How tall is the table?

How Tall Is The Table?

Answers

Answer 1

Answer:

too complex:<

Step-by-step explanation:

120cm+120cm=240cm (2 squirrels + 2 air spaces)

90cm+90cm=180cm (2 rats + 2 air spaces)

240cm-180cm=(2 squirrels + 2 air spaces) - (2 rats + 2 air spaces)

                       =2 squirrels + 2 air spaces - 2 rats - 2 air spaces

                       =2 squirrels - 2 rats

                       =60cm

1 squirrel - 1 rat = 60cm divided by 2

                         = 30cm

120cm + 90cm = squirrel + air space + rat + air space

                        = 210cm

I've no idea!! This qn is too challenging!!

But i hope the above workings might help you in a way or another:>

Answer 2

The table is 105cm tall.

What is Equation?

Two or more expressions with an Equal sign is called as Equation.

Let the table is x

Squirrel is y

Rat is z

From 1st diagram

x+y-z=120...(1)

From 2nd diagram

x+z-y=90...(2)

Add 1 and 2

x+y-z+x+z-y=120+90

2x=210

Divide both sides by 2

x=105

Hence, the table is 105cm tall.

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ2


Related Questions

Find the expression that is equivalent to 7(x2 – 5x + 1).

Answers

Answer:

7x^2 -35x +7

Step-by-step explanation:

7(x^2 – 5x + 1)

Distribute

7x^2 -7*5x +7*1

7x^2 -35x +7

Coefficient of y in the equation: 3(2x -1/3y) = 0 is equal to a) 3 b) 1 c)-3 d)-1

Answers

Answer:

d is the right answer because the coefficient of y is 3*(-1/3) which results -1 so d is the right answer

The coefficient of y in the given equation is 1. Therefore, option B is the correct answer.

What is an equation?

In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =.

The given equation is 3(2x -1/3y)=0.

Now, 6x-1/y=0

A numerical or constant quantity placed before and multiplying the variable in an algebraic expression.

Here, coefficient of y is 1.

Therefore, option B is the correct answer.

To learn more about an equation visit:

https://brainly.com/question/14686792.

#SPJ2

What is the value of Z? Z =2^3

Answers

the value of Zis 8.

Z =2^3=8

Now we have to,

find the required value of Z.

→ Z = 2^3

→ [Z = 8]

Therefore, value of Z is 8.

a soft drink vendor at a popular beach analyzes his sales recods and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by

Answers

Complete Question:

A soft-drink vendor at a popular beach analyzes his sales records, and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by P(x) = -0.001x² + 3x - 1800.

a. What is his maximum profit per day?

b. How many cans must be sold in order to obtain the maximum profit?

Answer:

a. $450

b. 1500 cans

Step-by-step explanation:

Given the following quadratic function;

P(x) = -0.001x² + 3x - 1800  ......equation 1

a. To find his maximum profit per day;

Since P(x) is a quadratic equation, P(x) would be maximum when [tex] x = \frac {-b}{2a} [/tex]

Note : the standard form of a quadratic equation is ax² + bx + c = 0  ......equation 2

Comparing eqn 1 and eqn 2, we have;

a = -0.001, b = 3 and c = -1800

Now, we determine the maximum profit;

[tex] x = \frac {-b}{2a} [/tex]

Substituting the values, we have;

[tex] x = \frac {-3}{2*(-0.001)} [/tex]

Cancelling out the negative signs, we have;

[tex] x = \frac {3}{2*0.001} [/tex]

[tex] x = \frac {3}{0.002} [/tex]

x at maximum = 1500

Substituting the value of "x" into equation 1;

P(1500) = -0.001 * 1500² + 3(1500) - 1800

P(1500) = -0.001 * 2250000 + 4500 - 1800

P(1500) = -2250 + 2700

P(1500) = $450

b. Therefore, the soft-drink vendor must sell 1500 cans in order to obtain the maximum profit.

In the picture the exponent says 5/3

Answers

Answer:

the answer is B

Step-by-step explanation:

[tex] {{ (- 2)}^{3}}^{5 \div 3} = { ( - 2)}^{5} = - 32[/tex]

write -8 form of 2 on up and complete other steps

Which of the following expressions are equivalent to -3x- 6/10
Choose all that apply:
A=3/6x1/10
b=- 3/10x-6
c= none of the above


Answers

Answer:

c= none of the above

Step-by-step explanation:

-3x- 6/10

This has two separate terms, a term with a variable

-3x  and a term with a constant -6/10

A=3/6x1/10  This has only one term

b=- 3/10x-6  This has a different x term -3/10  which is not -3

c= none of the above

What is the least common denominator that will allow you to combine the constant terms? 10 21 35 or 42

Answers

Answer:

[tex]LCM = 21[/tex]

Step-by-step explanation:

Given

[tex]-\frac{3}{5}y + \frac{1}{7}= \frac{1}{3}y -\frac{2}{3}[/tex]

Required

LCM of the constant terms

Collect like terms

[tex]\frac{1}{3}y+\frac{3}{5}y = \frac{1}{7}+\frac{2}{3}[/tex]

The constant terms are on the right-hand side

To combine them, we simply take the LCM of the denominator, i.e. 7 and 3

The prime factorization of 3 and 7 are:

[tex]3 = 3[/tex]

[tex]7 = 7[/tex]

So:

[tex]LCM = 3 * 7[/tex]

[tex]LCM = 21[/tex]

Use a table of values to graph the function ƒ(x) = x−−√. Choose the correct graph from the options below.

Answers

Answer:

B

Step-by-step explanation:

The square root function's graph is graph (b). This makes logical sense, because, when taking the square root (the principal root in particular), a general rule is that both the input and the output must be positive. Moreover, if one were to create a table of values to find points on the graph of the function, each of the points can be found on graph (b).

[tex]f(x)=\sqrt{x}[/tex]

x         y

1          1

4         2

9         3

16        4

Therefore graph (B) is the correct answer.

The weights of newborn baby boys born at a local hospital are believed to have a normal distribution with a mean weight of 35113511 grams and a variance of 253,009253,009. If a newborn baby boy born at the local hospital is randomly selected, find the probability that the weight will be less than 46174617 grams. Round your answer to four decimal places.

Answers

Answer:

The answer is "0.1397".

Step-by-step explanation:

[tex]\mu=3511\\\\[/tex]

variance [tex]\ S^2= 253,009\\\\[/tex]

standard deviation [tex]\sigma =\sqrt{253,009}=503\\\\[/tex]

Finding the probability in which the weight will be less than [tex]4617 \ grams\\\\[/tex]

[tex]P(X<4617)=p[z<\frac{4617-3511}{503}]\\\\[/tex]  

                      [tex]=p[z<\frac{1106}{503}]\\\\=p[z< 2.198]\\\\= .013975\approx 0.1397[/tex]

^please answer, thanks in advance ^

Answers

Answer:

There is not enough information to determine the mean, the median is 28.

There is not enough information to determine the mean absolute deviation, the interquartile range is 18

Step-by-step explanation:

The box plot given has a skewed distribution, this means that both the mean and median values are not the same. From a box plot, the median value Can be obtained as the point in between the box.

From the box plot given, the marked point in between the box is 28 cm

Hence, Median = 28 cm

The mean cannot be inferred from the skewed box plot.

There is also not enough information to determine the mean absolute deviation ;

The interquartile range:

(Q3 - Q1)

Q3 = upper quartile, the endpoint of the box = 40

Q1 = the starting point of the box = 22

IQR = Q3 - Q1

IQR = 40 - 22 = 18

A sofa regularly sells for $760. The sale price is $676.40. Find the percent decrease of the sale price from the regular price.

Answers

Answer: (760 - 676. 40) × 100 ÷ 760 = 11%

Step-by-step explanation:

Answer:

11% decrease

Step-by-step explanation:

Concepts:

Percent change is the change between an old value and its new value represented as a %. If a percent change is a decrease, it means that the new value is less than the old value. If a percent change is a increase, it means that the old value is less than the new value. The formula for percent change is: (NV - OV)/OV · 100 = C, where NV = New Value, OV = Old Value, and C = Percent Change.The sale price is the price at which something sells or sold after the price has been reduced by sales, discounts, etc.

Solving:

Let's find the percent change by using the formula.

1. Formula for Percent Change

(NV - OV)/OV · 100 = C

2. Plug in the values of NV and OV

(676.40 - 760)/760 · 100 = C

3. Simplify

-83.6/760 · 100 = C-0.11 · 100 = C-11 = C

Therefore, our percent decrease is 11% decrease.

What is the value of x in the equation
-%y = 30, when y = 15?

Answers

Answer:

x not given

therefore no answer for x

For a standard normal distribution, find:

P(z > -1.6)
Express the probability as a decimal rounded to 4 decimal places.

Answers

Answer:

P(z > -1.76) = 1 - P(z < -1.76) = 1 - 0.0392 = 0.960

A drinking container is shaped like a cone and must hold at least 10 ounces of fluid. The radius of the top of the container is 2.25 inches. The steps for determining the height of the cone-shaped container are shown below.

Answers

9514 1404 393

Answer:

  C.  h ≥ 1.9 in

Step-by-step explanation:

As the final step, divide both sides of the inequality by 5.3:

  (5.3h)/5.3 ≥ 10/5.3

  h ≥ 1.9

f(x) = 2x2 + 4x - 5
g(x) = 6x3 – 2x2 + 3
Find (f + g)(x).

Answers

Answer:

4x-5=4x-5

(f+g) (x)=6x³+3

Step-by-step explanation:

Not sure how to do this

Answers

Answer:
Scale factor of 2

Explanation:
I compared the lengths of AC to DF. AC is one unit long, whereas DF is two units long, so DF is dilated by a scale factor of 2.

Find the number that comes after 144five

Answers

Answer:

The number that comes after 144five is:

= 200five.

Step-by-step explanation:

Adding 1 to 144 base 5 will result in:

144

+  1

= 200

b) To obtain the next number that comes after 144five, add 1five to 144five.  Since the numbers are in base 5, 1five added to 4five will result in 0 with 1 carried backward.  When 1 is added to the next 4, the result will be 0 with 1 carried backward.  1 added to 1 = 2, all in base 5.  Figures in base 5 cannot exceed 4.  The usual numbers for a base 5 operation are 0, 1, 2, 3, and 4.

A car travels 1/8 mile in 2/13 minutes. What is the speed in terms of miles per minute?

Answers

Answer:

13/16 miles per minute

Step-by-step explanation:

Take the miles and divide by the minutes

1/8 ÷ 2/13

Copy dot flip

1/8 * 13/2

13/16 miles per minute

A researcher wishes to estimate the proportion of adults who have​ high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within with ​% confidence if ​(a) she uses a previous estimate of ​? ​(b) she does not use any prior​ estimates?

Answers

Answer:

732 samples ;

752 samples

Step-by-step explanation:

Given :

α = 90% ; M.E = 0.03 ; p = 0.58 ; 1 - p = 1 - 0.58 = 0.42

Using the relation :

n = (Z² * p * (1 - p)) / M.E²

Zcritical at 90% = 1.645

n = (1.645² * 0.58 * 0.42) / 0.03²

n = 0.65918769 / 0.0009

n = 732.43076

n = 732 samples

B.)

If no prior estimate is given, then p = 0.5 ; 1 - p = 1 - 0.5 = 0.5

n = (Z² * p * (1 - p)) / M.E²

Zcritical at 90% = 1.645

n = (1.645² * 0.5 * 0.5) / 0.03²

n = 0.67650625 / 0.0009

n = 751.67361

n = 752 samples

WILL MAKE BRAINLIEST

Answers

Answer:

x=3

Step-by-step explanation:

The ratios need to be the same

AB             CB

---------- = ----------

AD             ED

3           x

-----  = ---------

3+9       12

3           x

-----  = ---------

12          12

X must equal 3

The mortgage on your new house is $180,000. Your monthly mortgage payment is $839 for 30 years. How much interest will be paid if the house is kept for the full 30 years?

Answers

9514 1404 393

Answer:

  $122,040

Step-by-step explanation:

The interest is the difference between the mortgage value and the total amount paid.

  ($839/mo)×(12 mo/yr)×(30 yr) -180,000 = $302,400 -180,000 = $122,040

$122,040 will be paid in interest.

can someone help me out with this question??? ​

Answers

Answer:

a

Step-by-step explanation:

Josue leans a 26-foot ladder against a wall so that it forms an
angle of 80° with the ground. How high up the wall does the
ladder reach? Round your answer to the nearest hundredth of a
foot if necessary.

Answers

Answer:

25.61 feet

Step-by-step explanation:

First, we can draw a picture (see attached picture). With the wall representing the rightmost line, and the ground representing the bottom line, the ladder (the hypotenuse) forms a 80 degree angle with the ground and the wall and ground form a 90 degree angle.

Without solving for other angles, we know one angle and the hypotenuse, and want to find the opposite side of the angle.

One formula that encompasses this is sin(x) = opposite/hypotenuse, with x being 80 degrees and the hypotenuse being 26 feet. We thus have

sin(80°) = opposite / 26 feet

multiply both sides by 26 feet

sin(80°) * 26 feet = opposite

= 25.61 feet as the height of the wall the ladder reaches

The height of the wall does the ladder reach to the nearest hundredth of the foot is 25.61 feet.

What is a right-angle triangle?

It is a type of triangle in which one angle is 90 degrees and it follows the Pythagoras theorem and we can use the trigonometry function. The Pythagoras is the sum of the square of two sides is equal to the square of the longest side.

Josue leans a 26 feet ladder against a wall so that it forms an angle of 80° with the ground.

The condition is shown in the diagram.

Then the height of the wall will be

[tex]\rm \dfrac{h }{26 } = sin 80 \\\\h \ \ = 26 \times sin 80\\\\h \ \ = 25.61 \ ft[/tex]

More about the right-angle triangle link is given below.

https://brainly.com/question/3770177

13 A traffic roundabout has a circular garden
in the centre and two lanes for traffic
encircling the garden. The diameter of the
garden is 16 metres and each lane is 3 metres
wide. Each lane is to be resurfaced. Calculate
the area to be resurfaced. Answer in square
metres to the nearest whole number.

Answers

Answer:

Step-by-step explanation:

The area to be resurfaced is the area of the

whole circle including garden and lanes minus  

the area of the garden.

 

Area of a circle is (pi)r2

 

radius of garden is (1/2)diameter = 8 m

Garden area:  (pi)82 = 64(pi) m2

 

Diameter of garden plus traffic lanes is

16 + 2(6) because we add 6 m to both sides

of the diameter of the garden.

Full diameter = 16+12 = 28 m

Full radius = 28/2 = 14 m

Full area:  (pi)142 = 196(pi) m2

 

Area to be resurfaced:

196(pi) - 64(pi) = 132(pi) m2  ≅ 415 m2

Зу = -2 - 6
3y = 2z - 6

Answers

Answer:

y = -8/3, z = -1

Find x on this triangle

Answers

Answer:

3 sqrt(3) =x

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

cos theta = adj / hyp

cos 30 = x/6

6 cos 30 = x

6 ( sqrt(3)/2) = x

3 sqrt(3) =x

Can someone explain how to solve this step by step? Thank you

Answers

Answer:

x=10

Step-by-step explanation:

Using the Rational Roots Test, we can say that the potential rational roots are

± (1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90).

Unfortunately, there doesn't really seem to be an easy way to figure out which numbers are actually roots outside of guess and check. Therefore, to solve this, we'll have to go through numbers until we hit something.

To make the process faster, I wrote a Python script as follows:

numbers = [1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90]

negative_numbers = [i * (-1) for i in numbers]

numbers = numbers + negative_numbers

for i in numbers:

   

   if (i**3 - 10*(i**2) + 9*i-90) == 0:

       print(i)

The result comes out as 10, meaning that 10 is our only rational root. Using the Factor Theorem, we can say that because 10 is a root, (x-10) is a factor of the polynomial. Using synthetic division, we can divide (x-10) from the polynomial to get

10 |   1     -10     9      -90

    |          10     0       90

    _________________

        1       0     9        0

Therefore, we can say that

(x³-10x²+9x-90)/(x-10) = (x²+0x+9), so

x³-10x²+9x-90 = (x-10)(x²+9)

As the only solution to x²+9=0 contains imaginary numbers, x=10 is the only solution to x³-10x²+9x-90 = (x-10)(x²+9) = 0

A jar contains 11red marbles, 12 blue marbles and 6 white marbles. Four marbles from the jar are selected. With each marble being replaced after each selection. What is the probability that the first red marble chosen is on the 5th selection?

Answers

Answer:

Red on the 5th draw = 0.0907

Step-by-step explanation:

The first to fourth selections are all the same.

Blue + white = 12 + 6 = 18

The total number of marbles is 11 + 12 + 6 = 29

P(~ red) for the first four times = (18/29)^4 = 0,1484

Now on the 5th time, the first red is 11/18

So the Probability is 0.1484 * 11/18 = 0.0907

Find the exact length of the curve. x=et+e−t, y=5−2t, 0≤t≤2 For a curve given by parametric equations x=f(t) and y=g(t), arc length is given by

Answers

The length of a curve C parameterized by a vector function r(t) = x(t) i + y(t) j over an interval a ≤ t ≤ b is

[tex]\displaystyle\int_C\mathrm ds = \int_a^b \sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2} \,\mathrm dt[/tex]

In this case, we have

x(t) = exp(t ) + exp(-t )   ==>   dx/dt = exp(t ) - exp(-t )

y(t) = 5 - 2t   ==>   dy/dt = -2

and [a, b] = [0, 2]. The length of the curve is then

[tex]\displaystyle\int_0^2 \sqrt{\left(e^t-e^{-t}\right)^2+(-2)^2} \,\mathrm dt = \int_0^2 \sqrt{e^{2t}-2+e^{-2t}+4}\,\mathrm dt[/tex]

[tex]=\displaystyle\int_0^2 \sqrt{e^{2t}+2+e^{-2t}} \,\mathrm dt[/tex]

[tex]=\displaystyle\int_0^2\sqrt{\left(e^t+e^{-t}\right)^2} \,\mathrm dt[/tex]

[tex]=\displaystyle\int_0^2\left(e^t+e^{-t}\right)\,\mathrm dt[/tex]

[tex]=\left(e^t-e^{-t}\right)\bigg|_0^2 = \left(e^2-e^{-2}\right)-\left(e^0-e^{-0}\right) = \boxed{e^2-\frac1{e^2}}[/tex]

The exact length of the curve when the parametric equations are x = f(t) and y = g(t) is given below.

[tex]e^2 -\dfrac{1}{e^2 }[/tex]

What is integration?

It is the reverse of differentiation.

The parametric equations are given below.

[tex]\rm x=e^t+e^{-t}, \ \ 0\leq t\leq 2\\\\y=5-2t, \ \ \ \ \ 0\leq t\leq 2[/tex]

Then the arc length of the curve will be given as

[tex]\int _0^2 \sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dx})^2}[/tex]

Then we have

[tex]\rm \dfrac{dx}{dt} = e^t-e^{-t}\\\\ \dfrac{dy}{dt} = -2[/tex]

Then

[tex]\rightarrow \int _0^2 \sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dx})^2}\ \ dt\\\\\rightarrow \int _0^2 \sqrt{(e^t-e^{-t})^2 + (-2)^2} \ dt\\\\\rightarrow \int _0^2 \sqrt{(e^t+e^{-t})^2} \ dt\\\\\rightarrow \int _0^2 (e^t+e^{-t}) \ dt\\\\\rightarrow (e^2-e^{-2}) \\\\\rightarrow e^2 - \dfrac{1}{e^2}[/tex]

More about the integration link is given below.

https://brainly.com/question/18651211

please help me its timed -H.M​

Answers

Answer:

f(3) = g(3)

General Formulas and Concepts:

Algebra I

Functions

Function NotationGraphing

Step-by-step explanation:

We can see from the graph that the lines intersect at (3, 6). If this is the case, then that means that when x = 3 for both functions, it outputs f(x) = 6.

Rewriting this in terms of function notation:

f(3) = 6, g(3) = 6

∴ f(3) = g(3)

Other Questions
Claims from Group A follow a normal distribution with mean 10,000 and standard deviation 1,000. Claims from Group B follow a normal distribution with mean 20,000 and standard deviation 2,000. All claim amounts are independent of the other claims. Fifty claims occur in each group. Find the probability the total of the 100 claims exceeds 1,530,000. Rewrite the following sentences into passive: 1. The world uses fossil fuels as the main source of energy. 2. I cannot do this project. It is impossible. 3. Germany has produced over 1 million cars this year, 4. They are building a new hospital in the area. 5. We must find a solution for the power shortage C mt "tu l" ca nc ngoi hot ng kho st du kh trn bin, cch b bin Vng Tu ca nc ta 160 hi l. Vn dng nhng kin thc hc v ch quyn lnh th, bin gii quc gia; Anh, ch cho bit tu l ny c vi phm ch quyn lnh th ca Vit nam hay khng?; nu c, theo anh ch ng, Nh nc ta nn gii quyt vn ny nh th no? Select the correct answer.Authors often include multiple themes in their writing. Two themes expressed in this passage areA. the quest for success can be daunting, and self-assurance is essential for facing challenges.B. it is important to feel superior to others, and fame and fortune push a person to work hard.C. the quest for mastery in a skill can be challenging, and having friends makes life easier.D. it is important to follow family traditions, and hard work does not always lead to positive results. A.If x:y= 3:5, find = 4x + 5 : 6y -3 The ratio of flour to water is 2 to 1 for biscuits Is Lisa has 4 cups of flour how much water should she add to make biscuits what is the atomicity of Sulphur? what is the cosine of 122.2 Match the following people to their accomplishments world history Use the parabola tool to graph the quadratic function f(x)=x2+4. Graph the parabola by first plotting its vertex and then plotting a second point on the parabola. A rectangular piece of plastic has a width of 4.2 cm, a height of 1.9 cm and a length of 8.8 cm. If the mass of the plastic rectangle is 64.6 g, what is its density in g/mL? Can someone help me with this math homework please! Consider the themes present in Animal Farm and explain how these themes relate to the impossibility of the survival of Animalism on Animal Farm. Coordinate plane with quadrilaterals EFGH and E prime F prime G prime H prime at E 0 comma 1, F 1 comma 1, G 2 comma 0, H 0 comma 0, E prime negative 1 comma 2, F prime 1 comma 2, G prime 3 comma 0, and H prime negative 1 comma 0. F and H are connected by a segment, and F prime and H prime are also connected by a segment. Quadrilateral EFGH was dilated by a scale factor of 2 from the center (1, 0) to create E'F'G'H'. Which characteristic of dilations compares segment F'H' to segment FH Find f(-3) for f(x) = 4(2)^xO A. -32O B. 1/2O C. -24O D. 1/8 what is 3x10x178 I need help asap Can someone help me with this math homework please! Which table of values could be generated by the equation 10x+5y=15? (Will give brainlest and 21 points) A car travels 600 km in 6 hours. at what rate of speed is the car traveling? Find the length of side BC give your answer to three significant figures