If X = 12 units, Y = 4 units, and h = 10 units, then what is the area of the trapezoid shown above?

Answers

Answer 1

Answer:

52 units^2

Step-by-step explanation:

It's unclear what the leg lengths and the width are.  I must assume that the lengths are 12 units and 14 units and that the width of the trapezoid is 4 units.  You were given an illustration for this problem and should have shared it or described the trapezoid in words.  Please do this if the answer given below does not agree with any of your answer choices.

If the lengths are 12 units and 14 units and that the width of the trapezoid is 4 units, then the area is

       

      12 units + 14 units

A = ---------------------------- * 4 units = 52 units^2

                    2


Related Questions

20 points!
Please help.

Answers

Man this is a hard one!

Of the three properties, reflexive, symmetric, and transitive that define the relation "is equal to," which one could also apply to "is less than" and "is greater than?" transitive reflexive symmetric

Answers

Answer: Transitive property.

Step-by-step explanation:

First, for the equality we have:

Reflexive:

  For all real numbers x, x = x.

Symmetric:  

 For all real numbers x, y

 if x= y, then y = x.

Transitive:

 For reals x, y and z.

 if x = y, and y = z, then x = z.

Now, let's talk about inequalities.

first, the reflexive property will say that:

x > x.

This has no sense, so this property does not work for inequalities.

Now, the reflexive.

If x > y, then y > x.

Again, this has no sense, if x is larger than y, then we can never have that y is larger than x. This property does not work for inequalities.

Not, the transitive property.

if x > y, and y > z, then x > z.

This is true.

x is bigger than y, and y is bigger than z, then x should also be bigger than z.

x > y > z.

And this also works for the inverse case:

x < y and y < z, then x < z.

So the correct option is transitive property.

The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an older 35-inch television whose screen has an aspect ratio of 4:3.

Answers

Answer:

The Width = 28 inches

The Height = 21 inches

Step-by-step explanation:

We are told in the question that:

The width and height of an older 35-inch television whose screen has an aspect ratio of 4:3

Using Pythagoras Theorem

Width² + Height² = Diagonal²

Since we known that the size of a television is the length of the diagonal of its screen in inches.

Hence, for this new TV

Width² + Height² = 35²

We are given ratio: 4:3 as aspect ratio

Width = 4x

Height = 3x

(4x)² +(3x)² = 35²

= 16x² + 9x² = 35²

25x² = 1225

x² = 1225/25

x² = 49

x = √49

x = 7

Hence, for the 35 inch tv set

The Width = 4x

= 4 × 7

= 28 inches.

The Height = 3x

= 3 × 7

= 21 inches

please help with this

Answers

Answer:

[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex]

Step-by-step explanation:

We are given the graph of r = cos( θ ) + sin( 2θ ) so that we are being asked to determine the integral. Remember that [tex]\:r=cos\left(\theta \right)+sin\left(2\theta \right)[/tex] can also be rewritten as [tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex].

Let's apply the functional rule [tex]\int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx[/tex],

[tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex] = [tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex]

At the same time [tex]\int \cos \left(\theta \right)d\theta \right=\sin \left(\theta \right)[/tex] = [tex]sin( \theta \right ))[/tex], and [tex]\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]-\frac{1}{2}\cos \left(2\theta \right)[/tex]. Let's substitute,

[tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \right)[/tex]

And adding a constant C, we receive our final solution.

[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex] - this is our integral

Identify the equivalent expressions of 4(2x + x-3) - 3x + 3 by substituting x = 2 and x = 3.
9x - 9
9x - 1
9x + X-9
9(x - 1)
4(3x - 3) + 3 - 3x

Answers

Answer:

9x -9

9(x - 1)

4(3x-3) - 3x + 3

Step-by-step explanation:

4(2x + x-3) - 3x + 3

Combine like terms

4(3x-3) - 3x + 3

Distribute

12x -12 -3x+3

Combine like terms

9x -9

Factor out 9

9(x-1)

Answer:

9

18

Step-by-step explanation:

x = 2:

4(4 + 2 - 3) - 6 + 3 = 12 - 6 + 3 = 9

x = 3:

4(6 + 3 - 3) - 9 + 3 = 24 - 9 + 3 = 18

Find the equation of a parabola that has a vertex (3,5) and passes through the point (1,13).
Oy= -27 - 3)' +5
Oy=2(x + 3) - 5
Oy=2(0 - 3)' + 5
Oy= -3(2 – 3) + 5
PLEASE HELP ME!!

Answers

Answer:

y = 2(x - 3)² + 5

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

Here (h, k) = (3, 5), thus

y = a(x - 3)² + 5

To find a substitute (1, 13) into the equation

13 = a(1 - 3)² + 5 ( subtract 5 from both sides )

8 = 4a ( divide both sides by 4 )

a = 2, then

y = 2(x - 3)² + 5 ← equation of parabola in vertex form

Question 15 please and i will mark the brainliest!!! And thank you to whoever answers

Answers

Answer: C) 12

Explanation:

We have 4 options for the first choice and 3 options for the next. So there are 4*3 = 12 different combos possible. The tree diagram below shows 12 different paths to pick from. For instance, the right-most path has us pick the number 4 and the color yellow.

Write an expression to represent the given statement. Use n for the variable. Three times the absolute value of the sum of a number and 6

Answers

Answer:

3 · |x+6|

Step-by-step explanation:

Write out what you see. "Three times" is 3 · something; "the absolute value of the sum of a number and 6" is |number + 6|. We'll use x for our number. Put it all together and you get 3 · |x+6|

The expression of the statement, Three times the absolute value of the sum of a number and 6 is  [tex]\[3\left| n+6 \right|\][/tex] .

Representation of statement:Let n be the number.The sum of the numbers n and 6 is n+6.The absolute value of the sum of the numbers n and 6 is  [tex]\[\left| n+6 \right|\][/tex].Hence, three times the absolute value of the sum of a number and 6 is [tex]\[3\left| n+6 \right|\][/tex].

 

Learn more about the representation of an expression:

https://brainly.com/question/10905086?referrer=searchResults

#SPJ2

A recent study of the relationship between social activity and education for a sample of corporate executives showed the following results. Social Activity Education Above Average Average Below Average College 30 20 10 High School 20 40 90 Grade School 10 50 130 Using 0.05 as the significance level, what is the critical value for the test statistic

Answers

Answer:

9.488

Step-by-step explanation:

The critical value is found by first assessing which statistical test should be used.

We are interested in investigating relationship between social activity and education so chi-square test would be appropriate.

We have 3 rows and 3 columns. The degree of freedom for chi-square critical value is (r-1)(c-1)=(3-1)(3-1)=2*2=4

Chi-square critical value(0.05,4)= 9.488

The double number lines show the ratio of cups to gallons. How many cups are in 333 gallons? _____ cups

Answers

Answer:

5328 cups.

Step-by-step explanation:

Given that 333 gallons

We know that

1 gallons = 16 cups

1 cups = 0.0625 gallons

Therefore,from the above conversion we can say that

Now by putting the values in the above conversion

333 gallons = 16 x 333 cups

333 gallons = 5328 cups

So , we can say that 333 gallons is equal to 5328 cups.

Thus the answer will be 5328 cups.

Answer:

48 cups(BTW he meant 33 galons, IVE had this before). lol you need to put the double number line image. first u have to divide 64/4 to get 16, Then it says "How many cups are in 3 gallons". There fore, U multiply 16 to 3 to get ur answer "48".

Suppose the radius of a circle is 5 units. What is its circumference?​

Answers

Answer:

C≈31.42

Step-by-step explanation:

C=2πr

C=2xπx5

C≈31.42

pls mark as brainliest

what is the distance between the first and third quartiles of a data set called?

Answers

Answer:

Interquartile range is the distance between the first and third of a data.

Step-by-step explanation:

Hope it will help you :)

For a certain casino slot machine, the odds in favor of a win are given as 17 to 83. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.

Answers

Step-by-step explanation:

83P (E)=17-17P (E),

P (E)=17/100=0.17

Determine the number of degrees of freedom for the two-sample t test or CI in each of the following situations. (Round your answers down to the nearest whole number.)a. m = 12, n = 15, s1 = 4.0, s2 = 6.0b. m = 12, n = 21, s1 = 4.0, s2 = 6.0c. m = 12, n = 21, s1 = 3.0, s2 = 6.0d. m = 10, n = 24, s1 = 4.0, s2 = 6.0

Answers

Answer:

Part a ) The degrees of freedom for the given two sample non-pooled t test is 24

Part b ) The degrees of freedom for the given two sample non-pooled t test is 30

Part c ) The degrees of freedom for the given two sample non-pooled t test is 30

Part d ) The degrees of freedom for the given two sample non-pooled t test is 25

Step-by-step explanation:

Degrees of freedom for a non-pooled two sample t-test is given by;

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Now given the information;

a) :- m = 12, n = 15, s₁ = 4.0, s₂ = 6.0

we substitute

Δf =  {[ 4²/12 + 6²/15 ]²} / {[( 4²/12)²/12-1] + [(6²/15)²/15-1]}

Δf  = 30184 / 1241

Δf  = 24.3223 ≈ 24 (down to the nearest whole number)

b) :- m = 12, n = 21, s₁ = 4.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 4²/12 + 6²/21 ]²} / {[( 4²/12)²/12-1] + [(6²/21)²/21-1]}

Δf = 56320 / 1871

Δf = 30.1015 ≈ 30 (down to the nearest whole number)

c) :- m = 12, n = 21, s₁ = 3.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 3²/12 + 6²/21 ]²} / {[( 3²/12)²/12-1] + [(6²/21)²/21-1]}

Δf = 29095 / 949

Δf = 30.6585 ≈ 30 (down to the nearest whole number)

d) :- m = 10, n = 24, s₁ = 4.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 4²/10 + 6²/24 ]²} / {[( 4²/10)²/10-1] + [(6²/24)²/24-1]}

Δf = 1044 / 41  

Δf = 25.4634 ≈ 25 (down to the nearest whole number).

Use spherical coordinates. Evaluate e x2 + y2 + z2 dV, E where E is enclosed by the sphere x2 + y2 + z2 = 25 in the first octant.

Answers

Answer:

[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \frac{\pi (17e^5 - 2)}{2}[/tex]

General Formulas and Concepts:
Calculus

Integration

Integrals

Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration Method [Integration by Parts]:
[tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]

[IBP] LIPET: Logs, Inverses, Polynomials, Exponentials, Trig

Multivariable Calculus

Triple Integrals

Cylindrical Coordinate Conversions:

[tex]\displaystyle x = r \cos \theta[/tex][tex]\displaystyle y = r \sin \theta[/tex][tex]\displaystyle z = z[/tex][tex]\displaystyle r^2 = x^2 + y^2[/tex][tex]\displaystyle \tan \theta = \frac{y}{x}[/tex]

Spherical Coordinate Conversions:

[tex]\displaystyle r = \rho \sin \phi[/tex][tex]\displaystyle x = \rho \sin \phi \cos \theta[/tex][tex]\displaystyle z = \rho \cos \phi[/tex][tex]\displaystyle y = \rho \sin \phi \sin \theta[/tex][tex]\displaystyle \rho = \sqrt{x^2 + y^2 + z^2}[/tex]

Integral Conversion [Spherical Coordinates]:
[tex]\displaystyle \iiint_T {f( \rho, \phi, \theta )} \, dV = \iiint_T {\rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex]

Step-by-step explanation:

*Note:

Recall that φ is bounded by 0 ≤ φ ≤ 0.5π from the z-axis to the x-axis.

I will not show/explain any intermediate calculus steps as there isn't enough space.

Step 1: Define

Identify given.

[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV[/tex]

[tex]\displaystyle \text{Region E:} \ x^2 + y^2 + z^2 = 25 \ \text{bounded by first octant}[/tex]

Step 2: Integrate Pt. 1

Find ρ bounds.

[Sphere] Substitute in Spherical Coordinate Conversions:
[tex]\displaystyle \rho^2 = 25[/tex]Solve:
[tex]\displaystyle \rho = 5[/tex]Define limits:
[tex]\displaystyle 0 \leq \rho \leq 5[/tex]

Find θ bounds.

[Sphere] Substitute in z = 0:
[tex]\displaystyle x^2 + y^2 = 25[/tex][Circle] Graph [See 2nd Attachment][Graph] Identify limits [Unit Circle]:
[tex]\displaystyle 0 \leq \theta \leq \frac{\pi}{2}[/tex]

Find φ bounds.

[Circle] Substitute in Cylindrical Coordinate Conversions:
[tex]\displaystyle r^2 = 25[/tex]Solve:
[tex]\displaystyle r = 5[/tex]Substitute in Spherical Coordinate Conversions:
[tex]\displaystyle \rho \sin \phi = 5[/tex]Solve:
[tex]\displaystyle \phi = \frac{\pi}{2}[/tex]Define limits:
[tex]\displaystyle 0 \leq \phi \leq \frac{\pi}{2}[/tex]

Step 3: Integrate Pt. 2

[Integrals] Convert [Integral Conversion - Spherical Coordinates]:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex][dρ Integrand] Rewrite [Spherical Coordinate Conversions]:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \iiint_E {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex][Integrals] Substitute in region E:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 \int\limits^5_0 {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex]

We evaluate this spherical integral by using the integration rules, properties, and methods listed above:

[tex]\displaystyle \begin{aligned} \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 \int\limits^5_0 {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta \\ & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 {\bigg[ (\rho^2 - 2 \rho + 2) e^{\rho} \sin \phi \bigg] \bigg| \limits^{\rho = 5}_{\rho = 0}} \, d\phi \, d\theta\end{aligned}[/tex]

[tex]\displaystyle \begin{aligned}\iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 {(17e^5 - 2) \sin \phi} \, d\phi \, d\theta \\& = \int\limits^{\frac{\pi}{2}}_0 {\bigg[ -(17e^5 - 2) \cos \phi \bigg] \bigg| \limits^{\phi = \frac{\pi}{2}}_{\phi = 0}} \, d\theta \\& = \int\limits^{\frac{\pi}{2}}_0 {17e^5 - 2} \, d\theta \\& = (17e^5 - 2) \theta \bigg| \limits^{\theta = \frac{\pi}{2}}_{\theta = 0} \\& = \frac{\pi (17e^5 - 2)}{2}\end{aligned}[/tex]

∴ the given integral equals [tex]\displaystyle \bold{\frac{\pi (17e^5 - 2)}{2}}[/tex].

---

Learn more about spherical coordinates: https://brainly.com/question/16415822

Learn more about multivariable calculus: https://brainly.com/question/4746216

---

Topic: Multivariable Calculus

Unit: Triple Integrals Applications

A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F. (Let y be measured in degrees Fahrenheit, and t be measured in seconds.) (a) Determine the cooling constant k. k = s−1 (b) What is the differential equation satisfied by the temperature y(t)? (Use y for y(t).) y'(t) = (c) What is the formula for y(t)? y(t) = (d) Determine the temperature of the bar at the moment it is submerged. (Round your answer to one decimal place.)

Answers

Answer:

a.  k = -0.01014 s⁻¹

b.  [tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]

c.  [tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]

d.  y(t) = 130.485°F

Step-by-step explanation:

A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F.

(Let y be measured in degrees Fahrenheit, and t be measured in seconds.)

We are to determine :

a.  Determine the cooling constant k. k = s−1

By applying the new law of cooling

[tex]\dfrac{dT}{dt} = k \Delta T[/tex]

[tex]\dfrac{dT}{dt} = k(T_1-T_2)[/tex]

[tex]\dfrac{dT}{dt} = k (T - 60)[/tex]

Taking the integral.

[tex]\int \dfrac{dT}{T-60} = \int kdt[/tex]

㏑ (T -60) = kt + C

T - 60 = [tex]e^{kt+C}[/tex]

[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]

After 20 seconds, the temperature of the bar submersion is 120°F

T(20) = 120

From equation (1) ,replace t = 20s and T = 120

[tex]120 = 60 + C_1 e^{20 \ k}[/tex]

[tex]120 - 60 = C_1 e^{20 \ k}[/tex]

[tex]60 = C_1 e^{20 \ k} --- (2)[/tex]

After 1 min i.e 60 sec , the temperature  = 100

T(60) = 100

From equation (1) ; replace t = 60 s and T = 100

[tex]100 = 60 + c_1 e^{60 \ t}[/tex]

[tex]100 - 60 =c_1 e^{60 \ t}[/tex]

[tex]40 =c_1 e^{60 \ t} --- (3)[/tex]

Dividing equation (2) by (3) , we have:

[tex]\dfrac{60}{40} = \dfrac{C_1e^{20 \ k } }{C_1 e^{60 \ k}}[/tex]

[tex]\dfrac{3}{2} = e^{-40 \ k}[/tex]

[tex]-40 \ k = In (\dfrac{3}{2})[/tex]

- 40 k = 0.4054651

[tex]k = - \dfrac{0.4054651}{ 40}[/tex]

k = -0.01014 s⁻¹

 

b. What is the differential equation satisfied by the temperature y(t)?

Recall that :

[tex]\dfrac{dT}{dt} = k \Delta T[/tex]

[tex]\dfrac{dT}{dt} = \dfrac{- In (\dfrac{3}{2})}{40}(T-60)[/tex]

Since y is the temperature of the body , then :

[tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]

(c) What is the formula for y(t)?

From equation (1) ;

where;

[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]

Let y be measured in degrees Fahrenheit

[tex]y(t) = 60 + C_1 e^{-\dfrac{In (\dfrac{3}{2})}{40}t}[/tex]

From equation (2)

[tex]C_1 = \dfrac{60}{e^{20 \times \dfrac{-In(\dfrac{3}{2})}{40}}}[/tex]

[tex]C_1 = \dfrac{60}{e^{-\dfrac{1}{2} {In(\dfrac{3}{2})}}}[/tex]

[tex]C_1 = \dfrac{60}{e^ {In(\dfrac{3}{2})^{-1/2}}}}[/tex]

[tex]C_1 = \dfrac{60}{\sqrt{\dfrac{2}{3}}}[/tex]

[tex]C_1 = \dfrac{60 \times \sqrt{3}}{\sqrt{2}}}[/tex]

[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]

(d) Determine the temperature of the bar at the moment it is submerged.

At the moment it is submerged t = 0

[tex]\mathbf{y(0) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ 0}{40}}}[/tex]

[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} }[/tex]

y(t) = 60 + 70.485

y(t) = 130.485°F

What is the value of 20 + 3 (7 + 4) + 5 + 2 (7 + 9)?

Answers

Answer:

90

Step-by-step explanation:

Answer:

90

Step-by-step explanation:

Here is the equation

[tex]20+3\times(7+4)+5+2\times(7+9)[/tex]

In the order of operations parentheses go first so we get

[tex]20+3\times11+5+2\times16[/tex]

Next we do the multiplication

[tex]20+33+5+32\\[/tex]

And finally we add them all up

[tex]20+33+5+32=90\\[/tex]

Thus, 90 is the answer of [tex]20+3\times(7+4)+5+2\times(7+9)[/tex] or [tex]20+3(7+4)+5+2(7+9)[/tex]

The balances in two separate bank accounts that grow each month at different rales are represented by the functions f(x) and gix) In what month do the funds in the f(x) bank account exceed those in the glx)
bank account?
Month (x) f(x) = 2* g(x) = 4x + 12
1
2
16
2.
4
20
O Month 3
O Month 4
O Month 5
O Month 6​

Answers

Answer:

The balance in two separate bank accounts grows each month at different rates. the growth rates for both accounts are represented by the functions f(x) = 2x and g(x) = 4x 12. in what month is the f(x) balance greater than the g(x) balance?

Answer:

6 months

function is a relationship between inputs where each input is related to exactly one output.

x = 5,

f(5) = [tex]2^5\\[/tex] = 32

g(5) = 4 x 5 + 12 = 20 + 12 = 32

x = 6,

f(6) = [tex]2^6[/tex] = 64

g(6) = 4 x 6 + 12 = 24 + 12 = 36

At month 6 the funds in the f(x) bank account exceed those in the g(x) bank account.

What is a function?

function is a relationship between inputs where each input is related to exactly one output.

Example:

f(x) = 2x + 1

f(1) = 2 + 1 = 3

f(2) = 2 x 2 + 1 = 4 + 1 = 5

The outputs of the functions are 3 and 5

The inputs of the function are 1 and 2.

We have,

f(x) = [tex]2^{x}[/tex]

g(x) = 4x + 12

x = number of months

Now,

x = 3,

f(3) = 2³ = 8

g(3) = 4 x 3 + 12 = 12 + 12 = 24

x = 4,

f(4) = [tex]2^4[/tex] = 16

g(4) = 4 x 4 + 12 = 16 + 12 = 28

x = 5,

f(5) = [tex]2^5\\[/tex] = 32

g(5) = 4 x 5 + 12 = 20 + 12 = 32

x = 6,

f(6) = [tex]2^6[/tex] = 64

g(6) = 4 x 6 + 12 = 24 + 12 = 36

We see that,

At x = 6,

f(5) = 64

g(5) = 36

Thus,

At month 6 the funds in the f(x) bank account exceed those in the g(x) bank account.

Learn more about functions here:

https://brainly.com/question/28533782

#SPJ2

When proving a statement using mathematical induction, part of the process is assuming that the statement is true for the nth case. (True or False).

Answers

Answer:

True

Step-by-step explanation:

We assume that is true for the nth case and prove it for the n+1 case

and show that it is true for the case when n=1

Calculate how many different sequences can be formed that use the letters of the given word. Leave your answer as a product of terms of the form C(n, r). HINT [Decide where, for example, all the s's will go, rather than what will go in each position.]
georgianna
A) C(10, 7)
B) C(2, 10)C(1, 8)C(1, 7)C(1, 6)C(1, 5)C(2, 4)C(2, 2)
C) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 1)C(3, 1)C(2, 1)C(1, 1)
D) 10 · C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)

Answers

Answer: E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)

Step-by-step explanation:

According to the combinations: Number of ways to choose r things out of n things = C(n,r)

Given word: "georgianna"

It is a sequence of 10 letters with 2 a's , 2 g's , 2 n's , and one of each e, o,r, i.

If we think 10 blank spaces, then in a sequence we need 2 spaces for each of g.

Number of ways = C(10,2)

Similarly,

1 space for 'e' → C(8,1)

1 space for 'o' → C(7,1)

1 space for 'r' → C(6,1)

1 space for 'i' → C(5,1)

1 space for 'a' → C(4,2)

1 space for 'n' → C(2,2)

Required number of different sequences  = C(10,2) ×C(8,1)× C(7,1)× C(6,1)×C(5,1)×C(2,2).

Hence, the correct option is E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)

I need help on this question, can someone please answer it correctly?

Answers

Answer:the one area < with line underneath then -4

St-by-step explanation: I’m pretty sure this is correct

Answer:

[tex] \boxed{x \leqslant - 4}[/tex]

Step-by-step explanation:

[tex] \mathrm{16x - 7 \leqslant - 71}[/tex]

Move constant to Right hand side and change its sign

[tex] \mathrm{16x \leqslant - 71 + 7}[/tex]

Calculate

[tex] \mathrm{16x \leqslant - 64}[/tex]

Divide both sides of the equation by 16

[tex] \mathrm{ \frac{16x}{16} \leqslant \frac{ - 64}{16} }[/tex]

Calculate

[tex] \mathrm{x \leqslant - 4}[/tex]

Hope I helped!

Best regards!

Express the quotient of z1 and z2 in standard form given that [tex]z_{1} = -3[cos(\frac{-\pi }{4} )+isin(\frac{-\pi }{4} )][/tex] and [tex]z_{2} = 2\sqrt{2} [cos(\frac{-\pi }{2} )+isin(\frac{-\pi }{2} )][/tex]

Answers

Answer:

Solution : [tex]-\frac{3}{4}-\frac{3}{4}i[/tex]

Step-by-step explanation:

[tex]-3\left[\cos \left(\frac{-\pi }{4}\right)+i\sin \left(\frac{-\pi \:}{4}\right)\right]\:\div \:2\sqrt{2}\left[\cos \left(\frac{-\pi \:\:}{2}\right)+i\sin \left(\frac{-\pi \:\:\:}{2}\right)\right][/tex]

Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,

[tex]\frac{-3\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)}{2\sqrt{2}\left(0-1\right)i}[/tex]

=[tex]-3\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)[/tex] ÷ [tex]2\sqrt{2}\left(0-1\right)i[/tex]

= [tex]3\left(-\frac{\sqrt{2}i}{2}+\frac{\sqrt{2}}{2}\right)[/tex] ÷ [tex]-2\sqrt{2}i[/tex]

= [tex]\frac{3\left(1-i\right)}{\sqrt{2}}[/tex]÷ [tex]2\sqrt{2}i[/tex] = [tex]-3-3i[/tex] ÷ [tex]4[/tex] = [tex]-\frac{3}{4}-\frac{3}{4}i[/tex]

As you can see your solution is the last option.

You are starting a sock company. You must determine your costs to manufacture your product. The start-up cost is $2000 (which helps you purchase sewing machines). Material and labor is $2.50 per pair of socks.

a. Write an equation to model your company’s cost for manufacturing the socks. (i.e. y=mx+b)
b. Which variable represents the domain? Explain your answer.
c. What is the domain for this situation?
d. Which variable represents the range? Explain your answer.
e. What is the range for this situation?
f. Using your equation, what would be the cost of manufacturing 25 pairs of socks?
g. How many socks could you make with $2500?
h. Create a coordinate graph on a sheet of paper to represent this situation. Describe the graph. Include the dimensions you would use for the x and y axes.
PLS HELP ASAP!

Answers

a. y = 2.5x + 2000

b. The variable x represents the domain because the domain is the range of the possible x values.

c. x ≥ 0

d. The variable y represents the range because the range is the range of the possible y values.

e. y ≥ 2000

f. y = 2.5(25) + 2000

  y = 62.5 + 2000

  y = $2062.50

g. 2500 = 2.5x + 2000

   2.5x = 500

   x = 200

h. I am sorry I cannot make the graph but hopefully you can figure out how to make it using the info I have given in the above parts of the problem :)

Simplify to create an equivalent expression.
-k-(-8k+7)
a=7k−7
b=-7k-7
c=7k+7
d=-7k+7
choose one

Answers

Answer:

a. 7k - 7

Step-by-step explanation:

Step 1: Write out expression

-k - (-8k + 7)

Step 2: Distribute negative

-k + 8k - 7

Step 3: Combine like terms

7k - 7

And we have our answer!

If y varies directly with x and y = -11.7 when x = -3, find the value of y when x = 7.

Answers

Answer:

y = 27.3

Step-by-step explanation:

To find the value of y when x = 7 we must first find the relationship between them.

The statement

y varies directly with x is written as

y = kx

where k is the constant of proportionality

From the question

when y = - 11.7

x = - 3

We have

- 11.7 = -3k

Divide both sides by - 3

k = 3.9

So the formula for the variation is

y = 3.9k

When x = 7

y = 3.9(7)

y = 27.3

Hope this helps you

Answer: 27.3

Step-by-step explanation:

Joint Variation

How many positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13

Answers

Answer:

10,000

Step-by-step explanation:

There are 2970 positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13

What is Number system?

A number system is defined as a system of writing to express numbers.

We need to find

positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13

Let all 9 numbers ae

a+b+c+d+e+f+g+h+9=13

a+b+c+d+e+f+g+h=13-9

a+b+c+d+e+f+g+h=4

Then we use combinations

(n+k-1)Ck

¹¹C₄

11!/(11-4)!4!

11!/7!4!

330

Three hundred thirty times of nine is two thousand nine hundred seventy.

Now 330 ×9=2970

Hence there are 2970  positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13

To learn more on Number system click:

https://brainly.com/question/22046046

#SPJ1

What is the approximate area of the unshaded region under the standard normal curve below? Use the portion of the standard normal table given to help answer the question.

A normal curve with a peak at 0 is shown. The area under the curve shaded is 1 to 2.

z
Probability
0.00
0.5000
1.00
0.8413
2.00
0.9772
3.00
0.9987
0.14
0.16
0.86
0.98

Answers

Answer:

0.14

Step-by-step explanation:

The z score is a score used in statistics to determine by how many standard deviations ti the raw score above or below the mean. If the raw score is above the mean then the z score is positive while If the raw score is below the mean then the z score is negative, It is given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

From the normal distribution table, The area under the curve shaded is 1 to 2 = P(1 < z < 2) = P(z < 2) - P(z < 1) = 0.9772 - 0.8413 = 0.1359 ≈ 0.14

The area under the curve shaded is 1 to 2 is 0.14

What are probabilities?

Probabilities are used to determine the chances of an event

The shaded region represents the probability of the z-scores

The shaded region 1 to 2 is represented as:

P(1 < z < 2) =

Using the probability of z-score, we have the formula

P(1 < z < 2) = P(z < 2) - P(z < 1)

From the given standard normal table:

P(z < 2) = 0.9772

P(z < 1) = 0.8413

So, we have:

P(1 < z < 2) = 0.9772 - 0.8413

P(1 < z < 2) = 0.1359

Approximate

P(1 < z < 2) = 0.14

Hence, the area under the curve shaded is 1 to 2 is 0.14

Read more about normal distribution at:

https://brainly.com/question/4079902

Emily made a pot of cream of pumpkin soup for thanksgiving dinner. She put 5
cups of cream in the soup. She poured the soup into 24 small soup bowls. How
much cream (measured in oz.) is used for each small bowl of soup?

Answers

Answer:

1 2/3 ounces in each bowl

Step-by-step explanation:

We need to convert 5 cups to ounces

1 cup = 8 ounces

5 cups = 5*8 = 40 ounces

We divide the 40 ounces into 24 bowls

40 ounces / 24 bowl

5/3 ounces per bowl

1 2/3 ounces in each bowl

Answer:

each bowl can contain 5/3 oz. of soup.

Step-by-step explanation:

1 cup = 8 oz.

                   8 oz.

5 cups x --------------  =  40 oz.

                    1 cup

to get the measurement of each bowl,

40 oz. divided into 24 bowls.

therefore, each bowl can contain 5/3 oz. of soup.

Can somebody please solve this problem for me!

Answers

Answer:

x = 200.674

Step-by-step explanation:

tan∅ = opposite/adjacent

Step 1: Find length of z

tan70° = 119/z

ztan70° = 119

z = 119/tan70°

z = 43.3125

Step 2: Find length z + x (denoted as y)

tan26° = 119/y

ytan26° = 119

y = 119/tan26°

y = 243.986

Step 3: Find x

y - z = x

243.986 - 43.3125 = x

x = 200.674

You drive 15 miles in 0.1hours . How fast did you travel if 8=d/t

Answers

Answer:

150

Step-by-step explanation:

[tex]distance = 15 miles\\time = 0.1 hours\\\\Speed = \frac{Distance}{time}\\ Speed = \frac{15}{0.1}\\ Speed =150[/tex]

Answer:

[tex]150mph[/tex]

Step-by-step explanation:

Given:

s=15miles

t=0.1hours

Required:

v=?

Formula:

[tex]v = \frac{s}{t} [/tex]

Solution:

[tex]v = \frac{s}{t} = \frac{15m}{0.1h} = \frac{150m}{1h} = 150mph[/tex]

Hope this helps ;) ❤❤❤

Other Questions
Among cases of heart pacemaker malfunctions, were found to be caused by firmware, which is software programmed into the device. If the firmware is tested in different pacemakers randomly selected from this batch of and the entire batch is accepted if there are no failures, what is the probability that the firmware in the entire batch will be accepted? Is this procedure likely to result in the entire batch being accepted? Research on women working in the corporate world indicates that one reason professional women leave their jobs is that the common corporate structure does not value: Lila is camping with her family. She wants to hike to the lake, go fishing, and hike back before 6:05 P.M. It will take 1 hour and 10 minutes to hike to the lake and 1 hour and 50 minutes to hike back. Lila wants to fish for 3 hours and 10 minutes. What is the latest time Lila can start the hike to the lake? An engine causes a car to move 10 meters with a force of 100 N. The engine produces 10,000 J of energy. What is the efficiency of this engine? Escoge la opcin correcta.El Da de los Muertos es una celebracin donde la gente se divierte con cosas inusuales en una fiesta, como porejemplo _____ What does the formula below represent? CO2 + H20 C6 H12 06+02 Kristin is building a pattern using triangles. The table shows the number of triangles in the first 4 terms of the pattern.Term Number (7)1 2 3 4Number of Triangles (t) 1 3 5 7Which formula describes the number of triangles in the nth term of the pattern?O A n=1+2O B. n=1+3Oc. n = 21-1OD n = 2t + 3 Lavoisier developed a new theory of combustion that overturned the phlogiston theory. What measurements were central to his theory, and what key discovery did he make? how does oppressive nature of gender roles relate to the setting in the yellow wallpaper? An honest die is rolled. If the roll comes out even (2, 4, or 6), you will win $1; if the roll comes out odd (1,3, or 5), you will lose $1, Suppose that in one evening you play this game n=2500 times in a row. (a) Estimate the probability that by the end of the evening you will not have lost any money. (b) Estimate the probability that the number of "even rolls" (roll a 2, 4, or 6) will fall between 1250 and 1300. (c) Estimate the probability that you will win $100 or more. Based on this excerpt from Edgar Allan Poes Fall of the House of Usher, which phrase best describes the location for the House of Usher? During the whole of a dull, dark, and soundless day in the autumn of the year, when the clouds hung oppressively low in the heavens, I had been passing alone, on horseback, through a singularly dreary tract of country, and at length found myself, as the shades of the evening drew on, within view of the melancholy House of Usher. A. an isolated place, B. a village marketplace, C. a park in the fall, D. a small town Bella Pool Company sells prefabricated pools that cost $80,000 to customers for $144,000. The sales price includes an installation fee, which is valued at $20,000. The fair value of the pool is $128,000. The installation is considered a separate performance obligation and is expected to take 3 months to complete. The transaction price allocated to the pool and the installation is adjective of cowered A box is filled with 8 blue cards, 6 red cards, and 6 yellow cards. A card is chosen at a random from the box. What is the probability that the card is not red ? Write your answer as a fraction. The board of directors of DDC omitted dividends in 2016 on their $100 par 6% noncumulative preferred stock. In 2017, a $2 preferred dividend was paid. For DDC, 2018 has been a good year, and the board wishes to pay a common dividend. How much must be paid per share on the preferred for 2018 in order to pay a common dividend how might the world have been different if alexander lived longer ? The net income reported on the income statement for the current year was $121,900. Depreciation recorded on store equipment for the year amounted to $20,100. Balances of the current asset and current liability accounts at the beginning and end of the year are as follows: End of YearBeginning of Year Cash$48,030 $44,190 Accounts receivable (net)34,440 32,660 Merchandise inventory47,020 49,710 Prepaid expenses5,280 4,200 Accounts payable (merchandise creditors)45,000 41,800 Wages payable24,590 27,310 a. Prepare the Cash Flows from Operating Activities section of the statement of cash flows, using the indirect method. Use the minus sign to indicate cash outflows, cash payments, decreases in cash, or any negative adjustments. Statement of Cash Flows (partial) Cash flows from operating activities: $ Adjustments to reconcile net income to net cash flow from operating activities: Changes in current operating assets and liabilities: Net cash flow from operating activities$ b. Cash flows from operating activities differs from net income because it does not use the of accounting. For example revenues are recorded on the income statement when . 33. Simplify: [tex]a ^{2} \times a ^{4} [/tex]HELP! answer if you can!!! Inclusion is about the ______ incorporating the opinions of the ______ and giving voice to the people who are seldom heard. which of the following statements must be true about this diagram ? check ALL that apply