Hence the expression of ω in terms of m and k is
[tex]\omega = \sqrt{\frac{k}{m}[/tex]
Given the expressions;
[tex]T_s = 2 \pi \sqrt{\frac{m}{k} } \ and \ T_s = \frac{2 \pi}{\omega}[/tex]
Equating both expressions we will have;
[tex]2 \pi \sqrt{\frac{m}{k} } = \frac{2 \pi}{\omega}[/tex]
Divide both equations by 2π
[tex]\frac{2 \pi\sqrt{\frac{m}{2 \pi} } }{2 \pi}=\frac{\frac{2 \pi}{\omega} }{2\pi}\\\sqrt{\frac{m}{2 \pi} } = \frac{1}{\omega}\\[/tex]
Square both sides
[tex](\sqrt{\frac{m}{k} } )^2 = (\frac{1}{\omega} )^2\\\frac{m}{k} = \frac{1}{\omega ^2} \\\omega ^2 = \frac{k}{m}[/tex]
Take the square root of both sides
[tex]\sqrt{\omega ^2} =\sqrt{\frac{k}{m} } \\\omega = \sqrt{\frac{k}{m}[/tex]
Hence the expression of ω in terms of m and k is
[tex]\omega = \sqrt{\frac{k}{m}[/tex]
Learn more about subject of the formula here: https://brainly.com/question/19557491
what means 10² what we call this
we call it as well as 100 . so easey
Answer:
10 squared
Explanation:
10 squared
In Depth:
Let have a square that has a side length of 10.
A square four sides are equal and if we find the area of a squared, our formula is
[tex] {s}^{2} [/tex]
Our in this instance,
[tex] {10}^{2} [/tex]
or we call it
[tex]10 \: \: squared[/tex]
A bus Starts from rest. If the acceleration of bus become 10 m/s2 after 15 sec Calculate the final Velocity of the bus
Using your Periodic Table, which element below has the smallest atomic radius? A.) Sodium, B.) Chlorine, C.) Phosphorus, D.) Iron
What's the resultant of the 3 forces?
Answer:
Explanation:
We need to find the x-components of each of these vectors and then add them together, then we need to find the y-components of these vectors and then add them together. Let's get to that point first. That's hard enough for step 1, dontcha think?
The x-components are found by multiplying the magnitude of the vectors by the cosine of their respective angles, while the y components are found by multiplying the magnitude of the vectors by the sine of their respective angles.
Let's do the x-components for all the vectors first, so we get the x-component of the resultant vector:
[tex]F_{1x}=12 cos0[/tex] and
[tex]F_{1x}=12[/tex]
[tex]F_{2x}=9cos90[/tex] and
[tex]F_{2x}=0[/tex]
[tex]F_{3x}=15 cos126.87[/tex] and
[tex]F_{3x}=-9.0[/tex] (the angle of 126.87 is found by subtracting the 53.13 from 180, since angles are to be measured from the positive axis in a counterclockwise fashion).
That means that the x-component of the resultant vector, R, is 3.0
Now for the y-components:
[tex]F_{1y}=12sin0[/tex] and
[tex]F_{1y}=0[/tex]
[tex]F_{2y}=9sin90[/tex] and
[tex]F_{2y}=9[/tex]
[tex]F_{3y}=15sin126.87[/tex] and
[tex]F_{3y}=12[/tex]
That means that the y-component of the resultant vector, R, is 21.
Put them together in this way to find the resultant magnitude:
[tex]R_{mag}=\sqrt{(3.0)^2+(21)^2}[/tex] which gives us
[tex]R_{mag}=21[/tex] and now for the angle. Since both the x and y components of the resultant vector are positive, our angle will be where the x and y values are both positive in the x/y coordinate plane, which is Q1.
The angle, then:
[tex]tan^{-1}(\frac{21}{3.0})=82[/tex] degrees, and since we are QI, we do not add anything to this angle to maintain its accuracy.
To sum up: The resultant vector has a magnitude of 21 N at 82°
A student initially 10.0 m East of his school walks 17.5 m West. The magnitude of the student's displacement, relative to the school is _________ m? The direction of the student's displacement, relative to the school is ______?
Answer:
1. 7.5 m
2. towards west side
explanation:
I hope it will help you
True or false: Ultimate tensile strength increases as the thickness of a solid material sample increases.
True
False
Answer:
False.
Explanation:
Tensile strength should remain constant, regardless of thickness. For larger cross sections, it can slightly increase because the atoms in the center become more constricted and therefore less responsive to the applied stress.
Answer:
Tensile strength should remain constant, regardless of thickness. For larger cross sections, it can slightly increase because the atoms in the center become more constricted and therefore less responsive to the applied stress.FALSE
. Una varilla de cobre de coeficiente de dilatación 1,4*10-5 °C -1 , tiene una longitud de 1.20 metros a una temperatura ambiente de 18 ˚C . ¿Cuál sera su longitud 100 ˚C
Answer:
La longitud de la varilla de cobre es de 1.201 metros a una temperatura de 100 °C.
Explanation:
Asumiendo que la varilla de cobre experimenta deformaciones muy pequeñas y que las deformaciones no longitudinales son despreciables con respecto a las deformaciones longitudinales, la deformación longitudinal de la varilla se estima mediante la siguiente fórmula:
[tex]l_{f} = l_{o}\cdot [1+\alpha \cdot (T_{f}-T_{o})][/tex] (1)
Donde:
[tex]l_{o}[/tex] - Longitud inicial de la varilla, en metros.
[tex]\alpha[/tex] - Coeficiente de dilatación, en [tex]^{\circ}C^{-1}[/tex].
[tex]T_{o}[/tex] - Temperatura inicial de la varilla, en grados Celsius.
[tex]T_{f}[/tex] - Temperatura final de la varilla, en grados Celsius.
Si sabemos que [tex]l_{o} = 1.20\,m[/tex], [tex]\alpha = 1.4\times 10^{-5}\,^{\circ}C^{-1}[/tex], [tex]T_{o} = 18\,^{\circ}C[/tex] y [tex]T_{f} = 100\,^{\circ}C[/tex], entonces la longitud final de la varilla es:
[tex]l_{f} = (1.20\,m)\cdot \left[1 + \left(1.4\times 10^{-5}\,^{\circ}C^{-1}\right)\cdot (100\,^{\circ}C-18\,^{\circ}C)\right][/tex]
[tex]l_{f} = 1.201\,m[/tex]
La longitud de la varilla de cobre es de 1.201 metros a una temperatura de 100 °C.
satellite does not need any energy to revolve around the earth why
Answer:
An artificial satellites revolves around the earth under the influence of its gravitational force. So it does not require any energy to revolve around energy.
or maybe god:)))(
Please help me with this...
And write all steps..
Answer:
[tex]2\frac{m}{s^2} =a[/tex]Explanation:
Use the kinematic equation.
[tex]v_{2} =v_{1} +at[/tex]This equation can be derived from [tex]f=ma[/tex], but we can just memorize, or look them up when needed as it saves us time.
Now we can plug our measurements into each variable to solve for acceleration.
[tex]18\frac{m}{s} =8\frac{m}{s} +a*5s[/tex]Subtract 8m/s from both sides.
[tex]10\frac{m}{s} =a*5s[/tex]Divide by 5 seconds. Left with acceleration in terms of [tex]\frac{m}{s^2}[/tex]
[tex]2\frac{m}{s^2} =a[/tex]Why are simple everyday actions considered
thermodynamic reactions?
they transform energy
they destroy energy
they create energy
Answer:
They transform energy
Explanation:
thermodynamics deals with transfers of energy from one place to another and from one form to another and it's also deal with the relationship between heat and other forms of energy
Using your Periodic Table, which of the following elements below has the largest atomic radius? A.) Aluminum B.) Sodium C.) Sulfur, D.) Fluorine
Answer:
sodium
Explanation:
it is highly reactive metal.
Answer:
aluminium
Explanation:
In a period , as we go from left to right in a periodic table, atomic number increases .
Differentiating electrons enters into same shell hence the effective nuclear charge decreases .
Hence atomic radius decreases along period.
Conculsion:
Aluminium is the element which has greater atomic radius and sulphur has smaller atomic radius.
The potential difference across a resistor increases by a factor of 4. How
does the current change? (Ohm's law: V = IR)
A it increases by a factor of 4
B it decreases by a factor of 4
C it increases by a factor of 2
D it decreases by a factor of 2
Answer:
Correct option is C it decreases by a factor of 2
Answer: A - it increases by a factor of 4
Explanation:
Ohm's law is V = IR where V = potential difference, I = current, and R = resistance. Assuming that resistance stays constant (since the question mentioned no change in resistance), we only need to look at "V" and "I" in the equation V = IR.
"V" and "I" are directly proportional. In other words, whatever change happens to "V" will also occur to "I". Since "V" increases by a factor of 4, then "I" will also increase by a factor of 4.
You could also approach this problem by plugging in a change of 4 for the potential difference in the equation: V = I*R.
If we plug in 4V for V, we now have:
4V = I*R
Since the left side increases by a factor of 4, then the right side (only looking at current in this case) will also need to increase by a factor of 4 in order to have the right side stay equal to the left. Therefore, current will also increase by a factor of 4.
what will be the magnitude of work if a force of 25N pulls a stone through a distance of 5m in its direction?
Explanation:
125 is your answer........
Drag each label to the correct location on the image. Identify the particles and characteristics on this model of an atom.
Positively charged
Electron
Proton
Neutron
Negatively charged
Answer:
cant see picture
Explanation:
Answer:
please add picture so i can help you
Explanation:
79. A skater glides along a circular path of radius 5.00 m in clockwise direction. When he coasts around one-half of the circle, starting from the west point, find (a) the magnitude of his displacement vector and (b) how far he actually skated. (c) What is the magnitude of his displacement vector when he skates all the way around the circle and comes back to the west point
An object of 4 cm length is placed at a distance of 18 cm in front of a convex mirror of radius of curvature 30 cm. Find the position of the image ,its nature and size?
Answer:
The position is 8.18cm from the mirror.
Nature is b=virtual
Size is 1.82cm
Explanation:
Note that for a convex mirror, the image distance and the focal length are negative;
Given
Object height H0 = 4cm
object distance u = 18cm
Radius of curvature R = 30cm
Since f = R/2
f = 30/2
f = -15cm
Recall that:
[tex]\frac{1}{f} =\frac{1}{u}+ \frac{1}{v}\\\frac{1}{-15}=\frac{1}{18}+\frac{1}{v} \\\frac{1}{v} =\frac{1}{-15} -\frac{1}{18}\\ \frac{1}{v} = \frac{-18-15}{270}\\\frac{1}{v} = \frac{-33}{270}\\v=\frac{-270}{33}\\v=-8.18cm[/tex]
Since the image distance is negative, this shows that the image is a virtual image.
To get the size:
[tex]\frac{H_1}{H_0}=\frac{v}{u}\\\frac{H_1}{4}=\frac{8.18}{18}\\18H_i=32.72\\H_i=\frac{32.72}{18}\\H_i= 1.82cm[/tex]
What does the m stand for in the enthalpy equation?
Answer:
Use the formula ∆H = m x s x ∆T to solve.
Explanation:
Once you have m, the mass of your reactants, s, the specific heat of your product, and ∆T, the temperature change from your reaction, you are prepared to find the enthalpy of reaction. Simply plug your values into the formula ∆H = m x s x ∆T and multiply to solve.
The current in a light bulb is 2 A. How long does it take for a total charge of 4 C to pass a point in the wire
Answer:
2min
Explanation:
i think it will be clear from photo
Answer: The formula for current is charge/time
so here we have to change subject so we are asked to look for time
Explanation: so it would be T=Q/I
T=4/2
T=2s
hope this helpss
Example to measure the interval of time of a small stone dropped from 1m height.
Answer:
The time required is 0.45 s.
Explanation:
Height, h = 1 m
initial velocity, u = m/s
Let the time is t.
Use second equation of motion
[tex]h = u t + 0.5 at^2\\\\1 = 0 +0.5 \times 9.8 \times t^2\\\\t = 0.45 s[/tex]
Which labels are correct for the regions marked? a. X: Slower in gases than liquids Y: Faster in solids than gases Z: Velocity depends on medium b. X: Faster in gases than liquids Y: Slowest in solids Z: Faster in liquids than gases c. X: Slower in solids than liquids Y: Velocity depends on medium Z: Faster in liquids than gases d. X: Velocity depends on medium Y: Fastest in gases Z: Slower in liquids than solids
Answer:
a. X: Slower in gases than liquids Y: Faster in solids than gases Z: Velocity depends on medium.
Explanation:
Speed of sound is fastest in solids. Sound waves travel more quickly in solid, than of liquid and gases. Sound waves travel most slowest in gases. Speed of sound varies significantly and it depends upon medium it is travelling through. In more rigid medium sounds velocity will be faster.
A basketball is shot by a player at a height of 2.0m. The initial angle was 53° above the horizontal. At the highest point, the ball was travelling 6 m/s. If he scored (the ball went through the rim that is 3.00m above the ground), what was the player's horizontal distance from the basket?
At the ball's highest point, it has no vertical velocity, so the 6 m/s is purely horizontal. A projectile's horizontal velocity does not change, which means the ball was initially thrown with speed v such that
v cos(53°) = 6 m/s ==> v = (6 m/s) sec(53°) ≈ 9.97 m/s
The player shoots the ball from a height of 2.0 m, so that the ball's horizontal and vertical positions, respectively x and y, at time t are
x = (9.97 m/s) cos(53°) t = (6 m/s) t
y = 2.0 m + (9.97 m/s) sin(53°) t - 1/2 gt ²
Find the times t for which the ball reaches a height of 3.00 m:
3.00 m = 2.0 m + (9.97 m/s) sin(53°) t - 1/2 gt ²
==> t ≈ 0.137 s or t ≈ 1.49 s
The second time is the one we care about, because it's the one for which the ball would be falling into the basket.
Now find the distance x traveled by the ball after this time:
x = (6 m/s) (1.49 s) ≈ 8.93 m
The boiling point of water is 1000 C at sea level. The boiling point of butane is -1.50C… If we leave liquid butane in a bowl on a table in a room where the temperature is 240C, butane will
A. evaporate.
B. condense.
C. freeze.
D. melt.
Answer: If we leave liquid butane in a bowl on a table in a room where the temperature is [tex]24^{o}C[/tex], butane will evaporate.
Explanation:
A temperature at which the the liquid and gaseous phase of a substance of a substance are present in equilibrium with each other is called boiling point.
For example, the boiling point of butane is -1.5 degree Celsius.
This means that at a temperature above -1.5 degree Celsius, butane will exist is gaseous state. That is, at a temperature of 24 degree Celsius butane will evaporate.
Thus, we can conclude that if we leave liquid butane in a bowl on a table in a room where the temperature is [tex]24^{o}C[/tex], butane will evaporate.
PLEASE HEEEEEEELP
Assume that the velocity of the soda bottle falling from a height of 0.8 m will be 4 m/s. Record this velocity for each mass in Table A, and use it in calculating the predicted kinetic energy of the soda bottle for the masses of 0.125 kg, 0.250 kg, 0.375 kg, and 0.500 kg using the equation: KE=1/2 mv^2 When solving for kinetic energy (KE), m is mass, and v is the speed (or velocity).
KE = (0.5) m v²
given that : v = speed of the bottle in each case = 4 m/s when m = 0.125 kg
KE = (0.5) m v² = (0.5) (0.125) (4)² = 1 J
when m = 0.250 kg KE = (0.5) m v² = (0.5) (0.250) (4)² = 2 J
when m = 0.375 kg KE = (0.5) m v² = (0.5) (0.375) (4)² = 3 J
when m = 0.0.500 kg KE = (0.5) m v² = (0.5) (0.500) (4)² = 4 J
please answer quick for brainlist ; )
Answer:
The diagram assigned B
explanation:
Check the direction of the two vectors, their resultant must be in the same direction.
What is the volume of a cone with a height of 27 cm
and a radius of 13 cm? Round your answer to the
nearest tenth.
Use the button on your calculator to complete this
problem.
V =
cm?
Explanation:
→ Volume of cone = πr² × h/3
Here,
Radius (r) = 13 cmHeight (h) = 27 cm→ Volume of cone = π(13)² × 27/3 cm³
→ Volume of cone = 169π × 9 cm³
→ Volume of cone = 1521π cm³
→ Volume of cone = 1521 × 22/7 cm³
→ Volume of cone = 33462/7 cm³
→ Volume of cone = 4780.28 cm³
Answer:
4,778.4 is correct
Explanation:
A steel ball is released just below the surface of thick oil in a cylinder.
During the first few centimetres of travel, what is the acceleration of the ball?
A constant and equal to 10 m / s2
B constant but less than 10 m / s2
C decreasing
D increasing
Answer:
Increasing
Explanation:
I Hope it Helps
If the electric force between two charges is 4.2 × 10-2 N, what would the new force be if the distance between the charges is doubled and the charge on one of the charges is tripled?
Answer:
New force = 0.063 N
Explanation:
Given that,
The electric force between two charges is[tex]4.2\times 10^{-2}\ N[/tex]
The formula for the electric force is:
[tex]F=\dfrac{kq_1q_2}{r^2}[/tex]
If the distance between the charges is doubled, r' = 2r and one of the charges is tripled, q₁' = 2q₁, q₂' = 3q₂
Put all the values,
[tex]F'=\dfrac{kq_1'q_2'}{r'^2}\\\\\dfrac{F}{F'}=\dfrac{\dfrac{kq_1q_2}{r^2}}{\dfrac{kq_1'q_2'}{r'^2}}\\\\\dfrac{F}{F'}=\dfrac{\dfrac{q_1\times q_2}{r^2}}{\dfrac{2q_1\times 3q_2}{(2r)^2}}\\\\\dfrac{F}{F'}=\dfrac{4}{6}=\dfrac{2}{3}\\\\F'=\dfrac{3\times 4.2\times 10^{-2}}{2}\\\\F'=0.063\ N[/tex]
So, the new force is 0.063 N.
Answer:
The force becomes 0.0315 N.
Explanation:
Force, F = 4.2 x 10^-2 N
When the distance is doubled, a charge is tripled, Let the force is F'.
The force between the two charges is
[tex]F = \frac{K qq'}{r^2}\\[/tex]
when, q' = 3 q' and r is 2 r so
[tex]F' = \frac{K 3qq'}{4r^2} = \frac{3 F}{4} = \frac {3\times 4.2\times 10^{-2}}{4}=0.0315 N[/tex]
Question 12 of 15
If nitrogen, which has an electronegativity of 2.0, bonds with hydrogen, which
has an electronegativity of 2.1, the bond between the two atoms will be
classified as a(n)
covalent bond.
Answer here
SUBMIT
Answer:
Covalent bond.
Explanation:
There are 4 main types of bonds:
Covalent, ionic, metallic, and hydrogen.
Covalent bond: Involves the sharing of pairs of electrons, here the difference between the electronegativity of the atoms is not too large. Covalent bonds usually form an octet of electrons.
Ionic bond: This happens because the electrostatic attraction between the atoms whit very different electronegativities
Hydrogen bond: Electrostatic attractive force between an electronegative atom and a hydrogen atom covalently bonded to another electronegative atom.
Metallic bond: Type of bond that makes the metallic atoms to stay really tightly together. The atoms bond because of the electrostatic atractive force between conduction electrons and positively charged metal ions.
Now, in this case, we have the bond between Nitrogen (electronegativity = 2.0) and Hydrogen (electronegativity = 2.1)
So we can see that:
The elements are not metals, so we can discard metallic bond.
For a hydrogen bond, we need 3 atoms (one of which is hydrogen), here we have two, so we can discard this option.
Ionic bond needs different electronegativities, here the electronegativities are really close together, so the ionic bond can be discarded.
we can conclude that the bond will be a covalent bond.
HELPPPPPPPPPPP PLEASEEEEEEEEEEE
Complete this sentence. The solubility of a sample will ____________ when the size of the sample increases.
stay the same
decrease
increase
be unable to be determined
the answer is not decrease
The solubility of the sample will decrease
The direction equivalent to {40° W of S} is:
A. 40 ° E of S
B. 40° W of N
C. 40° E of N
D. 50° S of W
E. 50° E of N
Answer:
c
Explanation: