Answer:
The required fraction is 0.023.
Explanation:
Given that
Mass of a car, m = 1030 kg
Mass of 4 wheels = 12 kg
We need to find the fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles.
The rotational kinetic energy due to four wheel is
[tex]=4\times \dfrac{1}{2}I\omega^2\\\\=4\times \dfrac{1}{2}\times \dfrac{1}{2}mR^2(\dfrac{v}{R})^2\\\\=mv^2[/tex]
Linear kinetic Energy of the car is:
[tex]=\dfrac{1}{2}mv^2\\\\=\dfrac{1}{2}\times Mv^2[/tex]
Fraction,
[tex]f=\dfrac{mv^2}{\dfrac{1}{2}Mv^2}\\\\f=\dfrac{m}{\dfrac{1}{2}M}\\\\f=\dfrac{12}{\dfrac{1}{2}\times 1030}\\\\=0.023[/tex]
So, the required fraction is 0.023.
A car is traveling at 118 km/h when the driver sees an accident 85 m ahead and slams on the brakes. What minimum constant deceleration is required to stop the car in time to avoid a pileup
Answer:
The constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²
Explanation:
From the question, the car is traveling at 118 km/h, that is the initial velocity, u = 118km/h
The distance between the car and the accident at the moment when the driver sees the accident is 85 m, that is s = 85 ,
Since the driver slams on the brakes and the car will come to a stop, then the final velocity, v = 0 km/h = 0 m/s
First, convert 118 km/h to m/s
118 km/h = (118 × 1000) /3600 = 32.7778 m/s
∴ u = 32.7778 m/s
Now, to determine the deceleration, a, required to stop,
From one of the equations of motion for linear motion,
v² = u² + 2as
Then
0² = (32.7778)² + 2×a×85
0 = 1074.3841 + 170a
∴ 170a = - 1074.3841
a = - 1074.3841 / 170
a = - 6.3199
a ≅ - 6.32 m/s²
Hence, the constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²
a person lifts 60kg on the surface of the earth, how much mass can he lift on the surface of the moon if he applies same magnitude of force
Explanation:
Hey there!
According to the question;
A person can lift mass of 60 kg on earth.
mass(m1) = 60kg
acceleration due to gravity on earth (a) = 9.8m/s²
Now;
force (f) = m.a
= 60*9.8
= 588 N
Since, there is application of same magnitude of force on moon,
mass(m) =?
acceleration due to gravity on moon (a) = 1.67m/s²
Now;
force (f) = m.a
588 = m*1.67
m = 352.09 kg
Therefore, the person who can lift the mass of 60 kg on earth can lift mass of 352 kg on moon.
Hope it helps!
trong cùng một nhiệt độ, lượng năng lượng trên mỗi mol của chất khí nào lớn nhất
a) Khí đơn nguyên tử
b) Khí có từ ba nguyên tử
c) Khí lưỡng nguyên tử
A ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. How far horizontally will it travel in 2 seconds?
A. 30 m
B. 90 m
C. 45 m
D. 60 m
Answer:
It will travel Vx * t = 30 m/s * 2 s = 60 m
A cylinder is given a push and then rolls up an inclined plane. If the origin is the starting point, sketch the position, velocity, and acceleration of the cylinder vs. time as it goes up and then down the plane.
Cho dòng điện xoay chiều trong sản xuất và sinh hoạt ở nước ta có tần số f = 50Hz. Tính chu kỳ T và tần số góc ω?
Answer:
T = 1/f = 1/50(s)
ω = 2πf = 100π (rad/s)
(vote 5 sao nhó :3 )
A parallel-plate capacitor consists of two plates, each with an area of 29 cm2cm2 separated by 3.0 mmmm. The charge on the capacitor is 7.8 nCnC . A proton is released from rest next to the positive plate. Part A How long does it take for the proton to reach the negative plate
Answer:
t = 2.09 10⁻³ s
Explanation:
We must solve this problem in parts, first we look for the acceleration of the electron and then the time to travel the distance
let's start with Newton's second law
∑ F = m a
the force is electric
F = q E
we substitute
q E = m a
a = [tex]\frac{q}{m} \ E[/tex]
a = [tex]\frac{1.6 \ 10^{-19}}{ 9.1 \ 10^{-31} } \ 7.8 \ 10^{-9}[/tex]
a = 1.37 10³ m / s²
now we can use kinematics
x = v₀ t + ½ a t²
indicate that rest starts v₀ = 0
x = 0 + ½ a t²
t = [tex]\sqrt{\frac{2x}{a} }[/tex]
t = [tex]\sqrt{\frac {2 \ 3 \ 10^{-3}}{ 1.37 \ 10^3} }[/tex]
t = 2.09 10⁻³ s
Mass A, 2.0 kg, is moving with an initial velocity of 15 m/s in the x-direction, and it collides with mass M, 4.0 kg, initially moving at 7.0 m/s in the x-direction. After the collision, the two objects stick together and move as one. What is the change in kinetic energy of the system as a result of the collision, in joules
Answer:
the change in the kinetic energy of the system is -42.47 J
Explanation:
Given;
mass A, Ma = 2 kg
initial velocity of mass A, Ua = 15 m/s
Mass M, Mm = 4 kg
initial velocity of mass M, Um = 7 m/s
Let the common velocity of the two masses after collision = V
Apply the principle of conservation of linear momentum, to determine the final velocity of the two masses;
[tex]M_aU_a + M_mU_m = V(M_a + M_m)\\\\(2\times 15 )+ (4\times 7) = V(2+4)\\\\58 = 6V\\\\V = \frac{58}{6} = 9.67 \ m/s[/tex]
The initial kinetic of the two masses;
[tex]K.E_i = \frac{1}{2} M_aU_a^2 \ + \ \frac{1}{2} M_mU_m^2\\\\K.E_i = (0.5 \times 2\times 15^2) \ + \ (0.5 \times 4\times 7^2)\\\\K.E_i = 323 \ J[/tex]
The final kinetic energy of the two masses;
[tex]K.E_f = \frac{1}{2} M_aV^2 \ + \ \frac{1}{2} M_mV^2\\\\K.E_f = \frac{1}{2} V^2(M_a + M_m)\\\\K.E_f = \frac{1}{2} \times 9.67^2(2+ 4)\\\\K.E_f = 280.53 \ J[/tex]
The change in kinetic energy is calculated as;
[tex]\Delta K.E = K.E_f \ - \ K.E_i\\\\\Delta K.E = 280.53 \ J \ - \ 323 \ J\\\\\Delta K.E = -42.47 \ J[/tex]
Therefore, the change in the kinetic energy of the system is -42.47 J
One charge is fixed q1 = 5 µC at the origin in a coordinate system, a second charge q2 = -3.2 µC the other is at a distance of x = 90 m from the origin.
What is the potential energy of this pair of charges?
Answer:
5.4uC
Explanation:
Convert 385k to temperature of
Answer:
233.33°F
Explanation:
(385K - 273.15) * 9/5 + 32 = 233.33°F
How do you know that a liquid exerts pressure?
Answer:
The pressure of water progressively increases as the depth of the water increases. The pressure increases as the depth of a point in a liquid increases. The walls of the vessel in which liquids are held are likewise subjected to pressure. The sideways pressure exerted by liquids increases as the liquid depth increases.
I need help with this please!!!!
Answer:
1.84 hours
I hope it's helps you
What is utilization of energy
Explanation:
Energy utilization focuses on technologies that can lead to new and potentially more efficient ways of using electricity in residential, commercial and industrial settings—as well as in the transportation sector
A car accelerates from 0 m/s to 25 m/s in 5 seconds. What is the average acceleration of the car.
Answer:
5 m/s I hope it will help you
Explanation:
mark me as a brainlist answer
An object of mass 80 kg is released from rest from a boat into the water and allowed to sink. While gravity is pulling the object down, a buoyancy force of 1/50 times the weight of the object is pushing the object up (weight=mg). If we assume that water resistance exerts a force on the abject that is proportional to the velocity of the object, with proportionality constant 10 N-sec/m, find the equation of motion of the object. After how many seconds will the velocity of the object be 40 m/s? Assume that the acceleration due to gravity is 9.81 m/sec^2.
Answer:
a) Fnet = mg - Fb - Fr
b) 8.67 secs
Explanation:
mass of object = 80 kg
Buoyancy force = 1/50 * weight ( 80 * 9.81 ) = 15.696
Proportionality constant = 10 N-sec/m
a) Calculate equation of motion of the object
Force of resistance on object due to water = Fr ∝ V
= Fr = Kv = 10 V
Given that : Fb( due to buoyancy ) , Fr ( Force of resistance ) acts in the positive y-direction on the object while mg ( weight ) acts in the negative y - direction on the object.
Fnet = mg - Fb - Fr
∴ Equation of motion of the object ( Ma = mg - Fb - Fr )
b) Calculate how long before velocity of the object hits 40 m/s
Ma = mg - Fb - Fr
a = 9.81 - 0.1962 - 0.125 V = 9.6138 - 0.125 V
V = u + at ---- ( 1 )
u = 0
V = 40 m/s
a = 9.6138 - 0.125 V
back to equation 1
40 = 0 + ( 9.6138 - 0.125 (40) ) t
40 = 4.6138 t
∴ t = 40 / 4.6138 = 8.67 secs
Physics question plz help ASAP
Steel railway tracks are laid at 8oC. What size of expansion gap are needed 10m long rail sections if the ambient temperature varies from -10oC to 50oC? [Linear expansivity of steel = 12 x]
Answer:
Gap left = Change in length on heating
Gap=Initial length×Coefficient of linear expansion×change in temperature
Gap=10×0.000012×15m
⟹Gap=0.0018 m
this is an example u have to put your equation in it
how will be electric lines of force where intensity of electric field is maximum ?
a. wider
b. +ve to -ve
c. narrow
d. -ve to +ve
i'm pretty sure the answer is A wider
Electric lines of force where intensity of electric field is maximum when its wider.
What is Electric field?The physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them, is known as an electric field (also known as an E-field. It can also refer to a system of charged particles' physical field.
Electric charges and time-varying electric currents are the building blocks of electric fields. The electromagnetic field, one of the four fundamental interactions (also known as forces) of nature, manifests itself in both electric and magnetic fields.
Electrical technology makes use of electric fields, which are significant in many branches of physics. For instance, in atomic physics and chemistry, the electric field acts as an attracting force to hold atoms' atomic nuclei and electrons together.
Therefore, Electric lines of force where intensity of electric field is maximum when its wider.
To learn more about electric field, refer to the link:
https://brainly.com/question/1443103
#SPJ2
a bullet is dropped from the same height when another bullet is fired horizontally they will hit the ground
Answer:
simultaneously
Time taken to reach the ground depends on the vertical component of velocity, not horizontal component of velocity.
The potential difference between the plates of a capacitor is 234 V. Midway between the plates, a proton and an electron are released. The electron is released from rest. The proton is projected perpendicularly toward the negative plate with an initial speed. The proton strikes the negative plate at the same instant the electron strikes the positive plate. Ignore the attraction between the two particles, and find the initial speed of the proton.
I have tried looking at the cramster.com solution manual and do not like the way it is explained. Simply put, I cannot follow what is going on and I am looking for someone who can explain it in plain man's terms and help me understand and get the correct answer. I am willing to give MAX karma points to anyone who can help me through this. Thank you kindly.
Answer:
The speed of proton is 2.1 x 10^5 m/s .
Explanation:
potential difference, V = 234 V
let the initial speed of the proton is v.
The kinetic energy of proton is
KE = q V
[tex]0.5 mv^2 = e V \\\\0.5\times 1.67\times 10^{-27} v^2 = 1.6\times 10^{-19} \times 234\\\\v=2.1\times 10^5 m/s[/tex]
state the laws of reflection
Answer:
Explanation:
The law of reflection says that the reflected angle (measured from a vertical line to the surface called the normal) is equal to the reflected angle measured from the same normal line.
All other properties of reflection flow from this one statement.
A 2.0 kg puck is at rest on a level table. It is pushed straight north with a constant force of 5N for 1.50 s and then let go. How far does the puck move from rest in 2.25 s?
Answer:
d = 6.32 m
Explanation:
Given that,
The mass of a puck, m = 2 kg
It is pushed straight north with a constant force of 5N for 1.50 s and then let go.
We need to find the distance covered by the puck when move from rest in 2.25 s.
We know that,
F = ma
[tex]a=\dfrac{F}{m}\\\\a=\dfrac{5}{2}\\\\a=2.5\ m/s^2[/tex]
Let d is the distance moved in 2.25 s. Using second equation of motion,
[tex]d=ut+\dfrac{1}{2}at^2\\\\d=0+\dfrac{1}{2}\times 2.5\times (2.25)^2\\\\d=6.32\ m[/tex]
So, it will move 6.32 m from rest in 2.25 seconds.
A painter sets up a uniform plank so that he can paint a high wall. The plank is 2 m long and weighs 400 N. The two supports holding up the plank are placed 0.2 m from either end. Show that the upwards force on each of the planks is 200 N. Draw a sketch.
The upward force on each supporting plank is 200 N
The given parameters include;
weight of the plank, W₁ = 400 Nlength of the plank, l = 2 mupward force of each supporting plank, = W₂ and W₃To show that the upward force of each supporting plank is 200 N, make the following sketch.
W₂ W₃
↑ ↑
-----------------------------------------------------------------------
0.2m ↓ 0.2m
400 N
The two supporting planks keeps the 2m plank in equilibrium position. If the plank is in equilibrium position the sum of the upward forces equals sum of the downward force.W₂ + W₃ = 400 N
But the distance of each supporting plank from the end is equal, (0.2m).
Then, W₂ = W₃
2W₂ = 400 N
W₂ = 400N/2
W₂ = 200 N
W₃ = 200 N
Therefore, the upward force on each supporting plank that keeps the plank in equilibrium position is 200 N.
To learn more about equilibrium forces visit: https://brainly.com/question/12582625
Rays of light coming from the sun (a very distant object) are near and parallel to the principal axis of a concave mirror. After reflecting from the mirror, where will the rays cross each other at a single point?
The rays __________
a. will not cross each other after reflecting from a concave mirror.
b. will cross at the center of curvature.
c. will cross at the point where the principal axis intersects the mirror.
d. will cross at the focal point. will cross at a point beyond the center of curvature.
A concave mirror is an example of curved mirrors. So that the appropriate answer to the given question is option D. The rays will cross at the focal point.
A concave mirror is a type of mirror in which its inner part is the reflecting surface, while its outer part is the back of the mirror. This mirror reflects all parallel rays close to the principal axis to a point of convergence. It can also be referred to as the converging mirror.
In this type of mirror, all rays of light parallel to the principal axis of the mirror after reflection will cross at the focal point.
Therefore, the required answer to the given question is option D. i.e The rays will cross at the focal point.
For reference: https://brainly.com/question/20380620
A car is driving towards an intersection when the light turns red. The brakes apply a constant force of 1,398 newtons to bring the car to a complete stop in 25 meters. If the weight of the car is 4,729 newtons, how fast was the car going initially
Answer:
the initial velocity of the car is 12.04 m/s
Explanation:
Given;
force applied by the break, f = 1,398 N
distance moved by the car before stopping, d = 25 m
weight of the car, W = 4,729 N
The mass of the car is calculated as;
W = mg
m = W/g
m = (4,729) / (9.81)
m = 482.06 kg
The deceleration of the car when the force was applied;
-F = ma
a = -F/m
a = -1,398 / 482.06
a = -2.9 m/s²
The initial velocity of the car is calculated as;
v² = u² + 2ad
where;
v is the final velocity of the car at the point it stops = 0
u is the initial velocity of the car before the break was applied
0 = u² + 2(-a)d
0 = u² - 2ad
u² = 2ad
u = √2ad
u = √(2 x 2.9 x 25)
u =√(145)
u = 12.04 m/s
Therefore, the initial velocity of the car is 12.04 m/s
Air is compressed polytropically from 150 kPa, 5 meter cube to 800 kPa. The polytropic exponent for the process is 1.28. Determine the work per unit mass of air required for the process in kilojoules
a) 1184
b) -1184
c) 678
d) -678
Answer:
wegkwe fhkrbhefdb
Explanation:B
A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses (velocity = 0) for a fraction of a second at the very top before heading down the other side.
a) Draw a sankey diagram for a roller coaster's climb.
A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses for a fraction of a second at the very top before heading down the other side. At the top of the hill total, the kinetic energy of the roller coaster would be zero as the velocity is zero at the top of the hill, therefore the total mechanical energy is only because of potential energy.
What is mechanical energy?Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total stored energy in the system which is represented by total potential energy.
The expression for total mechanical energy is as follows
ME= KE+PE
As total mechanical energy is the sum of all the kinetic as well as potential energy stored in the system.As given in the problem a roller coaster uses 800000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy which means 300000 J of energy is lost in the frictional energy while climbing the hill,
Thus at the top of the hill, the total energy of the roller coasters is only due to the potential energy.
Learn more about mechanical energy from here brainly.com/question/12319302
#SPJ2
Vector a has a magnitude of 8 and makes an angle of 45 with positive x axis vector B has also the same magnitude of 8 units and direction along the
Answer:
prove that Sin^6 ϴ-cos^6ϴ=(2Sin^2ϴ-1)(cos^2ϴ+sin^4ϴ)
please sove step by step with language it is opt maths question
A circular parallel-plate capacitor whose plates have a radius of 25 cm is being charged with a current of 1.3 A. What is the magnetic field 11 cm from the center of the plates
The magnetic field at 11 cm from the center of the plates is 2.364 x 10⁻⁷ T.
Given;
radius of the circular plate, d = 25 cm = 0.25 m
current in the plate, I = 1.3 A
distance from the center of the circular plate, r = 11 cm = 0.11 m
To find:
magnetic field (B)The magnetic field from the given distance is calculated as from Biot Savart equation:
[tex]B = \frac{\mu_o I}{2\pi r} \\\\where;\\\\\mu_o \ is \ permeability \ of \ free \ space \ 4\pi \times 10^{-7} \ T.m/A\\\\B = \frac{(4\pi \times 10^{-7} ) \times (1.3)}{2\pi \times 0.11} \\\\B = 2.364 \ \times 10^{-6} \ T[/tex]
Therefore, the magnetic field 11 cm from the center of the plates is 2.364 x 10⁻⁷ T.
Learn more here: https://brainly.com/question/17035710
which characteristic of nuclear fission makes it hazardous?
Answer:The radioactive waste
Explanation:Fission is the splitting of a heavy unstable nucleus into two Lighter nuclei