which relation is a function?
Answer:
Choice A.
Step-by-step explanation:
Every other choice has multiple of the same x-values that have different corresponding y-values.
How do u determine the equation of the line through each pair of points in slope-intercept form (y=mx+b). (3,0) and (2,4) (-6,3) and (2,-2)
Answer:
Y =-4X +12
Y =-0.625X -0.75
Step-by-step explanation:
(3,0) and (2,4)....
x1 y1 x2 y2
3 0 2 4
(Y2-Y1) (4)-(0)= 4 ΔY 4
(X2-X1) (2)-(3)= -1 ΔX -1
slope= -4
B= 12
Y =-4X +12
~~~~~~~~~~~~~~~~~
(-6,3) and (2,-2)
x1 y1 x2 y2
-6 3 2 -2
(Y2-Y1) (-2)-(3)= -5 ΔY -5
(X2-X1) (2)-(-6)= 8 ΔX 8
slope= - 5/8
B= - 3/4
Y =-0.625X -0.75
plzz help with this question
Answer: 51 liters of fuel are required
Step by step: start by seeing how many times 476 can go into 1428
(1428/476=3)
Then take your sum of that and multiply it by 17 since that’s the number that correlates with 476
(17x3=51) therefore your answer is 51 liters
Evaluate the expression when a=-7 and y=3 3y-a
Answer:
3y-a
3.3-7
9-7
2
Step-by-step explanation:
first we have to do multiply by replacing the value of y and the subtract by using the value of a.
Hope this will be helpful for you
what is the quotient 3/8 ÷5/12
Answer:
9/10
Step-by-step explanation:
3/8 ÷5/12
Copy dot flip
3/8 * 12/5
Rewriting
3/5 * 12/8
3/5 * 3/2
9/10
The value of the expression 23 +32–3x4–52-5+(7x4) is
Answer:
24
Explanation:
(23+32)-(3×4)-(52-5)+(7×4)
(55)-(12)-(47)+(28)
55-12=43-47+28= -1943-19=241
Select the correct answer.
Simplify the following expression.
우
O A.
OB. 12
Oc. 1
OD.
64
Reset
Next
Answer:
1/64
Step-by-step explanation:
4^ (-11/3) ÷ 4 ^ (-2/3)
We know a^b ÷a^c = a^(b-c)
4 ^(-11/3 - - 2/3)
4^(-11/3 +2/3)
4^(-9/3)
4^ -3
We know a^-b = 1/a^b
1/4^3
1/64
Point P is plotted on the coordinate grid. If point S is 12 units to the left of point P, what are the coordinates of point S? On a coordinate grid from negative 12 to positive 12 in increments of 2, a point P is plotted at the ordered pair 6, negative 4. (6, −16) (−6, −16) (−6, −4) (6, 4)
9514 1404 393
Answer:
(−6, −4)
Step-by-step explanation:
Translating a point 12 units left subtracts 12 from its x-coordinate.
P(6, -4) +(-12, 0) = S(-6, -4)
What type of object is pictured below?
O A. Point
O B. Ray
C. Segment
D. Line
Answer:
It is a ray because there are two points with a line passing through them which is extenging on one side but not on the other.
Is this true or false ??
=============================================================
Explanation:
We'll use these two properties of integrals [tex]\displaystyle \text{If f(x) is an even function, then } \int_{-a}^{a}f(x)dx = 2\int_{0}^{a}f(x)dx[/tex]
[tex]\displaystyle \text{If f(x) is an odd function, then } \int_{-a}^{a}f(x)dx = 0[/tex]
These properties are valid simply because of the function's symmetry. For even functions, we have vertical axis symmetry about x = 0; while odd functions have symmetry about the origin.
------------------------
Here's how the steps could look
[tex]\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=\int_{-7}^{7}((ax^8+c)+bx)dx\\\\\\\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=\int_{-7}^{7}(ax^8+c)dx+\int_{-7}^{7}(bx)dx\\\\\\\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=\left(2\int_{0}^{7}(ax^8+c)dx\right)+(0)\\\\\\\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=2\int_{0}^{7}(ax^8+c)dx\\\\\\[/tex]
Therefore, the given statement is true. The values of a,b,c don't matter. You could replace those '7's with any real number you want and still end up with a true statement.
We can see that ax^8+c is always even, while bx is always odd.
------------------------
Side note:
For the second step, I used the idea that [tex]\int(f(x)+g(x))dx=\int f(x)dx+\int g(x)dx\\\\[/tex]
which allows us to break up a sum into smaller integrals.
(a). Find the value of log 216.
Answer:
2.334453751
Step-by-step explanation:
Press log on your Casio calculator (if you have one) and plug in 216, then close the parentheses!
Construct the confidence interval for the population standard deviation for the given values. Round your answers to one decimal place. n=21 , s=3.3, and c=0.9
Answer:
The correct answer is "[tex]2.633< \sigma < 4.480[/tex]".
Step-by-step explanation:
Given:
n = 21
s = 3.3
c = 0.9
now,
[tex]df = n-1[/tex]
[tex]=20[/tex]
⇒ [tex]x^2_{\frac{\alpha}{2}, n-1 }[/tex] = [tex]x^2_{\frac{0.9}{2}, 21-1 }[/tex]
= [tex]31.410[/tex]
⇒ [tex]x^2_{1-\frac{\alpha}{2}, n-1 }[/tex] = [tex]10.851[/tex]
hence,
The 90% Confidence interval will be:
= [tex]\sqrt{\frac{(n-1)s^2}{x^2_{\frac{\alpha}{2}, n-1 }} } < \sigma < \sqrt{\frac{(n-1)s^2}{x^2_{1-\frac{\alpha}{2}, n-1 }}[/tex]
= [tex]\sqrt{\frac{(21-1)3.3^2}{31.410} } < \sigma < \sqrt{\frac{(21.1)3.3^2}{10.851} }[/tex]
= [tex]\sqrt{\frac{20\times 3.3^2}{31.410} } < \sigma < \sqrt{\frac{20\times 3.3^2}{10.851} }[/tex]
= [tex]2.633< \sigma < 4.480[/tex]
Consumer products are required by law to contain at least as much as the amount printed on the package. For example, a bag of potato chips that is labeled as 10 ounces should contain at least 10 ounces.Assume that the standard deviation of the packaging equipment yields a bag weight standard deviation of 0.2 ounces. Assume the bag weight distribution is bell-shaped. Determine what average bag weight must be used to achieve at least 99 percent of the bags having 10 or more ounces in the bag.
Answer:
The average bag weight must be used to achieve at least 99 percent of the bags having 10 or more ounces in the bag=9.802
Step-by-step explanation:
We are given that
Standard deviation, [tex]\sigma=0.2[/tex]ounces
We have to find the average bag weight must be used to achieve at least 99 percent of the bags having 10 or more ounces in the bag.
[tex]P(x\geq 10)=0.99[/tex]
Assume the bag weight distribution is bell-shaped
Therefore,
[tex]P(\frac{x-\mu}{\sigma}\geq 10)=0.99[/tex]
We know that
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using the value of z
Now,
[tex]\frac{10-\mu}{0.2}=0.99[/tex]
[tex]10-\mu=0.99\times 0.2[/tex]
[tex]\mu=10-0.99\times 0.2[/tex]
[tex]\mu=9.802[/tex]
Hence, the average bag weight must be used to achieve at least 99 percent of the bags having 10 or more ounces in the bag=9.802
Which of the following is the most accurate statement about statistics?
a) We can absolutely be 100% certain in accurately generalizing the characteristics of entire population based on the sample data
b) By analyzing data, we may be able to identify connections and relationships in our data
c) We can explore in the midst of variation to better understand our data
d) limited data or experience likely generates less confidence
e) Non of the above
Answer:
b) By analyzing data, we may be able to identify connections and relationships in our data.
Step-by-step explanation:
In statistics decisions are based on probability sampling distributions. As statics is collection and analysis of data along with its interpretation and presentation.plot the following points in the number line, -1/4, 1 1/2, 0.75 (PLS ANSWER ASAP)
Answer:
-1/4 is the least, 0.75 is second, and 1 1/2 is the greatest
Step-by-step explanation:
-1/4 is the least already because it is negative.
1 1/2 is really 1.5 so now compare 0.75 and 1.5.
1.5 is bigger therefore the order is :
-1/4, 0.75, 1 1/2
Use the distributive property to remove the parentheses.
-5(6u - 4w-2)
Answer:
-30u+20w+10
Step-by-step explanation:
multiple each term inside the parenthesis by -5. remember negative times negative = positive
7/18 - 1/3 , 1/2 - 1/5 - 1/10 and 3 1/2 - 2 5/9 please help thank you
Answer:
Step-by-step explanation:
7/18=7/18
it cant be divided agian
1/3=1/3
it cant be divded agian
1/5=1/5
it cant be divded agian
1/10=1/10
it cant be divded agian
3 1/2=3/2
2 5/9 =10/9
i am not sure if this is what you wanted ...
A company manufactures televisions. The average weight of the televisions is 5 pounds with a standard deviation of 0.1 pound. Assuming that the weights are normally distributed, what is the weight that separates the bottom 10% of weights from the top 90%?
Answer:
[tex]0.2564\text{ pounds}[/tex]
Step-by-step explanation:
The 90th percentile of a normally distributed curve occurs at 1.282 standard deviations. Similarly, the 10th percentile of a normally distributed curve occurs at -1.282 standard deviations.
To find the [tex]X[/tex] percentile for the television weights, use the formula:
[tex]X=\mu +k\sigma[/tex], where [tex]\mu[/tex] is the average of the set, [tex]k[/tex] is some constant relevant to the percentile you're finding, and [tex]\sigma[/tex] is one standard deviation.
As I mentioned previously, 90th percentile occurs at 1.282 standard deviations. The average of the set and one standard deviation is already given. Substitute [tex]\mu=5[/tex], [tex]k=1.282[/tex], and [tex]\sigma=0.1[/tex]:
[tex]X=5+(1.282)(0.1)=5.1282[/tex]
Therefore, the 90th percentile weight is 5.1282 pounds.
Repeat the process for calculating the 10th percentile weight:
[tex]X=5+(-1.282)(0.1)=4.8718[/tex]
The difference between these two weights is [tex]5.1282-4.8718=\boxed{0.2564\text{ pounds}}[/tex].
Answer:
0.2564
Step-by-step explanation:
90th percentile, we use the formula X=μ + Zσ,
Where u = mean and sigma = standard deviation and Z = 1.282
The mean is 5 and sigma = .1
X = 5+1.282(.1)
X = 5.1282
10th percentile, we use the formula X=μ + Zσ,
Where u = mean and sigma = standard deviation and Z = -1.282
The mean is 5 and sigma = .1
X = 5-1.282(.1)
X = 4.8718
The difference is
5.1282 - 4.8718
0.2564
A road crew must repave a road that is 2/3 miles long. They can repave 1/12 miles each hour. How long will it take the crew to repave the road?
Write your answer in simplest form.
Select the correct answer. This table represents a quadratic function. x y 0 -3 1 -3.75 2 -4 3 -3.75 4 -3 5 -1.75
I really need one fast
I give all my points
Answer:
1/4
Step-by-step explanation:
that is the answer
I found the constant which was -3
a = 1/4
b=-1
Answer:
the value of a in the function's equation is 1/4
Step-by-step explanation:
Plato answer
Find x and explain how you found x
Answer:
x=60
Step-by-step explanation:
There are different ways to find x but this is what I found easiest.
To solve first note that AOD and CFB are vertical angles; this means that they are congruent. AOD consists of two angles with the measurements of 90 and x. CFB consists of two angles with the measurements of 30 and 2x. So, to find x set add the adjacent angles and set them equal to the other pair of angles. The equation would be [tex]90+x=30+2x[/tex]. First, subtract x from both sides; this makes the equation [tex]90=30+x[/tex]. Then, subtract 30 from both sides. This gives the final answer, x=60.
answer this question
Answer:
(-2, 13) (-1,8) (0, 5) (1, 4) (2, 5) (3, 8)
(2.4 , 6) or (-0.4, 6)
Step-by-step explanation:
Graph y = 6 on top of y = [tex]x^{2}[/tex] -2x + 5 and use the points where the two lines meet.
Given C(4, 3) and D(-4, -3) are two points on a circle, centered at the origin. Given
that CD is a diameter of the circle,
a) Find the radius of the circle.
b) State the equation of the circle
Answer:000
Step-by-step explanation:000
The firm has bonds with par value of 10,000,000 VND, coupon rate of 11%, annual interest payment, and the remaining maturity period is 07 years. If the bond's interest rate and current risk level have a return rate of 12%, what price should company C sell the bond in the present?
a.
10,000,000
b.
14,152,000
c.
12,053,000
d.
11,150,000
1289 +(-1236) + (2434) =
0 -1431
O 2345
O 2487
0 -1956
Answer:
This answer is 2487
which will be the third one
Hope this help
Evaluate −a2+c2 when c=−4.
Answer:
[tex]a = 4, -4[/tex]
Step-by-step explanation:
Step 1: Plug in -4 for c
[tex]-a^{2} + c^{2}[/tex]
[tex]-a^{2} + (-4)^{2}[/tex]
[tex]-a^{2} + 16[/tex]
Step 2: Solve for a
[tex]-a^{2}+16-16=0-16[/tex]
[tex]-a^{2}/-1 = -16/-1[/tex]
[tex]a^{2} = 16[/tex]
[tex]\sqrt{a^{2}} = \sqrt{16}[/tex]
[tex]a = 4, -4[/tex]
Answer: [tex]a = 4, -4[/tex]
How
many solutions are there to the equation below?
4(x - 5) = 3x + 7
A. One solution
B. No solution
O C. Infinitely many solutions
SUB
Answer:
A one solution
Step-by-step explanation:
4(x - 5) = 3x + 7
Distribute
4x - 20 = 3x+7
Subtract 3x from each side
4x-3x-20 = 3x+7-3x
x -20 = 7
Add 20 to each side
x -20+20 = 7+20
x = 27
There is one solution
Answer:
Step-by-step explanation:
Let's simplify that before we make the decision, shall we? We'll get rid of the parenthesis by distribution and then combine like terms.
4x - 20 = 3x + 7 and combining like terms and getting everything on one side of the equals sign:
1x - 27 = 0. Since that x has a power of 1 on it (linear), that means we have only 1 solution. If that was an x², we would have 2 solutions; if that was an x³, we would have 3 solutions, etc.
Calculus 3 Problem
7. Determine if the field F(x, y, z) = ye^z i + xe^z j + xy e^z k is conservative. If it is, find a potential function.
Step-by-step explanation:
Given:
[tex]\vec{\textbf{F}}(x, y, z) = ye^z\hat{\textbf{i}} + xe^z\hat{\textbf{j}} + xye^z\hat{\textbf{k}}[/tex]
A vector field is conservative if
[tex]\vec{\nabla}\textbf{×}\vec{\text{F}} = 0[/tex]
Looking at the components,
[tex]\left(\vec{\nabla}\textbf{×}\vec{\text{F}}\right)_x = \left(\dfrac{\partial F_z}{\partial y} - \dfrac{\partial F_y}{\partial z}\right)_x[/tex]
[tex]= xe^z - ye^z \neq 0[/tex]
Since the x- component is not equal to zero, then the field is not conservative so there is no scalar potential [tex]\phi[/tex].
Write the sentence as an inequality. The cost of a ticket t will be no more than $52.
Answer:
t is less than or equal to $52, or t <= $52
Step-by-step explanation:
If you can't have more than $52, then use less than symbol (<). The sentence doesn't state that a ticket shouldn't cost $52, so it's safe to assume that you can have exactly $52.
I need two examples of Solve a proportion with a mixed number in one of its numerators. SHOW ALL WORK!!!!!!!!!!!!
Answer:
A proportion equation is something like:
[tex]\frac{A}{B} = \frac{x}{C}[/tex]
Where A, B, and C are known numbers, and we want to find the value of x.
Now we want two cases where in one of the numerators we have a mixed number, where a mixed number is something like:
1 and 1/3
which actually should be written as:
1 + 1/3
1) a random problem can be:
[tex]\frac{1 + 1/3}{4} = \frac{x}{5}[/tex]
We can see that the numerator on the left is a mixed number.
First, let's rewrite the numerator then:
1 + 1/3
we need to have the same denominator in both numbers, so we can multiply and divide by 3 the number 1:
(3/3)*1 + 1/3
3/3 + 1/3 = 4/3
now we can rewrite our equation as:
[tex]\frac{4/3}{4} = \frac{x}{5}[/tex]
now we can solve this:
[tex]\frac{4/3}{4} = \frac{4}{3*4} = \frac{x}{5} \\\\\frac{1}{3} = \frac{x}{5}[/tex]
now we can multiply both sides by 5 to get:
[tex]\frac{5}{3} = x[/tex]
Now let's look at another example, this time we will have the variable x in the denominator:
[tex]\frac{7}{12} = \frac{3 + 4/7}{x}[/tex]
We can see that we have a mixed number in one numerator.
Let's rewrite that number as a fraction:
3 + 4/7
let's multiply and divide the 3 by 7.
(7/7)*3 + 4/7
21/7 + 4/7
25/7
Then we can rewrite our equation as
[tex]\frac{7}{12} = \frac{25/7}{x}[/tex]
Now we can multiply both sides by x to get:
[tex]\frac{7}{12}*x = \frac{25}{7}[/tex]
Now we need to multiply both sides by (12/7) to get:
[tex]x = \frac{25}{7}*\frac{12}{7} = 300/49[/tex]