallons of 80% solution
Total volume is:
x + y = 80
Total amount of fertilizer is:
0.40 x + 0.80 y = 0.70 (80)
Solve by substitution.
0.40 x + 0.80 (80 − x) = 0.70 (80)
0.40 x + 64 − 0.80 x = 56
0.40 x = 8
x = 20
y = 60
For this year's fundraiser, students at a certain school who sell at least 75 magazine subscriptions win a prize. If the fourth grade students at this school sell an average (arithmetic mean) of 47 subscriptions per student, the sales are normally distributed, and have a standard deviation of 14, then approximately what percent of the fourth grade students receive a prize
Answer:
The percentage is k = 2.3%
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 47[/tex]
The standard deviation is [tex]\sigma = 14[/tex]
Given that the sales are normally distributed and that students at a certain school who sell at least 75 magazine subscriptions win a prize then the percent of the fourth grade students receive a prize is mathematically represented as
[tex]P(X > 75) = P(\frac{X - \mu }{\sigma } > \frac{75 - \mu }{\sigma })[/tex]
Generally
[tex]\frac{X - \mu }{\sigma } = Z (The \ standardized \ value \ of \ X )[/tex]
So
[tex]P(X > 75) = P(Z > \frac{75 - 47 }{14 })[/tex]
[tex]P(X > 75) = P(Z > 2)[/tex]
From the standardized normal distribution table
[tex]P(Z > 2) =0.023[/tex]
=> [tex]P(X > 75) = 0.023[/tex]
The percentage of the fourth grade students receive a prize is
k = 0.023 * 100
k = 2.3%
Find the area of the shape shown below.
2
2
4
Hurry and answer plz!!!!
1
Answer:
7 square units
Step-by-step explanation:
We can break down this complex shape into smaller shapes.
I've broken it down into a rectangle, a square, and a triangle (See attached picture)
Let's first find the area of the triangle. To do this we use the formula [tex]\frac{bh}{2}[/tex]. The base is 1 (because the top is 2, and 1 is already used on the triangle - 2-1 = 1.) and the height is 2 (because 4 is already used on the left, and 2 was used on the right so 4-2=2).
[tex]\frac{2\cdot1}{2} = \frac{2}{2} = 1[/tex].
Now let's find the area of the top square - we can just square 2 which is 4.
To find the area of the bottom rectangle, we can multiply it's two side lengths of 2 and 1 = 2.
Adding these all together gets us 4+2+1 = 7.
Hope this helped!
The cost of performance tickets and beverages for a family of four can be modeled using the equation 4x+12=48,where x represents the cost of a. Ticket.how much is one ticket
Answer:
x=9; one ticket is $9
Step-by-step explanation:
4x+12=48
4x=48-12
4x=36
x=36/4
x=9
In the multiplication below, each of A, B and
C represents a different digit. What is ABC?
A B C
X
3
В В В
Answer:
ABC = 148, 3*148 = 444
Step-by-step explanation:
We know that 111 = 3* 37, so all numbers of the form BBB has the factor 37.
So we need a multiple of 37 such thant when multiplied, we get three digits the same as the middle digit.
Try 4*37 = 148, 148*3 = 444, bingo, we got the right combination.
So ABC is 148.
If the average fixed cost (AFC) of producing 5 bags of rice is $20.00, the average fixed cost of producing 10 bags will be
Answer:$40.00
Step-by-step explanation:first divide 20 by 5 and the answer will be 4. now multiply 10 into 4 and you'll get the answer $40.00
12. Consider the function ƒ(x) = x^4 – x^3 + 2x^2 – 2x. How many real roots does it have?
options:
A) 2
B) 1
C) 3
D) 4
Answer:
Step-by-step explanation:
Hello, let's factorise as much as we can.
[tex]x^4-x^3 + 2x^2-2x\\\\=x(x^3-x^2+2x-2)\\\\=x(x-1)(x^2+2)[/tex]
So, the solutions are
[tex]0, \ 1, \ \sqrt{2}\cdot i, \ -\sqrt{2}\cdot i[/tex]
There are only 2 real roots.
Thank you.
Answer:
So, the solutions are
There are only 2 real roots.
Step-by-step explanation: