I need help with this math problem please (3x+2)(5x-7)

Answers

Answer 1

Answer:

Hey there!

Using the foil method: (3x+2)(5x-7)

15x^2+10x-21x-14

15x^2-11x-14

Let me know if this helps :)

Answer 2

Here’s your answer (3x+2)x(5x-7)

Related Questions

Find the number of pieces of floor tiles each measuring 26cm long and 10cm wide needed to lay a floor measuring 260m long and 15m wide

Answers

Answer:

150,000

Step-by-step explanation:

1 m = 100 cm

260 m = 260 * 100 cm = 26000 cm

15 m = 15 * 100 cm = 1500 cm

area of floor = LW = 26000 cm * 1500 cm = 39,000,000 cm^2

area of 1 tile = 26 cm + 10 cm = 260 cm^2

number of tiles needed = 39,000,000/260 = 150,000

Answer: 150,000 tiles

Correct answer is 150000 tiles. Hope this helps ya

Find the area of the shaded regions:

Answers

area of Arc subtending [tex]360^{\circ}[/tex] (i.e. the whole circle) is $\pi r^2$

so area of Arc subtending $\theta^{\circ}$ is, $\frac{ \pi r^2}{360^{\circ}}\times \theta^{\circ}$

$\theta =72^{\circ}$ so the area enclosed by one such arc is $\frac{\pi (10)^272}{360}$

abd there are 2 such arcs, so double the area.

[tex] \LARGE{ \underline{ \boxed{ \rm{ \purple{Solution}}}}}[/tex]

Given:-Radius of the circle = 10 inchesAngle of each sector = 72°Number of sectors = 2

To FinD:-Find the area of the shaded regions....?

How to solve?

For solving this question, Let's know how to find the area of a sector in a circle?

[tex] \large{ \boxed{ \rm{area \: of \: sector = \frac{\theta}{360} \times \pi {r}^{2} }}}[/tex]

Here, Θ is the angle of sector and r is the radius of the circle. So, let's solve this question.

Solution:-

We have,

No. of sectors = 2Angle of sector = 72°

By using formula,

⇛ Area of shaded region = 2 × Area of each sector

⇛ Area of shaded region = 2 × Θ/360° × πr²

⇛ Area of shaded region = 2 × 72°/360° × 22/7 × 10²

⇛ Area of shaded region = 2/5 × 100 × 22/7

⇛ Area of shaded region = 40 × 22/7

⇛ Area of shaded region = 880/7 inch. sq.

⇛ Area of shaded region = 125.71 inch. sq.

☄ Your Required answer is 125.71 inch. sq(approx.)

━━━━━━━━━━━━━━━━━━━━

What does "C" represent and how do you evaluate this?

Answers

It represents 'combinations'.

It means that you have 9 items, and you want to count the combinations of 7 items.

The answer is:
9! / ((9-7)! * (7!))
= 9! / (2! * 7!)
= 9*8/2
= 36

[tex]_9C_7=\dfrac{9!}{7!2!}=\dfrac{8\cdot9}{2}=36[/tex]

The probability density function for random variable W is given as follows: Let x be the 100pth percentile of W and y be the 100(1 – p)th percentile of W, where 0

Answers

Answer:

Step-by-step explanation:

A probability density function (pdf) is used for continuous random variables. That is why p is between 0 and 1 (the two extremes - 0 and 1 - exclusive).

X = 100pth percentile of W

Y = 100(1-p)th percentile of W

Expressing Y as a function of X;

Y = 100(1-p)th = 100th - 100pth

Recall that 100pth is same as X, so substitute;

Y = 100th - X

where 100th = hundredth percentile of W and X = 100pth percentile of W  

A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was and the standard deviation was . The test scores of four students selected at random are ​, ​, ​, and . Find the​ z-scores that correspond to each value and determine whether any of the values are unusual. The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) Which​ values, if​ any, are​ unusual? Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A. The unusual​ value(s) is/are nothing. ​(Use a comma to separate answers as​ needed.) B. None of the values are unusual.

Answers

Answer:

The​ z-score for 1880 is 1.34.

The​ z-score for 1190 is -0.88.

The​ z-score for 2130 is 2.15.

The​ z-score for 1350 is -0.37.

And the z-score of 2130 is considered to be unusual.

Step-by-step explanation:

The complete question is: A standardized​ exam's scores are normally distributed. In recent​ years, the mean test score was 1464 and the standard deviation was 310. The test scores of four students selected at random are ​1880, 1190​, 2130​, and 1350. Find the​ z-scores that correspond to each value and determine whether any of the values are unusual. The​ z-score for 1880 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 1190 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 2130 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 1350 is nothing. ​(Round to two decimal places as​ needed.) Which​ values, if​ any, are​ unusual? Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A. The unusual​ value(s) is/are nothing. ​(Use a comma to separate answers as​ needed.) B. None of the values are unusual.

We are given that the mean test score was 1464 and the standard deviation was 310.

Let X = standardized​ exam's scores

The z-score probability distribution for the normal distribution is given by;

                          Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean test score = 1464

           [tex]\sigma[/tex] = standard deviation = 310

S, X ~ Normal([tex]\mu=1464, \sigma^{2} = 310^{2}[/tex])

Now, the test scores of four students selected at random are ​1880, 1190​, 2130​, and 1350.

So, the z-score of 1880 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                      =  [tex]\frac{1880-1464}{310}[/tex]  = 1.34

The z-score of 1190 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                =  [tex]\frac{1190-1464}{310}[/tex]  = -0.88

The z-score of 2130 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                =  [tex]\frac{2130-1464}{310}[/tex]  = 2.15

The z-score of 1350 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                =  [tex]\frac{1350-1464}{310}[/tex]  = -0.37

Now, the values whose z-score is less than -1.96 or higher than 1.96 are considered to be unusual.

According to our z-scores, only the z-score of 2130 is considered to be unusual as all other z-scores lie within the range of -1.96 and 1.96.

Transform the polar equation to a Cartesian (rectangular) equation: r= 4sinθ

options include:

x^2+y^2 = 4y

x^2+y^2 = -4

x^2+y^2 = 4

x^2+y^2 = -4y

Answers

Answer:

  x^2 +y^2 = 4y

Step-by-step explanation:

Using the usual translation relations, we have ...

  r^2 = x^2+y^2

  x = r·cos(θ)

  y = r·sin(θ)

Substituting for sin(θ) the equation becomes ...

  r = 4sin(θ)

  r = 4(y/r)

  r^2 = 4y

Then, substituting for r^2 we get ...

  x^2 +y^2 = 4y . . . . . matches the first choice

PLEASE HELP!!!
Evaluate the expression when b=4 and y= -3
-b+2y

Answers

Answer: -10

Step-by-step explanation: All you have to do is plug the values into the equation. -4+2(-3). Then you solve the equation using PEDMAS.

1. -4+2(-3)

2. -4+(-6)

3.-4-6

4.-10

Answer:

8

Step-by-step explanation:

-b + 2y

if

b = 4

and

y = 3

then:

-b + 2y = -4 + 2*6 = -4 + 12

= 8

solve for x: 5x+3+8x-4=90

Answers

Answer:

[tex]x = 7[/tex]

Step-by-step explanation:

We can solve the equation [tex]5x+3+8x-4=90[/tex] by isolating the variable x on one side. To do this, we must simplify the equation.

[tex]5x+3+8x-4=90[/tex]

Combine like terms:

[tex]13x - 1 = 90[/tex]

Add 1 to both sides:

[tex]13x = 91[/tex]

Divide both sides by 13:

[tex]x = 7[/tex]

Hope this helped!

Answer:

x = 7

Step-by-step exxplanation:

5x + 3 + 8x - 4 = 90

5x + 8x = 90 - 3 + 4

13x = 91

x = 91/13

x = 7

probe:

5*7 + 3 + 8*7 - 4 = 90

35 + 3 + 56 - 4 = 90

Find the rectangular coordinates of the point with the given polar coordinates.

Answers

Answer:

[tex]( - \sqrt{3} \: an d \: 1)[/tex]

Which of the following is an arithmetic sequence? A.-2, 4, -6, 8, ... B.2, 4, 8, 16, ... C.-8, -6, -4, -2, ...

Answers

Answer:

C. -8, -6, -4, -2, ...

Step-by-step explanation:

An arithmetic sequence increases by the same amount every time through addition or subtraction. There is a common difference.

A: -2, 4, -6, 8, ... If there were a common difference, the numbers would not switch between being positive and back to negative. The numbers would either keep going positive or keep going negative.

B: 2, 4, 8, 16, ... The common difference between 16 and 8 is 16 - 8 = 8. The difference between 8 and 4 is 8 - 4 = 4. Since the difference changes between the numbers, this is not an arithmetic sequence.

C. -8, -6, -4, -2, ... The common difference between -2 and -4 is -2 - (-4) = -2 + 4 = 2. The difference between -4 and -6 is -4 - (-6) = -4 + 6 = 2. The difference between -6 and -8 is -6 - (-8) = -6 + 8 = 2. Since the common difference is always two, this is an arithmetic sequence.

Hope this helps!

Let f(x)=x+8 and g(x)= x2-6x-7 find f(g2)

Answers

Answer:

-7.

Step-by-step explanation:

g(x) = x^2 - 6x - 7

g(2) = 2^2 - 6(2) - 7

= 4 - 12 - 7

= -8 - 7

= -15

f(x) = x + 8

f(-15) = (-15) + 8

= 8 - 15

= -7

Hope this helps!

Solve the following equation using the square root property.
9x2 + 10 = 5

Answers

Answer: -5/81

Solving Steps:

9x^2+10=5
Simplify- 81x+10=5
Subtract 10 from both sides- 81x +10 -10= 5 -10
Simplify- 81x= -5
Divide both sides by 81- 81x/81= -5/81
Simplify- X= -5/81

The table shows the height, in meters, of an object that is dropped as time passes until the object hits the ground. A 2-row table with 10 columns. The first row is labeled time (seconds), x with entries 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.6. The second row is labeled height (meters), h with entries 100, 98.8, 95.1, 89.0, 80.4, 69.4, 55.9, 40.0, 21.6, 0. A line of best fit for the data is represented by h = –21.962x + 114.655. Which statement compares the line of best fit with the actual data given by the table? According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground. According to the line of best fit, the object was dropped from a lower height. The line of best fit correctly predicts that the object reaches a height of 40 meters after 3.5 seconds. The line of best fit predicts a height of 4 meters greater than the actual height for any time given in the table.

Answers

Answer: A. According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground.

The statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.

What is the line of best fit?

A mathematical notion called the line of the best fit connects points spread throughout a graph. It's a type of linear regression that uses scatter data to figure out the best way to define the dots' relationship.

We have a line of best fit:

h = –21.962x + 114.655

As per the data given and line of best fit, we can say the object would have impacted the ground 0.6 seconds later than it did according to the line of best fit.

Thus, the statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.

Learn more about the line of best fit here:

brainly.com/question/14279419

#SPJ2

Brian needs to paint a logo using two right triangles. The dimensions of the logo are shown below. What is the difference between the area of the large triangle and the area of the small triangle? ​

Answers

Answer:

7.5 cm²

Step-by-step explanation:

Dimensions of the large ∆:

[tex] base (b) = 3cm, height (h) = 9cm [/tex]

[tex] Area = 0.5*b*h = 0.5*3*9 = 13.5 cm^2 [/tex]

Dimensions of the small ∆:

[tex] base (b) = 2cm, height (h) = 6cm [/tex]

[tex] Area = 0.5*b*h = 0.5*2*6 = 6 cm^2 [/tex]

Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²

Give the domain and range of each relation using set notation​

Answers

Answer:

See below.

Step-by-step explanation:

First, recall the meanings of the domain and range.

The domain is the span of x-values covered by the graph.

And the range is the span of y-values covered by the graph.

1)

So, we have here an absolute value function.

As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:

[tex]\{x|x\in\textbb{R}\}[/tex]

(You are correct!)

For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:

[tex]\{y|y\leq 7\}[/tex]

2)

We have here an ellipse.

First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:

[tex]-4\leq x\leq 6[/tex]

So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:

[tex]\{x|-4\leq x\leq 6\}[/tex]

For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:

[tex]-5\leq y\leq 1[/tex]

This represents all the y-values between -5 and 1, including -5 and 1.

In set notation, thi is:

[tex]\{y|-5\leq y\leq 1\}[/tex]

A maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use. In a random sample of 50 microwaves that are 5 years old, 12% needed repairs at a=.04 can you reject the makers claim that no more than 10% of its microwaves need repair during the first five years of use?

Answers

Answer:

We conclude that no more than 10% of its microwaves need repair during the first five years of use.

Step-by-step explanation:

We are given that a maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use.

In a random sample of 50 microwaves that are 5 years old, 12% needed repairs.

Let p = population proportion of microwaves who need repair during the first five years of use.

So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 10%      {means that no more than 10% of its microwaves need repair during the first five years of use}

Alternate Hypothesis, [tex]H_A[/tex] : p > 10%     {means that more than 10% of its microwaves need repair during the first five years of use}

The test statistics that will be used here is One-sample z-test for proportions;

                        T.S.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of microwaves who need repair during the first 5 years of use = 12%

           n = sample of microwaves = 50

So, the test statistics =  [tex]\frac{0.12-0.10}{\sqrt{\frac{0.10(1-0.10)}{50} } }[/tex]

                                    =  0.471

The value of z-test statistics is 0.471.

Now, at a 0.04 level of significance, the z table gives a critical value of 1.751 for the right-tailed test.

Since the value of our test statistics is less than the critical value of z as 0.471 < 1.751, so we have insufficient evidence to reject our null hypothesis as the test statistics will not fall in the rejection region.

Therefore, we conclude that no more than 10% of its microwaves need repair during the first five years of use.

What is the solution to the following system of equations? 3x-2y=12 6x - 4y = 24

Answers

Answer:

D question,somewhat confusing, itsit's like simultaneous equation,but values are different

Answer:

x = 4 + 2y/3

Step-by-step explanation:

Determine which is the appropriate approach for conducting a hypothesis test. ​Claim: The mean RDA of sodium is 2400mg. Sample​ data: n​150, ​3400, s550. The sample data appear to come from a normally distributed population.

Answers

Answer:

Use the student t distribution

Step-by-step explanation:

Here is the formula

t = (x - u) ÷(s/√N)

From the information we have in the question:

n = 150

s = 550

x = 3400

u = mean = 2400

= 3400 - 2400÷ 500/√150

= 1000/44.9

= 22.27

At 0.05 significance level, df = 149 so t tabulated will be 1.65.

We cannot use normal distribution since we do not have population standard deviationWe cannot use normal distribution since we do not have population standard deviationChisquare cannot be used since we are not testing for population varianceWe cannot use normal distribution since we do not have population standard deviationChisquare cannot be used since we are not testing for population varianceThe parametric or bootstrap method cannot be used either.

if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=

Answers

Answer:

3

Step-by-step explanation:

f(x)=3x-3

g(x)=-x^2+4,

f(2) = 3(2) -3 = 6-3 =3

g(-2) = -(-2)^2+4 = -4+4 = 0

f(2)-g(-2)= = 3-0 = 3


What is the volume of a cube with a side length of
of a unit?

Answers

It’s d times it three times length width height

Find the fourth roots of 16(cos 200° + i sin 200°).

Answers

Answer:

See below.

Step-by-step explanation:

To find roots of an equation, we use this formula:

[tex]z^{\frac{1}{n}}=r^{\frac{1}{n}}(cos(\frac{\theta}{n}+\frac{2k\pi}{n} )+\mathfrak{i}(sin(\frac{\theta}{n}+\frac{2k\pi}{n})),[/tex] where k = 0, 1, 2, 3... (n = root; equal to n - 1; dependent on the amount of roots needed - 0 is included).

In this case, n = 4.

Therefore, we adjust the polar equation we are given and modify it to be solved for the roots.

Part 2: Solving for root #1

To solve for root #1, make k = 0 and substitute all values into the equation. On the second step, convert the measure in degrees to the measure in radians by multiplying the degrees measurement by [tex]\frac{\pi}{180}[/tex] and simplify.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(0)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(0)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}} = 2(sin(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]

Root #1:

[tex]\large\boxed{z^\frac{1}{4}=2(cos(\frac{19\pi}{36}))+\mathfrack{i}(sin(\frac{19\pi}{38}))}[/tex]

Part 3: Solving for root #2

To solve for root #2, follow the same simplifying steps above but change k  to k = 1.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(1)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(1)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{2\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{2\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{2}))\\[/tex]

Root #2:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{7\pi}{9}))+\mathfrak{i}(sin(\frac{7\pi}{9}))}[/tex]

Part 4: Solving for root #3

To solve for root #3, follow the same simplifying steps above but change k to k = 2.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(2)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(2)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{4\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{4\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\pi))+\mathfrak{i}(sin(\frac{5\pi}{18}+\pi))\\[/tex]

Root #3:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{23\pi}{18}))+\mathfrak{i}(sin(\frac{23\pi}{18}))}[/tex]

Part 4: Solving for root #4

To solve for root #4, follow the same simplifying steps above but change k to k = 3.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(3)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(3)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{6\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{6\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{3\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{3\pi}{2}))\\[/tex]

Root #4:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{16\pi}{9}))+\mathfrak{i}(sin(\frac{16\pi}{19}))}[/tex]

The fourth roots of 16(cos 200° + i(sin 200°) are listed above.

Which is a perfect square? 6 Superscript 1 6 squared 6 cubed 6 Superscript 5 What is the length of the hypotenuse, x, if (20, 21, x) is a Pythagorean triple

Answers

Answer:

Step-by-step explanation:

Hello, by definition a perfect square can be written as [tex]a^2[/tex] where a in a positive integer.

So, to answer the first question, [tex]6^2[/tex] is a perfect square.

(a,b,c) is a Pythagorean triple means the following

[tex]a^2+b^2=c^2[/tex]

Here, it means that

[tex]x^2=20^2+21^2=841=29^2 \ \ \ so\\\\x=29[/tex]

Thank you.

Answer:

Its B

Step-by-step explanation:

How many times does 1/4 go into 3/8

Answers

Answer:

3/2

Step-by-step explanation:

3/8 ÷ 1/4

Copy dot flip

3/8 * 4/1

12/8

Divide top and bottom by 4

3/2

If f(x)=ax+b/x and f(1)=1 and f(2)=5, what is the value of A and B?

Answers

Answer:

[tex]\huge\boxed{a=9 ; b = -8}[/tex]

Step-by-step explanation:

[tex]f(x) = \frac{ax+b}{x}[/tex]

Putting x = 1

=> [tex]f(1) = \frac{a(1)+b}{1}[/tex]

Given that f(1) = 1

=> [tex]1 = a + b[/tex]

=> [tex]a+b = 1[/tex]  -------------------(1)

Now,

Putting x = 2

=> [tex]f(2) = \frac{a(2)+b}{2}[/tex]

Given that f(2) = 5

=> [tex]5 = \frac{2a+b}{2}[/tex]

=> [tex]2a+b = 5*2[/tex]

=> [tex]2a+b = 10[/tex]  ----------------(2)

Subtracting (2) from (1)

[tex]a+b-(2a+b) = 1-10\\a+b-2a-b = -9\\a-2a = -9\\-a = -9\\a = 9[/tex]

For b , Put a = 9 in equation (1)

[tex]9+b = 1\\Subtracting \ both \ sides \ by \ 9\\b = 1-9\\b = -8[/tex]

What is 5 feet and 11 inches in inches

Answers

Answer:

60

Step-by-step explanation:

5 is 60 inch

A cabinet door has a perimeter of 76 inches. Its area is 357 square inches. What are the dimensions of the door?

Answers

Answer:

  17 by 21 inches

Step-by-step explanation:

The perimeter is twice the sum of the dimensions, and the area is their product, so you have ...

  L + W = 38

  LW = 357

__

Solution:

  W(38 -W) = 357 . . . . . substitute for L

  -(W^2 -76W) = 357 . . expand on the left

  -(W^2 -38 +19^2) = 357 -19^2 . . . . complete the square

  (W -19)^2 = 4 . . . . . . . write as a square

  W -19 = ±√4 = ±2 . . . take the square root; next, add 19

  W = 19 ±2 = {17, 21} . . . . if width is one of these, length is the other

The dimensions are 17 by 21 inches.

A rectangle has an area of 81 square centimeters. Which of the following would be the rectangle's length and width? (Area = equals length×times width)

Answers

Answer:

length: 9cm

width: 9cm

Step-by-step explanation:

9×9=81

the length is 9cm and the width is also 9cm

In the following equation, when x=3, what is the value of y? -4x + 3y = 12 A. 9 B. 3 C. 0 D. 8 PLZ HURRY IM TIMED WILL MARK BRAINLIEST

Answers

Answer:

[tex]\huge\boxed{y = 8}[/tex]

Step-by-step explanation:

-4x + 3y = 12

Given that x = 3

-4 (3) + 3y = 12

-12 + 3y = 12

Adding 12 to both sides

3y = 12+12

3y = 24

Dividing both sides by 3

y = 8

Answer:

y =8

Step-by-step explanation:

-4x + 3y = 12

Let x = 3

-4(3) +3y = 12

-12+3y = 12

Add 12 to each side

-12+12+3y =12+12

3y =24

Divide each side by 3

3y/3 = 24/3

y =8

Reduce the following fraction to lowest terms: 8/14

Answers

Answer:

4/7

Step-by-step explanation:

divide both by two for its simplest form

Answer:4/7

Step-by-step explanation

Divide both the numerator and denominator by 2

The result for the numerator is 8/2=4

that of the denominator is 14/2=7

Therefore the resultant answer is 4/7

On a coordinate plane, 2 lines are shown. Line A B has points (negative 4, negative 2) and (4, 4). Line C D has points (0, negative 3) and (4, 0). Which statement best explains the relationship between lines AB and CD? They are parallel because their slopes are equal. They are parallel because their slopes are negative reciprocals. They are not parallel because their slopes are not equal. They are not parallel because their slopes are negative reciprocals.

Answers

Answer:

A. they are parallel because their slopes are equal.

Step-by-step explanation:

edge 2020

Answer:

its A in egde

Step-by-step explanation:

Other Questions
Which of these is true about electrons? posses a positive electrical charge of one (+1) have a negative electrical charge of one (-1) indicates the number of protons in each atom equals the sum of protons plus neutrons in each atom Let E and F be two events of an experiment with sample space S. Suppose P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.1. Compute the values below.(a) P(E F) = (b) P(Ec) = (c) P(Fc ) = (d) P(Ec F) = Name five fractions whose values are between 3/8 and 7/12 Tom finished reading 3/7 of a book in the first week, and he read 3/4 of the remainder in the second week. what fraction is left? Find the area of the shaded regionA. 12 ft^2B. 36 ft^2C. 40.5 ft^2 D. 18 ft^2 Lines T U and R S intersect lines M N and P Q. Where line T U intersects with lines M N and P Q, right angles are formed. Lines M N and P Q are straight lines that are next to each other and they will never intersect. Lines T U and R S are next to each other and could intersect. Which two statements are both true? Which choice shows the product of 22 and 49 ? PLS HELP I WILL GIVE BRAINLIST AND A THANK YOU!!!!! :) #5 Find the distance between the points on the graph. The angles of a quadrilateral are (3x + 2), (x-3), (2x+1), and 2(2x+5). Find x. Write an equation to model the distance between the point (2,4) and any point along the curvey=4x3 + 1. solve for m. m-7 = n+3 It is worth like 40 points Compound has a molar mass of and the following composition: elementmass % carbon47.09% hydrogen6.59% chlorine46.33% Write the molecular formula of . Transform the given parametric equations into rectangular form. Then identify the conic. x= -3cos(t) y= 4sin(t) A small distribution organization uses a payroll company to provide employee compensation services and keep timesheet records and employee attendance history. This situation is an example of Part-time workers likely result in A. inaccurately high estimates of the labor force. B. inaccurately low estimates of the labor force. C. a disincentive for the unemployed to seek employment. D. lower incomes and fewer jobs. Michelle gives out a business card with an e-mail address on it. According to the comments that accompany the UETA, it may be reasonable to infer that Michelle has consented to In 1638, Anne Hutchinson was banished from Massachusetts Bay Colony for 4 - Q = -2 what is Q Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates.a. (4,2,4)b. (0,8,15)c. (2,1,1)d. (23,2,3)